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Abstract

In this paper a novel job allocation scheme in distributed
systems (TAG) is modelled using the Markovian process al-
gebra PEPA. This scheme requires no prior knowledge of job
size and has been shown to be more efficient than round robin
and random allocation when the job size distribution is heavy
tailed and the load is not high. In this paper the job size dis-
tribution is assumed to be of a phase-type and the queues are
bounded. Numerical results are derived and compared with
those derived from models employing random allocation and
the shortest queue strategy. It is shown that TAG can perform
well for a range of performance metrics.

1 Introduction

Ideally in assigning jobs to servers in performance oriented
distributed systems we would like to be able to assign jobs to
servers according to the size of the jobs. This enables the op-
timisation of the system according to some performance cri-
terion. Conventionally this may entail minimising the average
response time or optimising the response time of a job accord-
ing to its service demand. Thus a large job stuck in a queue
behind other large jobs may experience a relatively large de-
lay and a small job in a queue of small jobs may experience a
smaller overall delay. If the graduation of scale is set appro-
priately (i.e. there is sufficient resource to satisfy the demand
at each job size) then the proportion of response time versus
service time for any size of job should be approximately con-
stant.

This form of scheduling requires some knowledge of the
service demand of the jobs. However, in many practical situ-
ations this information is unavailable, inaccurate or costly to
compute. In such scenarios there are a number of obvious so-
lutions.

• Pull jobs from a central resource. This requires an effi-
cient protocol to manage the movement of jobs and can
suffer from communication latency and single point of
failure. However, it can provide an efficient mechanism

in many situations. This scenario is not considered fur-
ther in this paper.

• Assign jobs to the service centre with the shortest queue.

• Assign jobs to service centres on a round robin basis.

• Assign jobs to service centres randomly according to
probabilities based on service capacity.

The final option is illustrated in Figure 1. The last two op-
tions are simple but suffer from the obvious drawback that
some jobs may become badly delayed by being stuck behind
a large job. If short jobs are so delayed then the proportion of
response time versus service time is extremely large.
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Figure 1. Jobs allocated randomly across N
nodes

Harchol-Balter [5] introduced a new algorithm (known as
TAG) for allocating jobs where the service demand is not
known. In this approach all jobs are sent initially to a single
server queue. The server will service the head job either until
completion or until some fixed time has expired. If the service
is complete then the job departs successfully. However, if the
fixed service time was exhausted then the job is passed to the
second node. Here a similar process is undertaken, although
the fixed timeout is somewhat longer. The process is repeated
progressing through nodes with longer and longer timeouts
until the final stage where there is no timeout and the job is
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simply serviced to exhaustion. The system is illustrated in
Figure 2.
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Figure 2. Jobs allocated nodes using the TAG
algorithm

This scheme differs from traditional multi- level feedback
queueing in that here jobs are killed if they reach the end of
the timeout at a node and are then restarted at the next node. In
multi-level feedback queueing the job would be transferred to
the next node and service resumed, therefore no effort would
be lost.

The efficiency of this system is highly dependent on ap-
propriately setting the timeouts. These must be set so that
some jobs complete successfully at each node and some time-
out. Even so the scheme is somewhat counter intuitive. Ser-
vice capacity is apparently wasted by trying to serve jobs that
ultimately time out. However, this mechanism ensures that
jobs which can complete within this timeout will not be de-
layed for a long time by much larger jobs. In addition a larger
job will experience many periods of repeated service, perhaps
ultimately receiving many times its service demand before it
completes. However, this repeated service affects jobs accord-
ing to their size, thus a large job will experience more repeated
services than a smaller job. Hence, it should be clear that
small jobs should progress relatively quickly and large jobs
will experience much longer delays. In addition, for all but
the largest jobs the delay is bounded.

