
Schedulability Analysis of Non-Preemptive Recurring Real-time Tasks

Sanjoy K. Baruah
University of North Carolina at Chapel Hill

E-mail: baruah@cs.unc.edu

Samarjit Chakraborty
National University of Singapore

E-mail: samarjit@comp.nus.edu.sg

Abstract
The recurring real-time task model was recently pro-

posed as a model for real-time processes that contain code
with conditional branches. In this paper, we present a
necessary and sufficient condition for uniprocessor non-
preemptive schedulability analysis for this task model. We
also derive a polynomial-time approximation algorithm
for testing this condition. Preemptive schedulers usually
have a larger schedulability region compared to their non-
preemptive counterparts. Further, for most realistic task
models, schedulability analysis for the non-preemptive ver-
sion is computationally more complex compared to the cor-
responding preemptive version. Our results in this paper
show that (surprisingly) the recurring real-time task model
does not fall in line with these intuitive expectations, i.e.
there exists polynomial-time approximation algorithms for
both preemptive and non-preemptive versions of schedu-
lability analysis. This has important implications on the
applicability of this model, since fully preemptive schedul-
ing algorithms often have significantly larger runtime over-
heads.

1 Introduction
Many real-time embedded systems contain concurrently

executing blocks of code that run in an infinite loop and
get triggered by external events. Depending on the event
type, different parts of such code blocks get executed. Re-
cently, a task model for such a setup was proposed in [2] and
was called the recurring real-time task model. It is partic-
ularly suitable for representing embedded code as it allows
the modeling of conditional branches and fine-grain dead-
line constraints. However, it turns out that the schedulabil-
ity analysis problem for this task model is computationally
intractable and at best can be solved in pseudo-polynomial
time [9]. Clearly, this restricts its applicability to real-life
setups. To get around this problem, a scheme for approxi-
mate schedulability analysis was proposed in [11]. It runs in
polynomial time and has the following property. For some
task sets which are not schedulable, it incorrectly returns
schedulable. However, in such cases it is guaranteed that at
run-time no task would miss its deadline by more than a pre-
specified error value. The smaller the value of this specified
error parameter, higher is the running time of the algorithm
(albeit always polynomial in the problem size). The scheme

can also be modified to err in the opposite direction, i.e. task
sets which are not schedulable always result in the correct
answer but some schedulable task sets are incorrectly la-
beled as not schedulable. Such task sets are those that lead
to a very high processor utilization, and here the error para-
meter can be formulated in terms of this utilization.

The schedulability analysis algorithm proposed in [2], as
well as the algorithms for approximate schedulability analy-
sis in [11] only handle the fully preemptive version of the
problem. However, unrestricted task preemptions always
result in significant overheads in terms of context saving
and switching and may not be feasible in many applications,
particularly in an embedded systems setup. It would be far
more realistic if the schedulability analysis can take into ac-
count the constraint that preemptions are only allowed at
task boundaries. For most realistic task models, deriving
the conditions for non-preemptive schedulability analysis
are significantly more complex than their preemptive coun-
terparts. Further, the resulting algorithms are also computa-
tionally more complex [8]. As a result, although there exists
a large volume of work on preemptive schedulability analy-
sis for various task models [1, 7, 6, 14, 15], relatively little is
known about their corresponding non-preemptive versions.
Among previous studies on non-preemptive schedulability
analysis, we are aware of [13] and [12], which considered
the sporadic task model with implicit and explicit deadlines.
Very recently, the non-preemptive scheduling of periodic
tasks was studied in [4, 3].

Our contributions: In this paper we study the non-
preemptive schedulability analysis problem for the recur-
ring real-time task model. Our main result is fairly counter-
intuitive. We show that the schedulability analysis of
any collection of concurrently executing recurring real-time
tasks can be reduced to at most a polynomial number of pre-
emptive schedulability analysis problems. This implies that
for the recurring real-time task model, the non-preemptive
schedulability analysis problem is no more difficult than
its preemptive counterpart, at least from an asymptotic-
complexity standpoint. A less surprising result would have
been that the non-preemptive constraint results in an expo-
nentially large number of additional schedules that might
need to be considered in order to verify the schedulability

1-4244-0054-6/06/$20.00 ©2006 IEEE

of a task set. These additional schedules would typically
arise from different orderings of blocking tasks.

In addition, we show that it is possible to derive
polynomial-time approximation algorithms for the non-
preemptive version as well. Unfortunately, the running
times of the approximation algorithms (both for the preemp-
tive, as well as for the non-preemptive cases) turn out to be
high-degree polynomials. However, we believe that with
more aggressive notions of approximation, it might be pos-
sible to substantially reduce the running times of these al-
gorithms (which is an important direction for future work).

Apart from being an interesting intellectual exercise in
its own right, our results in this paper have important impli-
cations on the applicability of the recurring real-time task
model. Further, these results are especially interesting be-
cause the recurring real-time task model generalizes a num-
ber of well-known task models such as the sporadic [14],
multiframe [15], generalized multiframe [6] and recurring
branching [1]. Recently, [10] studied the non-preemptive
schedulability analysis of a task model whose syntax is sim-
ilar to the recurring real-time task model. However, the
tasks in this model do not execute in an infinite loop (i.e.
the recurring behavior was not modeled).

