
Ant-inspired Query Routing Performance

in Dynamic Peer-to-Peer Networks

Mojca Ciglari and Tone Vidmar

University of Ljubljana,
Faculty of Computer and Information Science,

Tržaška 25, Ljubljana 1000, Slovenia
{mojca.ciglaric, tone.vidmar} @fri.uni-lj.si

Abstract

P2P Networks are highly dynamic structures since
their nodes – peer users keep joining and leaving
continuously. In the paper, we study the effects of
network change rates on query routing efficiency. First,
the problem background is described and abstract system
model is defined. The system characteristics and behavior
are analyzed and abstracted with a set of measurable
metrics. The paper studies Mute query routing protocol
and compares its behavior to previously suggested routing
protocols. The chosen routing technique makes use of
cached metadata from previous answer messages (analogy
to ants laying feromone). The paper also discusses
mechanisms for broken path detection and metadata
maintenance. Further, simulations in various dynamic
network environments are presented and discussed: the
degree of network dynamics varies from one node
departure and node join per ten queries generated to five
node departures and joins per one generated query.
Several metrics are used to clarify the protocol behavior
even with high rate of node departures, but it is shown that
above a certain threshold it literally breaks down and
exhibits considerable efficiency degradation.

1. Introduction

One of inherent properties observed in P2P network

topologies is their dynamics – they change all the time.

While new members are joining, the others are leaving;

some stay connected only for a few minutes while others

only leave after weeks or even months of activity. In our

laboratory, we have been researching peer-to-peer query

routing protocols since Gnutella network started to

deteriorate due to excessive message overhead two or

three years ago. Since then, many new unstructured peer-

to-peer protocols were proposed, but essentially they all

suffered from either lack of anonymity or ineffective

search strategies. In our recent research we have proposed

new query routing strategies to reduce the cumulative

query traffic without degradation of end user’s experience,

particularly average system response times, however by

now we did not focus on anonymity issues.

Outside of the research community, new P2P clients

and protocols are emerging almost daily, some of them

only to disappear again in a few months while only a few

are able to attract enough users to keep running longer.

Besides an effective user interface, a typical winner

provides at least some kind of anonymity that should

protect users and the whole system from interventions by

RIAA and like organizations. One of them is Mute [10], a

novel ant-inspired unstructured peer-to-peer system,

which uses its own virtual addresses instead of internet

addresses and avoids direct contact between downloader

and uploader.

The paper studies Mute’s ant-inspired query routing

protocol and compares its behavior to our previously

suggested routing protocols. A detailed analysis in

Sections 2 and 3 reveals that although there are some

differences, the Mute routing essential rules are

comparable to our choosy routing. The system

characteristics and behavior are analyzed and abstracted

with a set of measurable metrics in Section 3. Further,

Section 4 presents the course of simulations in a range of

dynamic network environments: the degree of network

dynamics varies from one node departure and node join

per ten queries generated to five node departures and joins

per one generated query. The paper concludes with the

discussion of the results and their meaning for future P2P

systems implementations.

The main purpose of the paper is to show that Mute

essentially uses choosy routing and by means of

1-4244-0054-6/06/$20.00 ©2006 IEEE

simulations predict how will the persistence of its users

(i.e. the network dynamics) influence its routing

performance. We believe that the paper will be of interest

to all the readers who want to know more about peer-to-

peer systems structure, architecture and mechanisms, as

well as those implementing such systems and finding their

own ways of achieving better response times and higher

degree of anonymity.

2. Background and related work

In unstructured peer-to-peer networks all the peer

nodes have equal roles and functions. Two-layered

systems are also popular: here, some nodes (usually

stronger or with better communication links) are superior

and act as proxies for regular peers or subordinate nodes.

