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Abstract

BSP has shown that structured parallel programming
is not only a performance win, but it is also a pro-
gram construction win, especially if we add a formal
method for designing. Maybe the most important ad-
vantage that BSP brings is the effective cost model that
allows a good evaluation of the performance. The paper
presents a technique for cost evaluation from specifica-
tions for BSP programs. We consider parameterized
specifications and processes for BSP programs, and the
parameters are the number of processes, the index of the
local process, and the data distribution. The possibility
of counting the number of communications from post-
conditions, allows us to make a cost evaluation even at
the early stages of the design, and so it leads us to the
right decisions.

1. Introduction

To become effective, parallel computation requires
at least three distinct components to be in place. The
first is the parallel hardware that will execute parallel
applications; the second is the abstract machine, or
programming model, in which parallel applications will
be written; and the third is the software design process
that allows applications to be built from specifications
[7].

One of the possible choices for a general-purpose
parallel programming model is BSP – Bulk Syn-
chronous Parallelism. A very important advantage of
BSP is that its cost measures give the real cost of a pro-
gram on any architecture. Because it separates commu-
nication from synchronization, it is particularly clean
and simple. This separation allows us to develop a
simple and formal software construction process for it.

In order to satisfy the third requirement for an effec-
tive parallel computing method, a method based on pa-
rameterized specifications and formal derivation could
be used [5]. Starting from these parameterized specifi-
cations it is possible to evaluate communication costs
from postconditions, before developing the program.
This way we may choose the right distribution - the
one who leads to the lowest costs – without developing
the programming for each distribution.

2. Bulk Synchronous Parallelism

The BSP model was proposed by Valiant [8] as a
“bridging model” that provides a standard interface
between parallel architectures and algorithms. A BSP
computer contains a set of processor-memory pairs, a
communication network allowing inter-processor deliv-
ery of messages, and a global synchronization unit that
executes collective requests for a synchronization bar-
rier. The computation is divided into supersteps sepa-
rated by global synchronization steps, and packets sent
in one superstep are assumed to be delivered at the be-
ginning of the next superstep.

The properties of architectures are captured by four
parameters. These are: the raw speed of the machine
(which can be ignored by expressing the remaining pa-
rameters in its units), the number of processors – p, the
time required to synchronize all processors – l latency,
and the ability of the network to deliver messages un-
der continuous load – g gap (which reflects network
bandwidth on a per processor basis).

The BSP model ignores the particular topology of
the underlying machine; this rules out any use of net-
work locality in algorithm design. Thus, the model
only considers two levels of locality, local (inside the
processor) and remote (outside a processor), with re-
mote access usually being more expensive than local
ones.
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The cost of a superstep is given by:

cost = w + hg + l

where w is the maximum local computation in any pro-
cessors during the superstep, h is the maximum number
of global communications into or out of any processor
during the superstep.

The organization of programs as a sequence of steps
reduces the complexity of arranging communication
and synchronization. This makes it straightforward to
extend techniques for constructing sequential programs
to BSP programs.

3. Formal Derivation of BSP Programs

We use a derivational method that considers a paral-
lel program as a number of cooperating parameterized
processes with similar structures.

A parallel program is considered to be formed of
many parameterized processes S.q(0 ≤ q < p), which
are running in parallel. There is no shared memory,
and point-to-point communication is considered. Since
in BSP model, a parallel machine consists of a set
of processors, each with its own private memory, and
an interconnection network that can route packets be-
tween processors, we may reason about BSP programs
as a set of parameterized processes that communicate
via message-passing.

A parameterized process is much like a procedure
in sequential programming. The difference is that, in-
stead of having only one instantiation in a sequential
program, we have many instantiations in a parallel pro-
gram.

In sequential programming the Hoare-triple [3]

{Q}S{R}
is commonly used to denote a formal specification of a
program S. This notation expresses that if the program
S starts in a state described by the predicate Q, and
the program terminates, then, upon completion, the
predicate R is satisfied (partial correctness).

For specifying a parallel program, both pre- and
post-conditions, Q and R, are split up as conjunctions
of p(p > 0) local pre- and post-conditions, and a pro-
cess is associated with each such pair:

{Q.q}S.q{R.q},∀q : 0 ≤ q < p.

A parameterized specification refers local variables,
the number of processes (p), the index of the local pro-
cess (q), and also elements of the distributed objects
which represent the input of the problem. These el-
ements of the distributed objects are considered only

in specifications and they cannot be modified. There-
fore, the parameters of a specification are q, p, and a
data distribution D. Many choices are possible for D,
each of them having an impact on the complexity of
the parallel program.