Organization of the paper: The rest of the paper is or-
ganized as follows. We briefly introduce the recurring real-
time task model in Section 2 and discuss some of its prop-
erties. The main result of this paper (which we outlined
above) is derived in Section 3. Using this result, we ob-
tain an algorithm for the exact non-preemptive schedula-
bility analysis of recurring real-time tasks in Section 4.
Finally, we discuss our approximation algorithms in Sec-
tions 5 and 6. Due to space constraints, some of the proofs
and the statement of the algorithm for exact non-preemptive
schedulability analysis have been omitted here; they may be
found in [5].

2 Recurring Real-Time Task Model

A recurring real-time task T is represented by a task
graph G(T) and a period P (T). The task graph G(T) is
a directed acyclic graph (DAG) with a unique source vertex
and a unique sink vertex. Vertices in this DAG represent
subtasks, and each edge represents a possible flow of con-
trol. Each vertex u is labeled by two integer parameters
e(u) and d(u) with the following interpretation: each time
subtask u is triggered, a job is generated with ready-time
equal to the triggering-time of the subtask, an execution re-
quirement of e(u) time units and a deadline d(u) time-units
after the triggering-time. Each edge (u, v) is labeled by an
integer parameter p(u, v) denoting the minimum amount of
time that must elapse after vertex u is triggered, before ver-
tex v can be triggered. To simplify our presentation, we will
add the restriction that p(u, v) ≥ d(u) for each edge (u, v)

0

(3, 5)

1

(7, 10)

2

(1, 2)

3

(1, 10)

Period = 50

�10

�
5

�
20

�15

Figure 1. An example recurring real-time task.

in the DAG — this restriction is related to the frame sepa-
ration property [16], which is a requirement that a task may
generate a job only after the deadline of the previous job
generated by it has elapsed.

The execution semantics of a recurring real-time task
may be described as follows. When a subtask u is trig-
gered, it generates a job which needs to be executed on a
shared processor for e(u) units of the next d(u) units of
time. Initially the source vertex of the DAG may be trig-
gered at any time. Suppose that vertex u is triggered at time
t, then: (i) if u is not the sink vertex of G(T), then the next
vertex of G(T) to be triggered is some vertex v such that
(u, v) is an edge in G(T); vertex v is triggered at or after
time t+p(u, v), (ii) if u is the sink vertex of G(T), then the
next vertex of G(T) to be triggered is the source vertex; it
can be triggered at any time after t subject to the constraint
that at least P (T) time units should have elapsed since its
last triggering.

We can use a 3-tuple (T, t, u) to denote the fact that
subtask (or vertex) u of the recurring real-time task T is
triggered at time-instant t; such a 3-tuple will be called
an event. Further, we will use E(T) to denote the max-
imum possible cumulative execution requirement on any
path in a task graph G(T), from its source node to its
sink node. ρave(T) will be used to denote the quantity
E(T)/P (T) and will be referred to as the utilization of
T . The system utilization of a set of tasks τ is defined as
ρave(τ) def=

∑
T∈τ ρave(T).

Finally, an example recurring real-time task is shown
in Figure 1. The ordered pair above each vertex u repre-
sents its execution requirement and the relative deadline –
(e(u), d(u)). The single integer on each edge (u, v) repre-
sents the associated inter-triggering separation p(u, v). The
period of the task — the minimum time that must elapse
between successive triggerings of the source node — is 50.
For this task T , E(T) is equal to 7 + 3 + 1 = 11, and
ρave(T) = 11/50 = 0.22.

The non-preemptive constraint that we consider in this
paper allows for preemption only at task boundaries. In this
example, it implies that jobs generated as a result of trig-
gering any of the vertices 0, . . . , 3, once scheduled on the
processor, will have to be run till completion.

The demand bound function: Our schedulability analy-
sis algorithms rely on the computation of the maximum de-

mand that can be generated by a task within time intervals of
different lengths. The resulting demand bound function of
a recurring real-time task quanti es the maximum amount
of execution that can be required by jobs of the task in any
interval of a given size.

Definition 1 (Demand Bound Function) Let T be a task,
and t a non-negative integer. The demand bound function
DBF(T, t) denotes the maximum cumulative execution re-
quirement by jobs of T that have both ready times and dead-
lines within any time interval of duration t.

Further, for any vertex v ∈ T , we denote by DBF v(T, t),
the maximum cumulative execution requirement demanded
by T within any time interval of length t, due to any trigger-
ing sequence ending at the vertex v. We will see in Section 3
that ef cient computation of the demand bound functions is
critical for the schedulability analysis of systems of non-
preemptive recurring real-time tasks. Demand bound func-
tions were also used in preemptive schedulability analysis,
and have previously been studied in that context.