Ordinary nodes can only connect to one or a small number

of the supernodes, and the supernodes communicate with

the rest of the overlay on their behalf since the subordinate

nodes can only send queries to their supernodes. The

subnetwork of super nodes can also be viewed as an

unstructured peer-to-peer network if we consider a

supernode with the whole set of subordinate nodes as a

single node. Basic mechanism for query message routing

is usually based on flooding, which is robust and reliable

but also exhibits high redundancy and creates very high

network load (as first observed in the Gnutella file-sharing

network [1]). More effective routing strategies are based

on locally saved routing metadata from previous queries

and answers.

Another category of peer-to peer systems are the so-

called structured systems (for example systems based on

distributed hash tables – DHTs), where certain rules about

the overlay structure and the file placement exist. The peer

nodes can not freely decide which files to store and where

to connect to the overlay. Because of these rules the whole

system can operate more efficiently than an unstructured

one, but the users usually prefer the latter since they want

to keep control over their hard disks. The unstructured

systems pose their own problems and challenges which

are different from the problems in the structured systems.

This paper focuses on routing in unstructured systems.

While P2P network overlay changes, the metadata

becomes obsolete and should be removed or replaced.

However the processes of obsolete metadata detection and

establishing new routes take time and the in this paper we

suggest some directions for its estimation.

 Detailed description of the choosy routing protocol

can be found in our previous papers [2], [3] and [9],

together with the discussion of related routing techniques.

P2P overlay network topology and its properties (power

law and small world) were researched by several authors,

among others in [4], while other P2P-related issues can be

found in [6-8]. In [5] Bu and Towsley suggest a topology

generator which produces suitable topologies and which

we have also used in our simulations.

MUTE File Sharing system [10] is a new peer-to-peer

network that provides easy search-and-download

functionality while also protecting its users’ privacy. Its

routing mechanism is inspired by ant behavior. When ants

search for food, they mark their trail by laying feromone.

When an ant finds food, it follows its own trail back to the

anthill. When other ants run into the feromone trail, they

give up their own search and follow the trail. The more

ants walk the trail, the more feromone the trail receives

and ants tend to follow the strongest scented trail. If an ant

without food follows the trail and comes back to the nest,

it turns around and walks in the opposite direction. Mute

system uses ants philosophy for file search, except that it

adds the sense of direction to the “feromone” metadata.

Now the simplified rule set employs only two rules:

• If not carrying food, walk on food-directed trail or

randomly. Mark trail with nest-directed feromone.

• If carrying food, walk on nest-directed trail and

mark ground with food-directed feromone.

In a peer-to-peer network, the trail represents a path – a

set of nodes through which a message (query or answer)

need to travel. Each node only knows to which of its

neighbors the message should be sent to reach a certain

destination. Nodes can not see a complete network

overlay topology neither its parts. Message routing can

only be performed using metadata stored locally – our

feromone trail.

 3. Model and simulations

Every peer node shares a set of files. File Fi is

described by its metadata mi, a set of metadata elements:

mi = {k1, k2,... }: name, type, size, keywords, hash etc.

Query Qi is a message, identified by a globally unique

identifier and containing a subset of available metadata

elements: Qi = {km, kn, ...}. The available files are not

equally popular. A measure of file popularity qi [9] is

defined as percent of queries looking for file Fi (i.e.

matching its metadata according to some matching

function). With the term repetitive query we refer to

subsequent queries with a positive match to the same file,

which does not necessary mean that the repetitive queries

contain same keywords and/or other metadata elements.

Each node is able to generate query messages about the

files, receive and forward query messages from other

nodes, generate answers, and receive and forward answer

messages from other nodes. Each node is able to generate

and store metadata on received messages. Messages can

only be passed on to one or a subset of neighbors, chosen

by a routing mechanism. Answers return to the query

originator over the same path. When a matching file is

found, the node generates answer message containing

complete file metadata.

3.1. Choosy query routing with or without

metadata exchange

Each node that passes on an answer message also

caches the metadata and the neighbour ID in order to use

it for routing later when a similar query is issued

elsewhere in the overlay. This is a formal description of

an ant, carrying food and following the trail back to the

nest. The cached metadata represents feromone, marking

the food direction for other ants. However the cached

answers are never passed back to another node again -

they are merely used to route the queries.