The advantage of using this scheme is highly dependent
on the distribution of the service demands. Take the follow-
ing simple illustration. Suppose we have six jobs awaiting
service, each node has a service rate of 1, and the service de-
mands of the jobs are as follows, {4, 5, 6, 7, 3, 2}, in seconds.
If there is no timeout set (or the timeout is greater than 7 sec-
onds in this case) then all the jobs would be served in order
at the first node, and the average response time would be 17
seconds. Similarly if the timeout was zero, all the jobs would
be served at the second node and the average response time
would be the same. If the timeout is increased to 1.5 seconds,
then no advantage is gained because all jobs will still timeout
at the first server, the average response time being 18.5 sec-
onds. If the timeout is further increased to 3.5 seconds then
the final two jobs will complete at the first server, but only

after the preceding four have timed out and proceeded to the
second node. In this case there is a slight improvement, as the
average response time is 16.67 seconds. Further increasing
the timeout allows more jobs to successfully complete at the
first node, however in this case the minimum response time
of 15.67 seconds would attained with a timeout fractionally
above 3 seconds. If the service demands of the jobs were,
{99, 5, 6, 7, 3, 2}, in seconds, then a much more dramatic gain
can be made. Here the optimal timeout is (predictably) frac-
tionally above 7 seconds, where the average response time
is 36.5 seconds, as opposed to the no timeout case of 112
seconds. Harchol-Balter [5] showed that job streams with a
heavy tailed distribution of service demand will benefit sig-
nificantly from this scheme according to a metric called mean
slowdown.

The aim of this paper is to model the TAG algorithm using
the Markovian process algebra PEPA and to investigate the ef-
fectiveness of TAG when the queues are finite. It is assumed
that all jobs take an equal amount of space in the queue, there-
fore it is necessary only to count the number of jobs, and not
the amount of buffer space used. It may appear to be a signif-
icant restriction, however there are many applications where
the job size is nearly constant and yet there is significant vari-
ance in service duration.

• Simulation; where simply changing the simulation time
may alter the service duration by many orders of mag-
nitude. This is particularly true when considering op-
timisation, when crude approximation may be used to
roughly find optimal parameters, but increasing accuracy
is needed as the optimal values are refined.

• Visualisation; where the resolution will greatly affect
rendering time, but the data set remains the same.

• Database queries; while these may vary in size, the size
of a query will generally be small enough to be treated
atomically and there is no clear relation between the size
of the query and the time taken to return its result.

In this paper the queues are bounded, jobs can therefore be
lost from the system, either by being dropped at node 1 on ar-
rival, or at node 2 after completing a timed-out service at node
1. This latter case is particularly important as it means that
work is being undertaken on jobs which are ultimately unsuc-
cessful. Ultimately this means that if the load is sufficiently
high and the timeout is set too short then a significant propor-
tion of jobs may be dropped at the second node. Thus, it is
important to look at throughput and average response time as
the main measures of this finite system. The average response
time can be calculated by Little’s Law from the average queue
length and the average arrival rate of successful jobs.

The following section briefly introduces PEPA. This is fol-
lowed by a PEPA model of the TAG algorithm, an alternative
model, extensions using phase type distributions and some
simple approximations. Section 5 presents some numerical re-
sults, which is followed by a discussion of some related work
and future opportunities.



2 PEPA

A formal presentation of PEPA is given in [7], in this sec-
tion a brief informal summary is presented. PEPA, being a
Markovian Process Algebra, only supports actions that occur
with rates that are negative exponentially distributed. Specifi-
cations written in PEPA represent Markov processes and can
be mapped to a continuous time Markov chain (CTMC). Sys-
tems are specified in PEPA in terms of activities and compo-
nents. An activity (α, r) is described by the type of the ac-
tivity, α, and the rate of the associated negative exponential
distribution, r. This rate may be any positive real number,
or given as unspecified using the symbol �. The syntax for
describing components is given as:

P ::= (α, r).P | P + Q | P/L | P ��
L

Q | A

The component (α, r).P performs the activity of type α at
rate r and then behaves as P . The component P + Q behaves
either as P or as Q, the resultant behaviour being given by the
first activity to complete.

The component P/L behaves exactly like P except that the
activities in the set L are concealed, their type is not visible
and instead appears as the unknown type τ .

Concurrent components can be synchronised, P ��
L

Q,
such that activities in the cooperation set L involve the par-
ticipation of both components. In PEPA the shared activity
occurs at the slowest of the rates of the participants and if a
rate is unspecified in a component, the component is passive
with respect to activities of that type. The parallel combina-
tor ‖ is used as shorthand to denote synchronisation with no
shared activities, i.e. P‖Q ≡ P ��

∅
Q. A

def= P gives the con-
stant A the behaviour of the component P .

In this paper we consider only models which are cyclic,
that is, every derivative of components P and Q are reachable
in the model description P ��

L
Q. Necessary conditions for

a cyclic model may be defined on the component and model
definitions without recourse to the entire state space of the
model.