We close this section with a lemma that provides a (not
necessarily tight) upper bound on the value of the demand
bound function.

Lemma 1 For any task T and any t ≥ 0,

dbf(T, t) ≤ 2 · E(T) + t · ρave(T) (1)

Proof Sketch: Any legal event sequence σ of task T can be
considered to be the concatenation of at most three subse-
quences, as follows.

• The rst subsequence ends with the rst occurrence of
the job corresponding to the triggering of the source
vertex. If a job corresponding to the source vertex
is not present in σ, then the second and third subse-
quences are empty.

• The third subsequence begins with the job immediately
following the last occurrence of the job corresponding
to the triggering of the source vertex. If there is exactly
one job corresponding to the source vertex in σ, then
the third subsequence is empty.

• The second subsequence begins with the job immedi-
ately following the rst occurrence of the job corre-
sponding to the triggering of the source vertex, and
ends with the last occurrence of the job corresponding
to the triggering of the source vertex.

The lemma follows from the observation that the maximum
cumulative execution requirement of jobs in the rst and
third subsequences is E(T) each, and that the maximum
cumulative execution requirement of jobs in the second sub-
sequence is at most t · ρave(T).

3 Properties of Non-Schedulable Systems
In what follows, we will only be concerned with

(uniprocessor) schedulability analysis under the earliest
deadline rst (EDF) scheduling policy. This is because EDF
is known to be optimal for the preemptive case and it is also
optimal for the non-preemptive case if ready jobs are not
kept waiting when the processor is free (which is a policy
that is used in any practical implementation).

Since a system of recurring real-time tasks may generate
in nitely many different legal collections of jobs, it is not
possible to explicitly check each such legal collection for
EDF-schedulability. In the remainder of this section, we will
identify characteristics that are shared by all systems that
are not EDF-schedulable; in the following sections, we will
design algorithms for ef ciently recognizing task systems
that possess these properties.

Let τ denote a system of recurring real-time tasks com-
prised of n tasks T1, T2, . . ., Tn. Let us suppose that
this system is not schedulable under EDF; we will now de-
rive certain properties that τ must satisfy as a consequence.
Since τ is not schedulable using EDF, there are legal se-
quences of jobs generated by τ for which EDF would miss
some deadline. Let σ(τ) denote one such legal collection of
jobs, satisfying the following additional properties:

• It is the smallest such collection, in the sense of having
the fewest number of jobs in it.

• Let σ′ denote any legal collection of jobs from τ , let
to denote the earliest arrival time of any job in σ ′, and
let us de ne the relative arrival time of any job in σ ′ to
be the difference between its (actual) arrival time and
to. σ(τ) is then a smallest legal collection of jobs from
τ for which EDF misses one or more deadlines and for
which the cumulative sum of the relative arrival times
of the jobs is the minimum.

Let tf denote the instant at which a deadline is missed in
the EDF schedule for σ(τ). Let ta < tf denote the earliest
arrival time of any job in σ(τ).

Claim 1 The processor is never idle over [ta, tf) in the EDF

schedule for σ(τ).

Proof Sketch: Suppose that the processor were to be idled at
time-instant t′, ta < t′ < tf . By de nition of EDF, it must
be the case that no jobs are active i.e., have arrived but
not yet been executed – at time-instant t ′. Observe that the
legal collection of jobs comprised of all jobs in σ(τ) that
arrived after t′ will also miss a deadline at time-instant tf if
executed by EDF. But this contradicts the claimed minimal-
ity of σ(τ).
Corollary 1 follows immediately:

Corollary 1 The sum of the execution requirements of jobs
in σ(τ) exceeds tf − ta.

Claim 2 There is at most one job in σ(τ) with deadline
greater than tf . If there is such a job, then it arrives at
the time-instant ta and is the first job to be executed in the
EDF schedule for σ(τ).

Proof Sketch: Suppose that there is more than one job in
σ(τ) with deadline > tf , and consider the time interval
[t1, t2] during which the last such job is scheduled in the
EDF schedule of σ(τ). By definition of EDF, it must be the
case that no jobs with deadline ≤ tf are active — i.e., has
arrived but not yet been executed – at time-instant ta. It is
not hard to see that the legal collection of jobs comprised
of this job that executes over [t1, t2] arriving at time-instant
t1, plus all jobs in σ(τ) that arrived after t1, will also miss a
deadline at time-instant tf if executed by EDF. But this col-
lection of jobs contradicts the claimed minimality of σ(τ).

We thus see that there are zero or one jobs in σ(τ) with
deadline greater than tf . Claims 3 and 4 below consider
these two cases separately.

Claim 3 Suppose that there are no jobs in σ(τ) with dead-
line > tf . If task Ti (1 ≤ i ≤ n) has one or more jobs in
σ(τ) then the first job generated by Ti in σ(τ) arrives at the
time-instant ta, and subsequent jobs arrive as soon as it is
legal.