If the nodes could send all their metadata to their

neighbour nodes in appropriate time intervals, this would

help them build efficient routes in the overlay faster.

When no known route exists, the query still needs to be

flooded.

When storing query and answer metadata as routing

info, the nodes also keep track of the time needed from

forwarding a query until the answer message came back.

Metadata on forwarded queries represents feromone,

marking the direction back to the nest – these will be

needed by the forthcoming answer messages. Further,

when routing next query over the same route, a node

should estimate when an answer is expected to come back,

allowing some extra time for unpredictable delays.

If the answer message does not arrive within that time,

the path is considered broken. Therefore, a query flood

should be triggered. Since the nodes still keep track of

query GUIDs (globally unique identifiers), the flood is not

multiplied at each node - each node forwards each query

only once (in each direction). If at the node X a query was

routed to the neighbor A earlier, now it is sent to all other

neighbors of X with exception of the neighbor A and the

originating neighbor node. This way, the query achieves

the best response time possible and also reaches the same

set of nodes as if it was flooded from the beginning.

In the ants world, a broken path implies that an

alternative path or food source should be found and ants -

scouts are sent out again in all directions.

A small difference between Mute routing and choosy

routing is in the meaning of home-direction feromone or,

more formally said, metadata created by the nodes after

forwarding a query. In Mute’s jargon, a message traveling

from Alice to Bob leaves a trail of clues “To get to Alice,

use this path” on the intermediate nodes. In choosy

routing, a query message Qi leaves a trail of clues “To get

home, answer to Qi should use this path”. This kind of

metadata is less meaningful but nevertheless it gets each

answer home safely. However it cannot be used by

consequent queries or answers and can therefore get

erased after we are done with the query.

Another difference is the mechanism of limiting the

query depth. Our choosy routing limits the query lifetime

by a well-known TTL mechanism, while Mute expands it

with a rather complicated Utility counter scheme.

Although its use makes sense, it does not affect the results

presented in the remaining of this paper.

The simulations, described in Section IV, were

performed using choosy routing with metadata exchange.

Although Mute does not employ such a mechanism, the

simulation results are suitable if we ignore the number of

metadata exchange messages in the total network traffic,

since our metrics mostly relate to the stable system state.

In a stable state, the majority of nodes are configured,

which means that they can route most of the messages. In

this case, most of metadata exchange messages do not

bring new routing information to target nodes, with

exception of newly joined nodes which are not configured

yet. However we still have to stress that introducing

metadata exchange mechanism is an open chance to

further improve Mute’s efficiency.

One could debate that we should explore the idea of

similarity of queries, files, or routing paths. However if

we carefully consider the protocol, we can see that these

are not the issue as long as the matching function is well

defined. If two queries are similar, they will have a

positive match with overlapping sets of files, but

nevertheless each query will have to reach the target node

independently. The same is true for similar files: they will

give positive match with overlapping queries but at last

each query will choose the nearest matching file. The

route similarity is not the issue because the query always

chooses the best path and when it is not available any

more, the query is flooded and thus finds the new best

path.

3.2. Metrics

The simplest metric from the system’s point of view is

the total number of message hops (HT) in the whole

simulation period (including cold start), however more

relevant is the average value in the stable system state

(HS), when the routes are already configured.

R is the average number of nodes reached by a query

and M is the average node load (the number of forwarded

query messages).

A somewhat modified definition of a query price from

[9] is

C=
reachedNodes

hopsqueryTotal
,

while in [6] the percent of redundant hops P and query

efficiency D are defined as

queryperhopsTotal

RqueryperhopsTotal
P

−= and
hopsEffective

hopsqueryAll
D = ,

where a hop is effective when it reaches a node with

the matching file.