3 The Model

The TAG system is now modelled in PEPA. Since PEPA is
Markovian, it is necessary to model the TAG timeouts as an
Erlang distribution rather than deterministically. The service
distribution is initially assumed to be negative exponential, al-
though certain phase type distributions are also possible (see
Section 3.2). Queues are modelled in a state based fashion,
depicting each number of jobs in a queue as a separate named
derivative of the queue component. An alternative specifica-
tion of the queues is given in Section 3.1.

Figure 3 shows a model of the TAG scheme for a two node
system.

Q10
def
= (arrival, λ).Q11

Q1i
def
= (arrival, λ).Q1i+1 + (service1, µ).Q1i−1

+(timeout,�).Q1i−1 + (tick1,�).Q1i

, 1 ≤ i < K1

Q1K1
def
= (timeout,�).Q1K1−1 + (tick1,�).Q1K1

+(service1, µ).Q1K1−1

Timer10
def
= (timeout, t).T imer1n

+(service1,�).T imer1n

Timer1i
def
= (tick1, t).T imer1i−1

+(service1,�).T imer1n , 1 ≤ i ≤ n

Q20
def
= (timeout,�).Q21

Q2i
def
= (timeout,�).Q2i+1 + (tick2,�).Q2i

+(repeatservice,�).Q2′
i , 1 ≤ i < K2

Q2′
i

def
= (timeout,�).Q2′

i+1 + (tick2,�).Q2′
i

+(service2, µ).Q2i−1 , 1 ≤ i < K2

Q2K2
def
= (timeout,�).Q2K2 + (tick2,�).Q2K2

+(repeatservice,�).Q2′
K2

Q2′
K2

def
= (timeout,�).Q2′

K2 + (tick2,�).Q2′
K2

+(service2, µ).Q2K2−1

Timer20
def
= (repeatservice, t).T imer2n

Timer2i
def
= (tick2, t).T imer2i−1 , 1 ≤ i ≤ n

Node1
def
= Q10

��(
timeout,

service1,tick1

) Timer1n

Node2
def
= Q20

��(
repeatservice,
service2,tick2

) Timer2n

Node1 ��
{timeout}

Node2

Figure 3. A PEPA model of a two node system em-
ploying TAG

This model uses a few common mechanisms that are famil-
iar from other queueing papers (see [10] for example). The de-
terministic timeout at the first node is modelled as an Erlang
process with arbitrary number of ticks (as is conventional).
Prior to service, the timeout clock must be started, this is done
by enabling the tick actions in every derivative of the queues
except when the queue is empty.

The timeout is raced against a service process service1;
note that this is negative exponentially distributed, but could
be replaced by any feasible phase type distribution subject to
the consequential state space implications and calculation of
the residual service to be completed at the second node (see
Section 2.2). If service1 wins the race then the job departs,



otherwise it proceeds to Node2. The timeout is reset and the
race begins again with a new job if one is in the queue, or is
idle until next arrival if the queue is empty. It would appear
to be sensible to continue serving this job until it completes
or an arrival occurs, if the queue is otherwise empty, however
this is not part of the TAG algorithm. Such a mechanism can
be modelled by removing the timeout action from Queue11

and introducing a separate arrival action in Queue11 as an
immediate trigger.

At the second node the amount of service from the timeout
period must be repeated, this is included in the action repeat-
service. In the exponential case the remaining service has the
same distribution as the original service distribution, hence at
node 2 the job receives a repeat service for the part that was
already performed at node 1, and then a service for the remain-
ing part. It is assumed that the nodes are identical, hence the
service rates are the same. However, if the system is hetero-
geneous, then it would be necessary to introduce new rates for
the ticks of the repeated service and for service2. It is a simple
matter to add more nodes to the model in the same fashion.

3.1 An alternative model

The model illustrated in Figure 3 gives rise to a CTMC with
(K1(n+1)+1)(K2(n+2)+1) states. An alternative repre-
sentation of the queue components is possible whereby each
place in the queue is modelled separately and the whole queue
is a parallel composition of all the places. Thus, the queues
shown in Figure 3 would be modelled as shown in Figure 4.