Proof Sketch: We prove this claim by contradiction. Sup-
pose then that Ti has one or more jobs in σ(τ), but these
jobs do not each arrive as soon as possible. Consider the
collection σ′(τ) obtained from σ(τ) by moving the arrival-
times of all the jobs of Ti to occur as soon as possible,
within the interval [ta, tf). Notice that the largest deadline
of any job in σ ′(τ) is no more than tf . Observe, too, that
EDF must successfully schedule σ ′(τ), since the cardinal-
ity of σ′(τ) is equal to the cardinality of σ(τ), and the sum
of the relative arrival times of jobs in σ ′(τ) is smaller than
the sum of the relative arrival times of jobs in σ(τ). But
this contradicts Corollary 1, which asserts that the sum of
the execution requirements of the jobs in σ(τ) (and hence,
σ′(τ) as well) exceeds tf − ta.

Claim 4 Suppose that there is one job in σ(τ) with dead-
line greater than tf . Let this job be generated by task Tj .
If task Ti (1 ≤ i ≤ n, i �= j) has one or more jobs in σ(τ)
then the first job generated by Ti in σ(τ) arrives at time-
instant ta + ε, where ε is a positive real number arbitrarily
close to zero, and subsequent jobs arrive as soon as legal.

Since the cumulative execution requirement of all the jobs
of task Ti in σ(τ) with arrival times ≥ ta and deadlines ≤
tf is—by very definition of the demand bound function—
no larger than DBF(Ti, tf − ta), the following two claims
follow directly from Claims 3 and 4.

Claim 5 Suppose that there are no jobs in σ(τ) with dead-
line > tf . Then

n∑

i=1

DBF(Ti, tf − ta) > tf − ta (2)

Claim 6 Suppose that there is one job in σ(τ) with dead-
line > tf . Let this job be generated by task Tj , and have an
execution requirement ej and relative deadline dj . Then

ej +
n∑

i=1
i�=j

DBF(Ti, tf − ta) > tf − ta . (3)

Furthermore, tf − ta < dj .

Recall that we had constructed σ(τ) under the assump-
tion that τ is not schedulable under EDF. In essence,
Claims 5 and 6 assert that if τ is not schedulable un-
der EDF, then either there are tf and ta, tf − ta > 0,
such that inequality 2 holds, or there is a recurring real-
time task Tj with a node labeled (ej , dj), and tf and ta,
0 < tf − ta < dj , such that inequality 3 holds.

The converse of the above statement also holds: if in-
equality 2 or 3 evaluates to true, then τ is not schedula-
ble — the sequences of jobs that define the corresponding
DBF’s can be combined to come up with a legal collection
of job arrivals that is not schedulable under EDF.

Based upon the above discussion, we can now formulate
an exact — i.e., necessary and sufficient — condition for
determining if a given system of recurring real-time tasks
is not schedulable under EDF. This condition is formally
stated in Theorem 1 below.

Theorem 1 System of recurring real-time tasks τ =
{T1, . . . , Tn} is not schedulable under EDF if and only if

∃ tφ ≥ 0 :
n∑

i=1

DBF(Ti, tφ) > tφ (4)

or there is a Tj , 1 ≤ j ≤ n, which can generate a job with
execution-requirement ej and relative deadline dj , and

∃ tφ : 0 ≤ tf < dj : ej +
n∑

i=1
i�=j

DBF(Ti, tφ) > tφ (5)

4 Non-Preemptive Schedulability Analysis

Suppose that a system τ of recurring real-time tasks is
not schedulable. It follows from Theorem 1 that either Con-
dition 4, or one of the n conditions from Condition 5 must

hold. Suppose that Condition 4 holds. It follows that
n�

i=1

DBF(T, tφ) > tφ

⇒ (From Inequality 1 in Lemma 1)
n�

i=1

(2 · E(T) + tφ · ρave(T)) > tφ

⇒ tφ

�
1 −

n�
i=1

ρave(T) � <
n�

i=1

2 · E(T)

≡ tφ <
2

1 − ρave(τ)
×

n�
i=1

E(T) (6)

Furthermore, if Condition 5 holds for a specific j (1 ≤
j ≤ n), then it must be the case that the tφ which causes
Condition 5 to hold has a value less than dj . This bound on
dj is clearly pseudo-polynomial in the parameters of τ . The
bound given by inequality 6 may in general be exponential
in the parameters of τ . However, it is pseudo-polynomial
if the system utilization ρave(τ) is a priori bounded from
above by a constant less than one. Any system τ with
ρave(τ) greater than one is clearly not schedulable. Hence,
requiring that ρave(τ) be at most c, for some constant c < 1,
is in effect “wasting” at most a fraction (1−c) of the proces-
sor’s computation bandwidth. We therefore obtain the fol-
lowing theorem.

Theorem 2 If a system of recurring real-time tasks τ =
{T1, . . . , Tn}, with system utilization ρave(τ) a priori
bounded from above by a constant strictly less than one
is not schedulable under EDF, then there is a tφ of value
pseudo-polynomial in the parameters of τ which will cause
one of the (n + 1) conditions in Theorem 1 to hold.