Another group of metrics are user-related: the number

of time intervals (AT) before an answer is received, the

number of hops from answer node to the source node

(AH), and a share of answered queries (QA) for the

queries where an answer can be found within the TTL

radius (our routing with metadata exchange should always

find such an answer). For better clarity, all the metrics are

reviewed in Table 1.

Our goal is to achieve the values of C, P, M, R, HS,

HT, D, AT and AH as low as possible, and still have QA

close to 100%.

METRIC MEANING DESIRED

VALUE

C Query price Low

P Number of redundant hops Low

M Average node load (number
of forwarded queries)

Low

R Average number of nodes
reached by a query

Low

HS Average number of hops per
query in a stable state

Low

HT Total number of query hops
(including cold start)

Low

D Query efficiency Low

AT Answer time (number of time
intervals from issuing a query
to receiving the first answer)

Low

AH Answer hops (length of path
from answer node to source
node)

Low

QA Percent of answered queries Close to
100%

Table 1: The metrics describing system
behavior.

4. Routing in a dynamic environment

Yang [7, 8] implies that in common P2P file-sharing

networks, the rate of query generation is roughly 10 times

higher than the rate of network changes. For observations

of degradation in routing efficiency, node departures are

most important. However to keep the overlay connected

and stable over longer simulation runs, as well as to

capture real system properties, we also introduce new

nodes into the topology. New nodes are joining at the

same rate as the old ones are leaving. Let us define

network change rate NR as the average number of node

joins or departures per query. For example, NR = 0.1

means that one node joins and one node leaves the overlay

after ten queries are issued.

In our simulation environment we generate one query

per time step and to evaluate different routing techniques

we have used NR = 0.1, however here we want to compare

system metrics with higher NR values.

Our expectations are as follows. As long as the

dynamics is within certain limits, its effect on the network

behavior will be negligible. But when the NR will go over

the threshold value, the average query traffic (i.e. the

number of hops per query) will grow rapidly. Many paths

will be broken and the subsequent queries will have to be

partially flooded after the original path will not return the

expected answer. So we can be pretty sure that the traffic

(HS) will go up and average response times (AT) will

grow to some extent, while we cannot be sure about the

answer distance (AH) – it may as well stay within the

boundaries of previous average values. With more query

floods, node load (M) will grow together with redundancy

(P), while query efficiency will get worse.

5. Results and discussion

Our first observation was that there were no significant

changes when we varied NR step by step from 0.1 (one

node departure / join per ten queries) to 1 (one node

departure / join per query). Only when we used NR of 5 (5

node departures / joins per query) we observed the

expected degradation of routing efficiency. Figure 1

represents the most obvious degradation – the increase in

average number of hops per query. Figure 2 shows the

average response times, which are slightly elevated due to

the delayed floods, while in Figure 3 we can see that even

the percent of answered queries decreases with very high

values of NR, possibly because the overlay can sometimes

fall apart into two or more disconnected components and

some files are not accessible any more.

Figure 4 shows the average node load (M) – the

number of query messages to be passed on to the neighbor

nodes per time unit (i.e. per one query generated in the

overlay). As soon as a few floods are necessary, the

average load quickly increases. Sometimes even more

important is the maximum node load, because it can cause

congestion and drastic decrease of response times. In our

case, the maximum node load is over 1200 for NR = 5,

while for other values of NR it hovers around 800.

0,00

10,00

20,00

30,00

40,00

50,00

0,20 0,33 0,50 5,00

NR

H
S

Figure 1. Average number of hops per
query in a stable system state (HS), for
different values of network change rate
(NR).

0,00

1,00

2,00

3,00

4,00

0,20 0,33 0,50 5,00

NR

T

Figure 2. Average response times for
different values of NR.