Traditionally this kind of representation would not be used
because there is a much larger state space in the underlying
CTMC than for the state based representation given in Fig-
ure 3. This is because there are now many states representing
each number of jobs in the queues. However, this style of
model is potentially amenable to a form of analysis based on
ordinary differential equations that has recently been applied
to PEPA [8] and is supported by the Dizzy tool [9]. This anal-
ysis effectively counts the number of components in a given
derivative without recourse to deriving the underlying CTMC.
Thus, it is possible to count the number of components behav-
ing as derivative Q10 to calculate the number of jobs in the
first queue. This form of analysis is extremely efficient and
so even though the underlying CTMC is much larger, it is still
possible to analyse models with far more derivatives (in this
case larger queues).

3.2 Phase-type distributions

The exponential distribution is not the most interesting to
employ when considering the TAG algorithm. One reason for
this is we know that the optimal task assignment policy for
exponential arrivals and services is the shortest queue policy
(sending the job to the node with the least number of jobs).
Thus TAG is always going to be suboptimal. TAG becomes
more useful when the variability of the service demand dis-
tribution increases. Although PEPA cannot be used to model

Q10
def
= (arrival,�).Q11

Q11
def
= (timeout,�).Q10 + (service1,�).Q10

+(tick1,�).Q11

Q20
def
= (timeout,�).Q21

Q21
def
= (repeatservice,�).(service2,�).Q20

+(tick2,�).Q21

S1
def
= (arrival, λ).S1 + (service1, µ).S1

S2
def
= (service2, µ).S2

Queue1
def
= S1

��(
arrival
service1

) (Q10| . . . |Q10)

Queue2
def
= S2 ��

{service2} (Q20| . . . |Q20)

Node1
def
= Timer1n

��(
timeout,

service1,tick1

) Queue1

Node2
def
= Timer2n

��(
repeatservice,
service2,tick2

) Queue2

Figure 4. An alternative PEPA model of a two node
system employing TAG

general distributions, it can be used to specify phase type dis-
tributions.

Phase type distributions are distributions constructed by
combining multiple exponential random variables. These can
be used to approximate most general distributions and ap-
proximations can be constructed using tools such as EMpht
[1]. The Erlang distribution, used in Figure 3, is an exam-
ple of a phase type distribution which consists of an exponen-
tial distribution repeated k times. Another important phase
type distribution is the hyper-exponential, or Hk, distribu-
tion, which is a random choice between k exponential dis-
tributions. The most commonly used hyper-exponential is the
H2-distribution, which has three parameters, α, µ1 and µ2 and
the following cumulative distribution function.

FH2 = 1 − αe−µ1t − (1 − α)e−µ2t , t ≥ 0.

An important feature of the hyper-exponential distribution is
that it has a greater variance than an exponential distribution of
the same mean (as long as µ1 �= µ2 obviously). This is in con-
trast to the Erlang distribution, where the variance decreases
as k increases, so that for large k the Erlang distribution is
approximately deterministic. As such the hyper-exponential
would be ideal for using as a service distribution with the TAG
algorithm.

The residual life of an H2 random variable following an
Erlang is easily calculated. As might be expected the result
has an H2-distribution, although with parameters α′, µ1 and



µ2. Modelling the H2 distribution in PEPA requires the in-
troduction of several additional terms in order to generate the
necessary probabilistic branching. Thus each service1 and
timeout action must occur twice, with the rates multiplied by
α and 1 − α, in order to determine whether the next job will
be served at rate µ1 or µ2 (in derivatives Q1i and Q1′i respec-
tively). The exception is in Q11, when these actions result in
the queue becoming empty. Hence an arrival action in Q10

will perform the necessary branching instead. In the second
node the situation is simpler, with the branching occurring at
the repeatservice action.

Hence the following modifications are made to the TAG
model (all other components remain as previously specified).