On the other hand, a task set is not schedulable in a pre-
emptive setting if and only if a condition of the form of in-
equality 4 holds (i.e. inequality 5 need not be tested), which
reduces the number of tests required by a polynomial factor.

An algorithm for schedulability analysis: Using the
necessary and sufficient conditions for schedulability that
we derived above, it is now possible to design an algorithm
that takes as an input a set of recurring real-time tasks and
returns if the set is schedulable or not. Details of this algo-
rithm and its proof of correctness may be found in [5]. This
algorithm uses the two functions DBF(T, t) and DBFv(T, t)
that we introduced in Section 2.

5 Approximate Schedulability Analysis
The exact schedulability test derived above relies on the

functions DBF and DBFv . For any task graph T , computing
the value of DBF(T, t) for some values of t might involve
multiple traversals (loops) through the task graph. It was
shown in [2] that if for a task graph T , DBF(T, t) is known
for all small values of t then it is possible to calculate from

these, the value of DBF(T, t) for any t. Small values of t
for a task graph T are those for which the sequence of ver-
tices that contribute towards computing DBF(T, t) contain
the source vertex at most once. The value of DBF(T, t) for
larger values of t is made up of some multiple of E(T) plus
DBF(T, t′) where t′ is small in the sense described above. It
follows that DBF(T, t) for any t can be computed as follows
(for a more detailed description, see [2])

DBF(T, t) = max{�t/P (T)�E(T) + DBF(T, t mod P (T)),

(�t/P (T)� − 1)E(T) + DBF(T, P (T) + t mod P (T))} (7)

To compute DBF(T, t) for small values of t, [2] constructs
a new task graph by taking two copies of the task graph of
T and adding an edge from the sink vertex of the first graph
to the source vertex of the second and finally replacing the
source vertex of the first with a dummy vertex with execu-
tion requirement and deadline equal to zero. The intertrig-
gering separations on all edges outgoing from this source
vertex is also made equal to zero. DBF(T, t) for all values
of t are then calculated by enumerating all possible paths
in this new graph. In [9] it was shown that the problem of
computing DBF(T, t) for a task T is NP-hard and a fully
polynomial-time approximation scheme (FPTAS) for com-
puting it was given. In the next section we describe this
algorithm and show how it can be used for approximate
schedulability analysis for non-preemptive recurring real-
time tasks. Note that the algorithm presented in [9] con-
sidered only the preemptive case, and additionally did not
consider the recurring behavior of the tasks. The deriva-
tion of the FPTAS first requires a pseudo-polynomial time
algorithm.

5.1 Approximating the Demand Bound
Function

We first give an algorithm for computing the demand-
bound function of a task graph for small values of t. Using
this, we can compute the demand-bound function for any
value of t as described above.

Given a task graph T , let T ′ denote the graph formed by
joining two copies of T by adding an edge from the sink
vertex of the first graph to the source vertex of the sec-
ond, and replacing the source vertex of the first copy by
a dummy vertex as described above. If the frame separa-
tion property is followed then the newly added edge is la-
beled with an intertriggering separation of p = d(vsink),
where vsink denotes the sink vertex of T . Now we give a
pseudo-polynomial time algorithm based on dynamic pro-
gramming, for computing DBF(T ′, t) for values of t that do
not involve any looping through T ′, i.e. we consider only
one-shot executions of T ′.

Let there be n vertices in T ′ denoted by v1, . . . , vn, and
without any loss of generality we assume that there can be
a directed edge from vi to vj only if i < j. Following
our notation described in Section 2, associated with each

Algorithm 1 Computing DBF(T ′, t)
Input: Task graph T ′ , and a real number t ≥ 0

for e ← 1 to nE do

t1,e ← � d(v1) if e(v1) = e
∞ otherwise

t11,e ← t1,e

end for
for i ← 1 to n − 1 do

for e ← 1 to nE do
Let there be directed edges from the vertices vi1 , vi2 , . . . , vik

to vi+1

ti+1
i+1,e ← ���

��
min{t

ij
ij ,e−e(vi+1) − d(vij

) + p(vij
, vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

ti+1,e ← min{ti,e, ti+1
i+1,e}

end for
end for

DBF(T ′, t) ← max{e | tn,e ≤ t}

vertex vi is its execution requirement e(vi) which here is
assumed to be integral (a pseudo-polynomial algorithm is
meaningful only under this assumption), and its deadline
d(vi). Associated with each edge (vi, vj) is the minimum
intertriggering separation p(vi, vj).

Let ti,e be the minimum time interval within which the
task T ′ can have an execution requirement of exactly e time
units due to some legal triggering sequence, considering
only a subset of vertices from the set {v1, . . . , vi}, if all the
triggered vertices are to meet their respective deadlines. Let
tii,e be the minimum time interval within which a sequence
of vertices from the set {v1, . . . , vi}, and ending with the
vertex vi, can have an execution requirement of exactly e
time units, if all the vertices have to meet their respective
deadlines. Lastly, let E = maxi=1,...,n e(vi). Clearly, nE
is an upper bound on DBF(T ′, t) for any t ≥ 0 for one-shot
executions of T ′. It can be shown by induction that Algo-
rithm 1 correctly computes DBF(T ′, t), and has a running
time of O(n3E).