0,00

20,00

40,00

60,00

80,00

100,00

0,2 0,33 0,5 1 5
NR

Q
A

 i
n

 p
e

rc
e

n
t

Figure 3. Percent of the answered queries
for different values of NR.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0,33 0,5 1 5
NR

N
u

m
b

e
r

o
f

q
u

e
ri

e
s

Figure 4. Average node load (M) for
different values of NR.

0,00

5,00

10,00

15,00

20,00

0,1 0,33 0,5 1 5

NR

Figure 5. Query efficiency (D) for different
values of NR. Lower values mean more
efficiency.

Figure 5 shows the values of query efficiency - D.

Since D is defined as the ration between the number of all

query hops and the number of efficient query hops (those

that reach the node with matching file), higher value of D

shows that there was more query hops for needed for

reaching one node that could generate an answer. We do

not show graphs for other metrics since they are quite

similar to those presented above.

The results obtained from simulations are expected and

confirm our assumptions about system behavior. What

surprised us a bit is the threshold value. In a real P2P

system, users usually join when they want to get some

new files. There are also the altruistic users, who stay

longer and share files also when they do not need anything

from the system. But in the worst case, when every user is

selfish and just joins to make one query and then

disconnects (in this case NR is exactly 1), the network

behavior stays below the threshold value. This is very

good news since it tells us that the routing protocol is

robust enough and can be used even in the most dynamic

environment.

6. Conclusions and further work

In the paper, we presented the problem of dynamic

nature in P2P network overlays. With focus on a novel

Mute peer-to-peer system, we compared its ant-inspired

routing to our previously suggested routing schemes. We

briefly described the abstract system model, both routing

mechanisms and their similarities as well as differences,

the mechanism for keeping metadata up-to-date and a set

of metrics, describing the system behavior under certain

routing protocol. Further we explained the issues related

to the network dynamicity and illustrated the effect of the

system nodes leaving and new ones joining as a basic

property in a highly dynamic environment.

By means of simulation we have confirmed our

assumptions. The main finding, based on the simulation

results, is that Mute routing mechanism is robust and

predictable within the boundaries of NR that can be

expected in the common P2P file sharing networks. In the

future, we will do our best to include in our simulation

program also those Mute features that seemed less

important at the first glance and repeat the whole set of

simulations. We are also planning to expand the

simulation environment to the level where any distributed

search protocol could be easily plugged in and simulated

or compared to other protocols.

References

[1] M. Ripeanu, I. Foster, A. Iamnitchi, “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems
and Implications for System Design”. IEEE Internet
Computing, Vol. 6(1), 2002.

[2] M.Ciglari , “Content networks: distributed routing
decisions in presence of repeated queries”. Int. j. found.
comput. sci., 2004, Vol. 15, no. 3, pp. 555-566.

[3] M.Ciglari , Towards More Effective Message Routing in
Unstructured Peer-to-Peer Overlays, IEE Proc.
Communications, 2005, Vol. 152, No. 5, pp. 673-678.

[4] M. A. Jovanovic, F. S. Anexstein, K. A. Berman, Modeling
Peer-to-Peer Network Topologies through "Small-World"
Models and Power Laws, Proc. IX. Telecommunications
Forum TELFOR, 2001.

[5] T. Bu, D. Towsley, On Distinguishing between Internet
Power Law Topology Generators, Proc. INFOCOM 2002.

[6] Q. Lv et al.: Search and Replication in Unstructured Peer-
to-peer Networks, Proc. 16th ACM Intl. Conf.
Supercomputing ICS'02.

[7] B. Yang, H. Garcia-Molina, Comparing Hybrid Peer-to-
Peer Systems, Proc. Very Large Databases VLDB, 2001.

[8] B. Yang and H. Garcia-Molina, Efficient Search in Peer-to-
Peer Networks, ICDCS 2002. http://dbpubs.stanford.edu/
pub/2001-47.

[9] M. Ciglari , Problems in Unstructured P2P Systems, to be
published in Electrotechnical Review, 2006.

[10] Mute system homepage: http://mute-net.sourceforge.net/,
December 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