Q10
def
= (arrival, αλ).Q11 + (arrival, (1 − α)λ).Q1′

1

Q11
def
= (arrival, λ).Q12 + (tick1,�).Q11

+(service1, µ1).Q10 + (timeout, t).Q10

Q1i
def
= (arrival, λ).Q1i+1 + (tick1,�).Q1i

+(service1, (1 − α)µ1).Q1′
i−1

+(service1, αµ1).Q1i−1

+(timeout, (1 − α)µ2).Q1′
i−1

+(timeout, αµ2).Q1i−1 , 2 ≤ i < K1

Q1K1
def
= (tick1,�).Q1K1 + (timeout, αt).Q1K1−1

+(timeout, (1 − α)t).Q1′
K1−1

+(service1, (1 − α)µ1).Q1′
K1−1

+(service1, αµ1).Q1K1−1

Q1′
1

def
= (arrival, λ).Q1′

2 + (tick1,�).Q1′
1

+(service1, µ2).Q10 + (timeout, t).Q10

Q1′
i

def
= (arrival, λ).Q1′

i+1 + (tick1,�).Q1′
i

+(service1, (1 − α)µ2).Q1′
i−1

+(service1, αµ2).Q1i−1

+(timeout, (1 − α)t).Q1′
i−1

+(timeout, αt).Q1i−1 , 2 ≤ i < K1

Q1′
K1

def
= (tick1,�).Q1′

K1 + (timeout, αt).Q1K1−1

+(timeout, (1 − α)t).Q1′
K1−1

+(service1, (1 − α)µ2).Q1′
K1−1

+(service1, αµ2).Q1K1−1

Q2i
def
= (timeout,�).Q2i+1 + (tick2,�).Q2i

+(repeatservice, α′t).Q2′
i

+(repeatservice, (1 − α′)t).Q2′′
i

, 1 ≤ i < K2

Q2′
i

def
= (timeout,�).Q2′

i+1 + (service2, µ1).Q2i−1

, 1 ≤ i < K2

Q2′′
i

def
= (timeout,�).Q2′′

i+1 + (service2, µ2).Q2i−1

, ≤ i < K2

Q2K2
def
= (timeout,�).Q2K2 + (tick2,�).Q2K2

+(repeatservice, α′t).Q2′
K2

+(repeatservice, (1 − α′)t).Q2′′
K2

Q2′
K2

def
= (timeout,�).Q2′

K2 + (service2, µ1).Q2K2−1

Q2′′
K2

def
= (timeout,�).Q2′′

K2 + (service2, µ2).Q2K2−1

Figure 5. Adding hyper-exponential services to the
TAG model

4 Simple approximations

A key factor in deploying TAG is obviously the calculation
of appropriate timeout values. Failure to optimise these values
can lead to a considerable loss of performance. Although an
analytic solution of the full model (and hence an exact calcu-
lation of the optimal timeouts) is possible, such a calculation
is complex and beyond the scope of this paper. Instead a se-
ries of approximations are presented here which can be used
to obtain estimates of good timeout values.

It is reasonable to assume that a good estimate of the time-
out optimised to minimise response time will be found when
the average service demand at all nodes is the same in a ho-
mogeneous system. Consider therefore, in the first instance,
a two node system with unbounded queues and exponential
service demands. Those jobs which time out at node 1 will
proceed to node 2 where they will receive a repeat service fol-
lowed by the residual service. On average (in our model), the
repeat service at node 2 and the time out period at node 1 will
be the same for these jobs. Given that our aim is to balance
the service demand, we can therefore restrict the solution to
just considering the successfully completing services at node
1 and the residual services at node 2.

If we assume timeout period is negative exponential with
mean 1/T then the service demands will balance subject to
the following condition,

T

(T + µ)
1
µ

=
µ

(T + µ)
1

(T + µ)

Hence,
µ2 = T 2 + Tµ

If µ = 10 then this approximation would predict a timeout
duration of approximately 6.17. In fact the successfully com-
pleting services at node 1 are the result of a race between an
exponential service and an Erlang timeout. Thus,(

t

(t + µ)

)n 1
µ

=
µ

(t + µ)
1

(t + µ)
+

µ

(t + µ)
t

(t + µ)
2

(t + µ)
+

. . . +
µ

(t + µ)

(
t

t + µ

)n−1
n

(t + µ)

=
µ

t(t + µ)

n∑
i=1

i

(
t

t + µ

)i



Hence,

tn(t + µ) = (t + µ)n+1 − t(µ(n + 1) + t)

The greater the value of n, the more deterministic the time-
out becomes. As n increases above 1 (the exponential case
above), the total timeout rate will increase, tending to a value
of around 9 when µ = 10. This corresponds to the upper
bound (low arrival rate) of the optimal timeout (optimised for
average queue size) found numerically with bounded queues.