Such a specification forms the starting point for
a parallel program derivation, a formal construction
of parameterized processes constituting a parallel pro-
gram.

Our approach for obtaining a parameterized process
S from a functional specification is similar to the meth-
ods used in sequential programming. We may use the
classic rules for derivation from sequential program-
ming [1, 3], and new rules for parallel composition and
communication [2]. The classic method that obtains an
invariant from a specification, in a calculational style,
may be used.

4. Distributions

Data distributions have a serious impact on time
complexity of parallel programs developed based on do-
main decomposition, which are very conveniently im-
plemented using BSP model. Distributions are consid-
ered to be parameters of our programs, and they have
to be carefully analyzed since they may considerably
change the complexity of our programs. Simple static
distributions are going to be considered; in a static dis-
tribution the assignments are not changed during the
execution of the program. The simple distributions are
characterized by:

• the number of data elements assigned to one pro-
cess;

• the data distribution on processes.

If the data input is a vector, the simple distribution is
called one-dimensional distribution, and if it is a multi-
dimensional array, the distribution is called Cartesian
distribution [4]. Set-distributions [6] may also be con-
sidered. Using them we may distribute one date to a
set of processors.

We use n to denote the set {∀i : 0 ≤ i < n : i}.
Definition 1 D = (δ, A, B) is called a (one-
dimensional) distribution if A and B are finite sets,
and δ is a mapping from A to B; set A specifies the set
of data objects (an array with n elements that represent
the indices of data objects), and the set B specifies the
set of processes, which is usually p. The function δ as-
signs each index i(0 ≤ i < n), and its corresponding
element, to a process number.

Well-known ways of distributing an array are: every
element to one unique process (identity), assigning p



equally-sized consecutive array segments (linear), and
assigning elements cyclically (cyclic).

Distributions of multi-dimensional arrays may be
modeled by Cartesian distributions. In what follows, it
is assumed that an m × n matrix is distributed across
processes.

Definition 2 A Cartesian distribution is defined by
a Cartesian product of one-dimensional distributions.
The Cartesian product of two one-dimensional distri-
butions D0 = (δ0,m,M), D1 = (δ1, n, N) is defined
by:

D0 × D1 = (δ0 × δ1,m × n, M × N)

where the function δ0 × δ1 assigns a pair of process
numbers to each array index pair.

Formally written, we have δ0 × δ1 = (λi, j ·
(δ0.i, δ1.j)).

The Cartesian product of two one-dimensional dis-
tributions uses a process pair as identification for a
process. Cartesian distributions of matrices can be ob-
tained by distributing the rows of the matrix indepen-
dently from the columns. Since the processes number
p is set, we can consider all decomposition such that
p = M ∗ N .

Two well-known examples of Cartesian distributions
are grid = cyclic2 and block = linear2.

5. Cost Evaluation

BSP model gives us a cost model that is both
tractable and accurate, and can be used as a part of the
design process. This formal methodology for BSP pro-
gram construction allows us to formally evaluate the
costs based on the local postconditions.

The distributions determine how the global post-
condition is split up, and the local postconditions de-
termine the number of communications and the com-
putational work of each process. Given a program’s
postcondition and a distribution, an evaluation of the
cost, before developing the program, is possible.

We consider that we have p processes and a data
distribution δ : n → p. The program’s postcondition
is split up into p local postconditions according to the
distribution δ. For each local postcondition a process,
establishing it, is created and associated to.

Under the hypothesis that every datum is assigned
to one unique process, the total number of postcondi-
tions that refer to a particular datum is a measure of
the number of communications of that datum.

For the datum e, the quantity NOcc.e is introduced:

NOcc.e =
the no. of local postconditions in which e occurs.

For a BSP program, we are interested in finding the
number h, and this depends on the fan in and fan out
numbers of each process q. The fan out number of
process q may be computed based on NOcc of each
datum that is assigned to process q:

fan outq =
(
∑

i : 0 ≤ i < n ∧ δ.i = q : NOcc.ei − A.ei)

where

A.e =

⎧⎨
⎩

1, if
e occurs in the postcondition
of the process that contain it;

0, otherwise.

The number A.e is usually equal to 1, which means
the process that contains a date e uses it in the lo-
cal computation; but there are, however, exceptions to
this, and Example 2 illustrates one such exception.