Given this algorithm, any t ≥ 0, and an 0 < ε ≤ 1, let T ′
t

be the subgraph of T ′ consisting only of those vertices vi for
which d(vi) ≤ t, and let Et denote the maximum execution
requirement of a vertex from among all vertices of T ′

t . Now
we scale all the execution requirements associated with the
vertices of T ′

t by K = εEt/n i.e. e′(vi) = �e(vi)/K� and
run the algorithm with the new e ′(vi)s and the graph T ′

t . Let
V be the set of vertices (with the scaled execution require-
ments) that result in the computation of DBF(T ′, t) in this
algorithm. We claim that the summation of the original (un-
scaled) execution requirements of these vertices is greater
than or equal to (1 − ε) times the actual demand-bound
function for the task graph for this value of t. Further, this
algorithm now runs in time O(n4/ε) (with the scaled exe-
cution requirements) and hence is an FPTAS for computing
DBF(T ′, t). We denote this approximate value of DBF(T ′, t)
computed by this algorithm by DBF ′(T ′, t).

If a task graph T has O(n) vertices, then E(T) can be
computed in O(n2) time. Using the FPTAS given above,

DBF(T, t) for any value of t can therefore be approximately
computed using Eqn. 7 in O(n4/ε) time. If we denote this
approximate demand-bound function by DBF ′(T, t) then for
any t, DBF(T, t) ≥ DBF′(T, t) ≥ (1 − ε)DBF(T, t).

5.2 Bounding the Number of Tests

Recall from Section 4 that the number of tests (on the
sum of the demand-bound functions for different values
of t) required by our algorithm is equal to 2

1−ρave(τ) ×
n∑

i=1

E(T) times a polynomial function of the input/problem

size (follows from inequality 6). Let us denote this as tmax.
Since tmax is pseudo-polynomial in the input size, ap-

proximating the functions DBF and DBF v alone does not
give us a polynomial time schedulability test. In this subsec-
tion we show that combined with the approximate demand-
bound function computed in the last subsection, a poly-
nomial number of checks result in a bounded error. This
gives us a polynomial-time algorithm for the schedulability
analysis of a system of non-preemptive recurring real-time
tasks. We assume that the number of tasks in τ is m.

Let us first consider the case where we use the ex-
act functions DBF and DBFv, but test the schedulability
condition only for a polynomial number of time intervals
∆̂. More precisely, we iterate only over the values ∆̂ =
K, 2K, . . . , (� tmax

K � + 1)K , where K = δtmax
poly(m) . Here δ

is an input error parameter to the algorithm and poly(m) is
any polynomial function of m. Hence, the total number of
values of ∆̂ over which we iterate is O(poly(m)

δ), which is
polynomial in the size of our input specification.

It may be shown that if τ is schedulable, then such an
algorithm always returns the correct answer. However, if τ
is not schedulable, then this algorithm might sometimes in-
correctly return Y ES as well. However, in such cases it can
be guaranteed that any vertex might miss its deadline by at
most K time units. Since this algorithm always returns the
correct answer if a system of recurring real-time tasks τ is
schedulable, and it might err only if τ is not schedulable,
we refer to this algorithm as optimistic. It is also possible to
design a corresponding pessimistic algorithm (as mentioned
in Section 1). If a system of non-preemptive recurring real-
time tasks τ is not schedulable, then such an algorithm al-
ways returns the correct answer. For task systems τ which
are schedulable, this algorithm can return an incorrect an-
swer and the error in these cases is bounded by K , i.e. for
such τ there exist time intervals of length ∆̂ over which the
processor can be occupied for at least ∆̂ − K time units.

Since K = δtmax
poly(m) , a smaller value of δ reduces the

maximum error that can be incurred by both the optimistic
and the pessimistic algorithms, at the cost of increasing the
number of checks to be performed and hence also increasing
the running times of the algorithms.

5.3 Putting Everything Together
Given the FPTAS described in Section 5.1 for ap-

proximating the value of DBF(T, t), it is possible to ob-
tain the following bound on the approximate value of the
demand-bound function: DBF ′(T, t): DBF′(T, t) + εET ≥
DBF(T, t). Here ET is the maximum execution require-
ment of any vertex in the task graph T . Further, since

1
1−ε DBF′(T, t) ≥ DBF(T, t), we have

DBF(T, t) ≤ min{ 1
1 − ε

DBF′(T, t), DBF′(T, t) + εET } (8)

which therefore gives the better of the two bounds for any
value of t.