Now consider the case where the queues are bounded. Jobs
lost on arrival at node 1 do not demand service, however jobs
lost at node 2 will cause a relative reduction in demand at
node 2 and so must be considered. Thus, in order to balance
the service demands it is necessary to decrease the timeout
duration (increase t).

For convenience, approximate node 2 as an M/M/1/K2

queue with average arrival rate λ2 and average service rate
µ2 = (t + sn)/st. To calculate λ2 it is necessary to model
node 1 to obtain the job loss rate l and the rate of timeout. Ap-
proximate node 1 as an M/M/1/K1 queue with with average
arrival rate λ and average service rate µ1, given by,

1
µ1

=
(

t

t + n

)n
n

t + s
+

s

t(t + s)

n∑
i=1

n

(
t

t + s

)i

This gives l, hence,

λ2 = (λ − l)
(

t

t + s

)n

Thus the loss rate and workload at node 2 are easily estimated
and an optimal value of t can be found.

Clearly, the optimal value of t will depend on what metric
it is being optimised against. Exactly the same procedure can
be employed to estimate the value of t that optimises through-
put (minimises job loss). The case where the service demands
are hyper-exponential is rather more complex, but a similar ar-
gument can be followed. Obviously the residual service of the
hyper-exponential will have a longer average than the origi-
nal service demand, since the proportion of longer jobs will
be greater. Thus to balance the service demand across the two
nodes far more jobs will need to be processed at node 1 than
in the exponential case. This is clearly seen in the following
numerical results.

5 Numerical results

The model specified in Figure 3 is analysed with n = 6
and K1 = K2 = 10. This gives rise to a model of 4331 states.
Figure 6 shows the effect of the timeout rate on the average
queue size (in total and for each individual queue), plots are
also included for random job assignment and the (optimal)
shortest queue assignment strategies by way of contrast. The
average total timeout duration in each case is simply n/t.

Figure 7 shows the average response times for the same
systems.
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Figure 6. Average queue length varied against
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It is important to note that whereas the shortest queue strat-
egy has almost negligible loss at this arrival rate, the random
assignment and TAG are somewhat higher, although still less
than 10−4. Clearly, as the job loss rate is so low, there is little
difference between the shape of the curves for TAG in Figures
6 and 7.

In Figure 8 the same system is shown with varying arrival
rates. The TAG algorithm is optimised for minimum queue
length, the optimal (integer) values of t being 42, 45, 49 and
51 (for λ =11, 9, 7 and 5 respectively), corresponding to aver-
age total timeout durations of approximately 7, 7.5, 8.17 and
8.67 respectively. Again these are compared with the average
response times for random allocation and the shortest queue



strategy.
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Figure 8. Average response time varied against
arrival rate, µ = 10

It would appear from these results that TAG isn’t very good
compared with the random and shortest queue strategies. This
is particularly the case as the load increases, when the ex-
tra, incomplete, service in TAG has a greater effect. This
shouldn’t be a great surprise as it is well known that the short-
est queue strategy is the optimal task assignment strategy for
exponential arrivals and service demands. However, for a ser-
vice demand with greater variance, TAG would be expected to
perform better. Figure 9 shows the average response time var-
ied against timeout rate when the service demand has an H2

distribution. Results are shown for TAG and shortest queue,
where α = 0.99, in each case the average service demand is
0.1 and µ1 = 100µ2. All other parameters remain as previ-
ously.

In this case random allocation works poorly (W > 1, not
shown), but TAG is shown to outperform the shortest queue
strategy for a wide range of values of t. It should also be
remembered that TAG assumes no knowledge of the incoming
jobs or the state of the queues, as such it has a lower overhead
than the shortest queue strategy. It is also interesting to note
that the optimal value of t here is very different from that for
the exponential service demand with the same mean, shown in
Figure 6. In the exponential case the optimal timeout is much
shorter; this is because there are relatively few long jobs, so to
balance the workload more short jobs must be pushed through
to the second node. In this hyper-exponential case, only 1%
of jobs are long, but they are on average 100 times longer than
the shorter jobs. Hence it is advantageous to process as many
short jobs at the first node as possible, in order to leave the
second node free to process the longer jobs.