The fan in number of process q can also be evalu-
ated by counting all the data that are used in the local
postcondition of process q, which are not assigned to
process q.

fan inq =
(
∑

i : 0 ≤ i < n ∧ δ.i �= q ∧ ei occurs in R.q : 1)

From these, we have hq = max(fan inq, fan outq)
(or h = fan inq + fan outq), and then h = (max q :
0 ≤ q < p : hq) may be computed.

If the distribution is well balanced – perfect or ho-
mogenous – and the postconditions defined based on
these distributions use the same amount of data, we
may evaluate these numbers in a much simpler way.
The total number of communication NComm may be
computed, and then h is computed by the formula
h = NComm/p, if h = max(hin, hout), or by the for-
mula h = 2NComm/p, if h = hin + hout.

By summing over all data e, the total number of
communications NCom will be obtained from NOcc.e:

NCom =
(∑

e :: NOcc.e − A.e
)

The value of h is only determined by the way the
program’s postcondition is split up, and the distribu-
tion that is used.

This technique of counting communications allows
a comparison of the distributions on the basis of their
communication overhead. The applicability of the
technique is not possible when common subexpressions
exist; we have also considered that we need only one
superstep for satisfying the postcondition. But, gen-
erally, in programs construction stepwise refinement
is used, and we may apply this technique to partial
postconditions. So, this technique can give us a fair



approximation of the communication overhead. This
technique also allows us to choose the most appropri-
ate distribution before developing the program.

The technique suits very well to BSP programs since
the results that can be obtained are independent of the
inter-communication network.

To illustrate this technique, an example for matrix
multiplication is given. Two variants based on different
ways of distributing data are discussed.

Example 1 [Matrix multiplication] Let us consider
two matrices A and B of dimensions m× o, and o× n,
respectively. Our goal is to compute the m× n matrix
C, satisfying postcondition R:

R : C = A × B.

We consider p = M ∗ N processes, each process being
identified by an ordered pair (s, t), 0 ≤ s < M, 0 ≤
t < N . For the matrix C, a Cartesian distribution
D0×D1(D0 = (δ0,m,M), D1 = (δ1, n, N))is used, and
we consider the following conditions hold: M < o, N <
o,M < m,N < n. The matrix A is distributed using a
Cartezian distribution D0 × D2(D2 = (δ2, o,N)), and
the matrix B is distributed using a Cartezian distribu-
tion D3×D1(D3 = (δ3, o,M)). We assume that these
distributions are homogenous.

The local postconditon R.s.t is:

R.s.t :
(∀i, j : 0 ≤ i < m ∧ 0 ≤ j < n

∧δ0.i = s ∧ δ1.j = t :
c(i, j) = (

∑
k : 0 ≤ k < o : a(i, k) ∗ b(k, j))

Note that (∀s, t : 0 ≤ s < M∧0 ≤ t < N : R.s.t) ⇒ R

In order to count the number of communications,
quantities NOcc.a(i, k) and NOcc.b(k, j) are calcu-
lated. We assume that δ0 and δ1 are surjective.

NOcc.a(i, k)
= {definition NOcc}

|(∀s, t : 0 ≤ s < M ∧ 0 ≤ t < N ∧ δ0.i = s∧
(∃j :: δ1.j = t) : (s, t))|

= {calculus, δ1 is surjective }
N ∗ |(∀s : 0 ≤ s < M ∧ δ0.i = s : s)|

= {δ0 is a function}
N

Similarly NOcc.b(i, k) = M .
Because we assume that the distributions are ho-

mogenous, we compute the total number of communi-

cations, and after that the number h.

NCom
= {definition of NCom}

(
∑

i, k : 0 ≤ i < m ∧ 0 ≤ k < o :
NOcc.a(i, k) − 1)

+
(
∑

k, j : 0 ≤ k < o ∧ 0 ≤ j < n :
NOcc.b(k, j) − 1)

= {calculus}
om(N − 1) + on(M − 1)

Then we have:

h = (om(N − 1) + on(M − 1))/(MN)

The cost of the program can then be evaluated as fol-
lows:

cost
= {definition}

w + hg + l
= {calculus}

w + l + g(om(N − 1) + on(M − 1))/(MN)

where w is the maximum local computation that can
also be evaluated from the parameterized postcondi-
tion, w = (m/M) ∗ (n/N) ∗ o.
Remarks:

• The number h is independent of particular choices
of δ0, δ1, δ2, and δ3.

• It is possible to determine M and N , p = MN
such that h is minimal. All possible values (M,N)
are integer points on the hyperbola p = M ∗N, 1 ≤
M, N ≤ p, and the values of NCom for fixed
m, n, o lie on the line with a slope dependent on
m
n . Hence, the minimal value for h depends on
the ratio m

n and in particular for m = n, h has a
minimal value if p is square.