For any task set τ , Algorithm 2 always returns the cor-
rect answer if τ is schedulable but might err if τ is not
schedulable. Hence, whenever this algorithm returns NO,
the decision is guaranteed to be correct. But Y ES an-
swers might be wrong. The maximum error incurred by
this algorithm stems from: (i) Our approximation of the
functions DBF and DBFv by DBF′ and DBFv ′, and (ii) The
fact that we do not check the condition for schedulabil-
ity (given in line 26 of Algorithm 2) for all values of
0 ≤ ∆̂ ≤ tmax. But instead we check this condition
only for ∆̂ = K, 2K, . . . , (� tmax

K � + 1)K . Following the
discussions in Sections 5.1 and 5.2, it is possible to show
that for any vertex v belonging to a task T i ∈ τ , this er-
ror is bounded by: K + ε

1−ε(DBFv ′(Ti, (� tmax
K � + 1)K) +

∑
T∈τ̂ DBF′(T, (� tmax

K �+ 1)K)) (v′ and τ̂ are as defined in
Algorithm 2). It is possible to further tighten this bound us-
ing Eqn. 8. Hence, in the case where τ is not schedulable,
but Algorithm 2 falsely returns Y ES, the vertex v can miss
its deadline at most by the above error bound.

It is also possible to design the corresponding pes-
simistic algorithm, by using an upper bound on the value
of DBF(T, t), which is given by Eqn. 8. Combined with
this, we again check the condition for schedulability at
∆̂ = K, 2K, . . . , (� tmax

K � + 1)K . If τ is not schedulable,
then this algorithm is guaranteed to return NO. However,
this algorithm might err in case τ is schedulable, and some-
times falsely return NO. Using the same techniques as in
the case of our optimistic algorithm, it is also possible to
bound the error made in this case.

6 Running Time Analysis
As mentioned in Section 5, the problem of computing

the function DBF for a general task graph is NP-hard. More-
over, the number of checks of the schedulability condition
is pseudo-polynomial in the size of the problem specifica-
tion. Recall from our discussion in Sections 5.1 and 5.2
that our algorithms for approximate schedulability analy-
sis require as an input two error parameters ε and δ. The
smaller the values of these parameters, the smaller is the er-
ror in the decisions made by our algorithms, however, at the

Algorithm 2 Optimistic Algorithm (tmax, δ)
Input: System of recurring real-time tasks τ , tmax, δ, m = number of task graphs

in τ
1: K ← δtmax

poly(m)

2: decision ← Y ES
3: for all tasks Ti ∈ τ and for all vertices v ∈ Ti and for all ∆̂ ← 1 to

� tmax
K � + 1 do

4: Let τ̃ ← τ\{Ti}
5: τDBF=0 ← {T ∈ τ̃ | DBF

′(T, ∆̂K + d(v)) = 0}
6: emax ← maxv′{e(v′) | v′ is a vertex of a task T ∈ τDBF=0}
7: Let τDBF >0 ← {T ∈ τ̃ | DBF′(T, ∆̂K + d(v)) > 0} and q ←

|τDBF >0|
8: index ← 0
9: for p ← 1 to q do

10: Let e′max ← max{e(v′) | v′ ∈ Tp, d(v′) > ∆̂K + d(v)}
11: if index = 0 then
12: if e′max > (DBF′(Tp, ∆̂K + d(v)) + emax) then
13: emax ← e′

max
14: index ← p
15: end if
16: else
17: if e′max + Tindex(∆̂K + d(v)) > (DBF′(Tp, ∆̂K + d(v)) +

emax) then
18: emax ← e′

max
19: index ← p
20: end if
21: end if
22: end for
23: if index �= 0 then
24: τ̂ ← τDBF >0\{Tindex}
25: end if
26: if ∆̂K + d(v) < (DBFv′(Ti, ∆̂K + d(v)) + � T∈τ̂ DBF′(T, ∆̂K +

d(v)) + emax) then
27: decision ← NO
28: end if
29: end for

30: return decision

cost of higher running times. The parameter ε is used to ap-
proximate the function DBF and δ determines the number of
checks on the sum of the demand bound functions to deter-
mine if for any time interval length, the sum of the demand
bound functions within this interval exceeds the length of
the interval.

It may be shown that computing all possible values of
DBF′(T, t) for small values of t and for all tasks T ∈ τ ,
takes O(n5m/ε) time, where each task graph in τ contains
O(n) vertices and τ contains m task graphs. All these val-
ues are first computed and stored in a table. It is easy to see
from Algorithm 1 that all DBFv ′(T, t) can also be computed
in the same time.

During the second phase in our algorithms (where the
sum of the demand bound functions are checked to deter-
mine if their value exceeds the time interval length), for any
t, computing

∑
T∈τ DBF′(T, t) needs a table lookup which

takes O(n2mε−1 log n) time. Computing DBFv ′(T, t) re-
quires O(n2ε−1 log n). The number of checks performed,
i.e. the number of times the outer loop (lines 3 to 29) is
executed in Algorithm 2 is O(m · n · poly(m)

δ). Hence,
the total running time of Algorithm 2 is O(n5mε−1 +
n3m2ε−1δ−1poly(m) logn). The running time of the pes-
simistic version of Algorithm 2 is exactly the same, but has
a different bound on the error. Hence, our algorithms for

approximate schedulability analysis for the non-preemptive
version of the recurring real-time task model run in poly-
nomial time. Since the run time is also polynomial in ε−1

and δ−1 our algorithms are fully polynomial time approxi-
mation schemes (FPTAS), which is the best one could hope
for, given the intractability of the problem.