TAG will give different optimal values of t according to
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Figure 9. Average response time length varied
against timeout rate, λ = 11, µ = 10, α = 0.99

what metric is being considered, because of its unusual struc-
ture. In the course of this experimentation it has been noted
that utilisation, average response time and throughput, are all
maximised or minimised at slightly different values of t. This
is also recognised in [5], where different optimisations are
presented for slowdown, waiting time and fairness.1 This is
further illustrated in Figure 10 where the same parameters are
used as Figure 9, but the metric of interest is throughput.

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11

4 8 12 16 20 24 28
t

T
TAG

Shortest
Queue

Figure 10. Throughput varied against timeout
rate, λ = 11, µ = 10, α = 0.99

TAG clearly out performs the shortest queue strategy when
reasonably close to optimal t. However, it is also quite sensi-

1The optimisation for fairness seeks to make the slowdown nearly constant
regardless of job length.



tive to t, and when poorly tuned (e.g. t = 4) the throughput
falls significantly and the shortest queue strategy will be bet-
ter. This indicates that there may be scenarios where TAG
performs only marginally better than other methods and the
therefore the cost of optimising the timeout value (for varying
demands, say) may out weigh the limited performance gains.

The reason why a well tuned TAG generally performs so
much better than the shortest queue strategy is simple to ex-
plain. The shortest queue strategy will lose jobs when both
queues are full. This will be most likely to happen when there
are two long jobs in the system; one arrives and is sent to
one queue, this occupies the server and so if another long job
arrives it is more likely to enter the other queue. In such a
situation both servers are occupied but jobs continue to arrive,
eventually leading to both queues becoming full. In contrast,
TAG will lose jobs when either of the queues are full, however,
neither situation is particularly likely unless the load becomes
excessive. The first queue is unlikely to become full as no job
will spend long in service, due to the timeout mechanism. De-
spite this relatively few jobs will proceed to the second node,
so although these jobs remain for a long period, there are gen-
erally too few of them to cause the queue to overflow.

The parameters of the hyper-exponential distribution used
in Figures 8 and 9 are deliberately extreme, although they
broadly correspond to parameters of the bounded Pareto dis-
tribution used in [5], which were based on observed traffic. In
Figures 11 and 12 long jobs take on average ten times longer
than short jobs, i.e. µ1 = 10µ2, rather than one hundred times
as previously. The proportion of short jobs is also varied, from
α = 0.89 to α = 0.99. In each case only the optimal value of
t is used.
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Figure 11. Average response time varied
against proportion of longer jobs, λ = 11, µ =
10, µ1 = 10µ2

Figures 11 and 12 show that the response time increases
and the throughput decreases under TAG as α increases.
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Figure 12. Throughput time varied against pro-
portion of longer jobs, λ = 11, µ = 10, µ1 = 10µ2

There is a slight levelling off of these curves as α approaches
0.99. Both random allocation and the shortest queue strat-
egy show the reverse trend for each metric. In the case of
random allocation the effect of decreasing the proportion of
longer jobs to α = 0.99 dramatically increases the perfor-
mance. These results may look confusing, although in fact
the explanation is simple. As α increases there are fewer long
jobs, and so although their average length increases (in or-
der to satisfy the average service demand being constant and
µ1 = 10µ2), there is a reduced probability that both servers
will be busy serving long jobs under random allocation or the
shortest queue strategy. Clearly this means that these strate-
gies will perform better as α −→ 0.99. Obviously α = 1 is
simply the exponential case observed in earlier figures, where
both these strategies out-performed TAG. As α decreases, the
total service demand made by short jobs approaches the total
service demand for long jobs. In this situation TAG becomes
more efficient as the balance of jobs between the nodes be-
comes optimal.

6 Related Work

Models of queues modelled with stochastic process algebra
have appeared in a number of papers, amongst the more in
depth are those by Bernardo et al [2], Herzog and Mertsiotakis
[6] and Thomas and Hillston [10]. Thomas and Hillston [10]
covered a number of different queueing scenarios and showed
how PEPA could be used to model these. The model specified
in Figure 3 is based on that earlier approach.

The analysis of job allocation algorithms has a long and
colourful history. The approach used here is based on a pa-
per by Mor Harchol-Balter [5]. Related earlier studies were
conducted by Crovella et al [4] and Bestavros [3]. In each
of these cases it was assumed that a job could not be inter-



rupted and service resumed from the same point, but rather
that any stopped job must be entirely restarted. All three of
these papers concern unbounded queues, whereas this paper
is concerned with bounded (finite) queues. There are a signif-
icant number of studies covering the related case where a job
can be migrated, or otherwise resumed from point of interrup-
tion. In such instances the optimal policy is generally quite
different, depending on the cost of migration.