Example 2 [Matrix multiplication] We consider the
same problem, but with matrix A distributed us-
ing a distribution D0 × D2(D0 = (δ0,m,M), D2 =
(δ2, o,N)), and we distribute the transpose of matrix
B, using a distribution D3 × D2(D3 = (δ3, n, M))
(M < m, M < n, N < n, N < o).

The local postconditions are the same as in the first
case. But, now we rewrite the postconditions in a dif-



ferent way:

(∀i, j : 0 ≤ i < m ∧ 0 ≤ j < n ∧ δ0.i = s ∧ δ1.j = t :
c(i, j) = (

∑
k : 0 ≤ k < o : a(i, k) ∗ b(k, j))

= {calculus}
(∀i, j : 0 ≤ i < m ∧ δ0.i = s ∧ 0 ≤ j < n ∧ δ1.j = t :

c(i, j) = (
∑

v : 0 ≤ v < N :
(
∑

k : 0 ≤ k < o ∧ δ2.k = v : a(i, k) ∗ b(k, j))))
= {w(i, j, v) not=

(
∑

k : 0 ≤ k < o ∧ δ2.k = v : a(i, k) ∗ b(k, j))}
(∀i, j : 0 ≤ i < m ∧ δ0.i = s ∧ 0 ≤ j < n ∧ δ1.j = t :

c(i, j) = (
∑

v : 0 ≤ v < N : w(i, j, v)))

Therefore, the program has two stages: the first for
the computation of w(i, j, v) values, and the second
that combines these values.

The local postcondition for the first superstep is:

R0.s.t :
(∀i, j : 0 ≤ i < m ∧ δ0.i = s ∧ 0 ≤ j < n :

w(i, j, t) = (
∑

k : 0 ≤ k < o ∧ δ2.k = t :
a(i, k) ∗ b(k, j))).

The element a(i, k) only appears in the postcondi-
tion of the process containing it, and so, NOcc.a(i, k) =
1, A.a(i, k) = 1. The element b(k, j) appears in M post-
conditions: NOcc.b(k, j) = M , A.b(k, j) = 1.

NOcc.b(k, j)
= {definition}

|(∀s, t : 0 ≤ s < M ∧ 0 ≤ t < N ∧ δ2.k = t∧
(∃i :: δ0.i = s) : (s, t))|

= {δ0 is surjective}
M

Hence, we have

NCom0 = on(M − 1), and
h0 = on(M − 1)/(MN).

For the second superstep the postcondition is:

R1.s.t :
(∀i, j : 0 ≤ i < m ∧ 0 ≤ j < n

∧ δ0.i = s ∧ δ1.j = t :
c(i, j) = (

∑
v : 0 ≤ v < N : w(i, j, v)))

We have NOcc.w(i, j, v) = 1. In order to compute
NCom1 and h1 corresponding to the second superstep,
we first have to establish A.w(i, j, v):

A.w(i, j, v) =
{

1, if v = δ1.j
0, if v �= δ1.j

Therefore

NCom1 = mn(N − 1), and
h1 = mn(N − 1)/(MN).

Thus, we obtain the following result for the whole
program:

cost
=

w0 + w1 + (h0 + h1)g + 2l
= {calculus}

w + g(on(M − 1) + mn(N − 1))/(MN) + 2l

where
w0 = (mno)/(MN)
w1 = (mnN)/(MN)
w = mn(o + N)/(MN)

Remarks:

• Choosing the best distribution from the commu-
nication point of view depends on the values of n
and o.

• The second variant needs two supersteps, so the
latency l appears in the cost with the factor 2.

• The computation work is greater for the second
variant, since the partial values w(i, j, t) have to
be summed in the second superstep.

• If we compare the results of these two examples
for matrix multiplication, we may conclude that
the first variant is generally better. The second
variant is better only if ((o − n)m(N − 1)g −
mnN)/(MN) > l; these are the cases when o is
much greater than n.

6. Conclusions

BSP has shown that structured parallel program-
ming is not only a performance win, but it is also a
program construction win, especially if we add a for-
mal method for designing.

BSP model proved to be very appropriate for prob-
lems with regular structure, and so, for problems
based on domain decomposition. Using parameter-
ized specifications we can take into account the data-
distribution, even at the beginning of the construction
process.

We have presented here a modality of evaluating
costs of BSP programs from postconditions. This al-
lows us to make a cost evaluation at the early stages of
the design, and thus, we may choose, before developing
the program, the data distributions that decrease the
costs.
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