7 Concluding Remarks
In this paper we studied the non-preemptive schedulabil-

ity analysis of recurring real-time tasks upon uniprocessor
platforms. The preemption model we considered allows a
task graph to be preempted only at node boundaries. Our
main result is that non-preemptive schedulability analysis
is reducible to a polynomial number of preemptive schedu-
lability analysis problems. From an asymptotic complex-
ity perspective, the two problems are therefore essentially
equivalent, which is surprising given the general consen-
sus that non-preemptive versions of schedulability analysis
problems tend to be significantly more complex compared
to their preemptive counterparts. From a theoretical stand-
point, this result provides new insight into the space of task
models from the complexity-of-schedulability-analysis per-
spective. From an application standpoint, this result is im-
portant since the preemption model we consider in this pa-
per is more realistic in most setups compared to the fully
preemptive model.

Since the recurring real-time task model is one of the
more general models studied in the real-time systems area,
our results are applicable across a variety of task models. As
mentioned in Section 1, very recently the non-preemptive
version of schedulability analysis was studied for more re-
stricted, periodic and sporadic task models [4, 3]. Our result
in this paper can therefore be considered as a generalization
of some of the results presented in [4, 3]. In fact, we can
be even more general: although we have focused our atten-
tion on the recurring real-time task model in this paper, our
results can be extended in a straightforward manner to any
task model for which the task independence assumptions [6,
page 8] hold:

• The runtime behavior of a task does not depend upon
the behavior of other tasks in the system.

• The workload constraints can be specified without
making any references to absolute time. That is, speci-
fications such as Task T generates a job at time-instant
3 are forbidden.

As argued in [6], these assumptions are extremely gen-
eral and hold for a very large class of real-time applications.
Hence, the results and algorithms presented in this paper
should find applicability in a wide variety of real-time sys-
tems.

There are two possible directions for future work that
stem from this paper. First, it may be noted that the compu-
tational complexity of our approximation schemes are high-

degree polynomials. An interesting work would be to con-
sider more aggressive notions of approximation and see if
they can further help in reducing the running time of the
analysis. Second, non-preemptive schedulability analysis
for multiprocessors was recently considered in [4], albeit for
the much simpler periodic task model. It would be worth-
while extend the work in [4] to more general task models,
such as the one we studied in this paper and also see if some
of the results proposed here extend to the multiprocessor
case.

References

[1] S. K. Baruah. Feasibility analysis of recurring branch-
ing tasks. In Euromicro Workshop on Real-time Systems
(ECRTS), 1998.

[2] S. K. Baruah. Dynamic- and static-priority scheduling of
recurring real-time tasks. Real-Time Systems, 24(1):99–128,
2003.

[3] S. K. Baruah. The limited-preemption uniprocessor schedul-
ing of sporadic task systems. In Euromicro Conference on
Real-Time Systems (ECRTS), 2005.

[4] S. K. Baruah. The non-preemptive scheduling of periodic
tasks upon multiprocessors. Real-time Systems, to appear.

[5] S. K. Baruah and S. Chakraborty. Schedulability analysis of
non-preemptive recurring real-time tasks, 2006.
www.comp.nus.edu.sg/˜samarjit/psfiles/BC06-TR.ps.

[6] S. K. Baruah, D. Chen, S. Gorinsky, and A. Mok. Gen-
eralized multiframe tasks. Real-Time Systems, 17(1):5–22,
1999.

[7] S. K. Baruah, A. Mok, and L. Rosier. The preemptive
scheduling of sporadic, real-time tasks on one processor. In
IEEE Real-Time Systems Symposium (RTSS), 1990.

[8] P. Brucker. Scheduling Algorithms. Springer-Verlag, 1995.
[9] S. Chakraborty, Erlebach, and Thiele. On the complexity

of scheduling conditional real-time code. In Workshop on
Algorithms and Data Structures (WADS), LNCS 2125, 2001.

[10] S. Chakraborty, T. Erlebach, S. Künzli, and L. Thiele.
Schedulability of event-driven code blocks in real-time em-
bedded systems. In Design Automation Conference (DAC),
2002.

[11] S. Chakraborty, S. Künzli, and L. Thiele. Approximate
schedulability analysis. In IEEE Real-Time Systems Sym-
posium (RTSS), 2002.

[12] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive real-time uniprocessor scheduling. Technical
Report RR-2966, INRIA, 1996.

[13] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In IEEE Real-
Time Systems Symposium (RTSS), 1991.

[14] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[15] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. In IEEE Real-Time Systems Symposium (RTSS), 1996.

[16] H. Takada and K. Sakamura. Schedulability of generalized
multiframe task sets under static priority assignment. In
Workshop on Real-Time Computing Systems and Applica-
tions (RTCSA), 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