To the knowledge of the author nobody has yet studied
the costs and benefits of resume against restart following job
transfer. As such this remains an interesting open problem.
This topic also bears some relation to a problem of optimal
interrupt and restart times studied by van Moorsel and Wolter
[11].

7 Conclusions and further work

A model of a novel allocation strategy has been presented
in this paper using PEPA. The model is quite complex and
illustrates how PEPA can be used to formally model systems
which are not intuitively process oriented or obviously Marko-
vian. This paper therefore extends the class of queueing sys-
tems that have been modelled using PEPA.

It has been necessary to introduce some approximations in
the model, most significantly Erlang distributions represent-
ing deterministic delays. The degree of error introduced by
these approximations has not been investigated in this paper,
but is left for future work. It has been assumed that the job
services are exponentially distributed. It is also possible to
model phase type distributions, and an approach using hyper-
exponential distributions is described.

TAG has been shown to offer a significant improve-
ment over conventional mechanisms used for load balanc-
ing when the service demand has high variance. This has
been demonstrated here for average queue size, response time
and throughput, whereas earlier studies concentrated on mean
slowdown [5]. In such situations TAG out performs the short-
est queue policy, which requires knowledge of queue sizes at
arrival instants. However, there is an additional overhead in
determining an optimal timeout value. This value has been
shown to be sensitive to the distribution of the service demand
and parameters of the arrival stream. Failure to optimise the
timeout may lead to TAG performing worse than other strate-
gies.

There are two main assumptions that enforce the observa-
tions made in this paper. Firstly, it has been assumed that
the storage demand of a job is approximately constant regard-
less of its service demand. This means that the capacity to
store jobs is considered in the same way at both nodes. Addi-
tionally, the arrival process has been assumed to be a Poisson
stream. It is expected that TAG would perform less well if the
arrival process was bursty. If bursts consisted solely of short
jobs then this would affect TAG more than the shortest queue
strategy, as shortest queue would share the burst load, whereas
TAG would direct all traffic to node 1. In such a scenario TAG

might potentially be improved by having a dynamic timeout
duration that adapts to queue length or arrival rate. This re-
mains an area of future investigation.
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Appendix A: Model of a weighted random allo-
cation strategy

Queue10
def= (arrival1, λ1).Queue11

Queue1j
def= (arrival1, λ1).Queue1j+1

+(service1, µ1).Queue1j−1

, 1 ≤ j ≤ N − 1

Queue1N
def= (service1, µ1).Queue1N−1

Queue20
def= (arrival2, λ2).Queue21

Queue2j
def= (arrival2, λ2).Queue2j+1

+(service2, µ2).Queue2j−1

, 1 ≤ j ≤ N − 1

Queue2N
def= (service2, µ2).Queue2N−1

Queue10||Queue20

Figure 13. A PEPA model of two queues in par-
allel (λ = λ1 + λ2)

Appendix B: Model of the shortest queue strat-
egy

Queue10
def= (arr1,�).Queue11

Queue1j
def= (arr1,�).Queue1j+1

+(serv1,�).Queue1j−1

, 1 ≤ j ≤ N − 1

Queue1N
def= (serv1,�).Queue1N−1

Queue20
def= (arr2,�).Queue21

Queue2j
def= (arr2,�).Queue2j+1

+(serv2,�).Queue2j−1

, 1 ≤ j ≤ N − 1

Queue2N
def= (serv2,�).Queue2N−1

S0
def= (arr1, λ1).S1

+(arr2, λ2).S−1

+(serv1, µ1).S−1

+(serv2, µ2).S1

Sj
def= (arr2, λ1 + λ2).Sj−1

+(serv1, µ1).Sj−1

+(serv2, µ2).Sj+1

, 1 ≤ j ≤ N

Sj
def= (arr1, λ1 + λ2).Sj+1

+(serv1, µ1).Sj−1

+(serv2, µ2).Sj+1

, −N ≤ j ≤ −1

(Queue10 ‖Queue20) ��
(arr1,arr2,serv1,serv2)

S0

Figure 14. A PEPA model of two M/M/1/N bal-
anced queues in parallel
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