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Abstract

Bulk Synchronous Parallel ML (BSML) is an ex-
tension of the functional language Objective Caml to
program Bulk Synchronous Parallel (BSP) algorithms.
It is deterministic, deadlock free and performances are
good and predictable. Parallelism is expressed with a set
of 4 primitives on a parallel data structure called par-
allel vector. These primitives are pure functional ones:
they have no side-effect. It is thus possible, and we did
it, to prove the correctness of BSML programs using a
proof assistant like Coq. The BSλ-calculus is an exten-
sion of the λ-calculus which models the core semantics
of BSML. Nevertheless some principles of BSML are
not well captured by this calculus. This paper presents
a new calculus, with a projection primitive, which pro-
vides a better model of the core semantics of BSML.

1. Introduction

Very often concurrent programming is used to pro-
gram massively parallel algorithms. An imperative
programming language is used with a message passing
communication library such as MPI (Message Passing
Interface). This approach is of course very general since
it allows to define any parallel algorithm but also the
details of its communications protocols. Nevertheless
the freedom is not free and the development of such
programs is very difficult because they may contain
non-determinism and deadlocks. This is confirmed by
the high complexity of related validation problems [3].
The semantics of a concurrent program being in general
very complex, the time required to run it (related to
its operational semantics) is also difficult to determine,
which hinders the portability of performances.

The BSP model [24] (Bulk Synchronous Parallelism)
aims at maximizing the portability of performances by

adding a notion of explicit processes to data paral-
lelism [22]. A BSP program is explicitly written for
a static number of processors. The BSP execution
model separates synchronization and communication
and obliges both to be collective operations. It pro-
poses a simple and accurate cost model (in this context,
cost means the estimate of parallel execution time)
making it possible to predict performances in a real-
istic and portable way. The theory of the proof of BSP
programs [15] is it also close in complexity to the se-
quential case. The BSP model was used successfully
for a broad variety of problems.

The previous approaches are however all imperative
and do not allow the writing of parallel algorithms like
functional programs. However the functional program-
ming languages offers abstraction mechanisms such as
higher order functions, polymorphism, pattern match-
ing, which ease the writing of programs.

An intermediate approach is that of algorithmic
skeletons [7, 9] in which only a finite set of opera-
tions are run in parallel. Their functional semantics
is explicit but their parallel operational semantics is
implicit. From the point of view of the programmer,
the programming style is to use combiners which effect
on parallelization is defined outside the formal seman-
tics. The advantages compared to the concurrent ex-
tensions are of course that non-determinism and dead-
locks are avoided. Compared to the I-structures and
Caml Flight, a compositional semantics is preserved.

The skeletons are not in general any parallel oper-
ations, but try to capture the essence of well-known
techniques of parallel programming such as parallel
pipeline, master-slave algorithms, the application of a
function to distributed collections, etc.

The designer of libraries of skeletons must find a
balance between two opposite objectives:

• To provide the most complete and the most ex-
pressive possible set of skeletons. Indeed this set
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being finite, all the possible parallel programs can-
not be written. Thus the designer should propose
a set which is not too restricted and which is us-
able in practice.

• To provide the smallest possible set of skeletons
because it is necessary: (a) on the one hand to
efficiently implement each skeleton on each tar-
get parallel machine, (b) on the other hand that
the user of the library of skeletons is not lost in
a plethora of skeletons possible to use to solve his
particular problem.

To help the user there are methodologies of transfor-
mation of programs which make it possible to replace
a skeleton by a more efficient one or a composition of
skeletons by only one skeleton. These methodologies
rely on models of performances but often:

• either the model of performances is abstract thus
applicable to any target architecture but is not
realistic (such as for example the PRAM model);

• or the model of performances is too detailed and
thus there is a different model of performances
for each target architecture. The transformation
made for an architecture could not be valid any
more for a different architecture. This does not
ease portability.

More recently a proposal [8] aims at integrating skele-
tons and more widespread practices of parallel pro-
gramming such as MPI. This makes it possible to the
user to program using MPI the algorithms which are
not possible to implement using the provided skele-
tons. Of course the problems which MPI program-
ming can bring, could appear. It seems in particu-
lar difficult to be able to give a simple and portable
model of performances. Other work proposes simple
and portable models of performances based on the BSP
model [23, 13]. Recent work propose a set of skeletons
based on Java for Grid computing [2] with a framework
for performance prediction [1].

Our work is an approach similar to the intermediate
position that the paradigm of the skeletons occupies.
However the method was not to design an a priori fi-
nite set of operations then to design models of perfor-
mances, but to set a priori a structured model of paral-
lelism (with its model of performances) then to design
a universal set of operations which allows the program-
ming of any algorithm of this model. We chose the BSP
model. On operational approach leads us to define an
extension of the λ-calculus by BSP primitives [20]. Any
BSP program can be written with this calculus, that is
why it is said universal for the BSP model.

A library based on this calculus, the BSMLlib (we
will also use BSML for “Bulk Synchronous Parallel
ML”) has been designed for the Objective Caml [16]
(or Ocaml) language. It allows programming using a
polymorphic parallel data structure. The programs are
(sequential) functions written in Objective Caml but
process a parallel data structure with dedicated prim-
itives. BSML follows the BSP execution model so it
is deadlock free. Performance predictability has been
shown.

Being based on a confluent calculus it is determin-
istic. For a pure functional subset of Objective Caml,
proofs of correctness of BSML programs [10] can be
done using the Coq proof assistant. Nevertheless when
we studied how non-functional features of Objective
Caml were interacting with our parallel operations (for
e.g. [11]), it appears that the BSλ-calculi do not cap-
ture the essence of BSML’s behavior. Moreover the cal-
culi contain a global conditional operation which can-
not be implemented as is in BSML. On the other hand
BSML contains a projection operation which cannot
be safely introduced in the calculi without introducing
nested parallelism which is not allowed [12].

In this paper we present a new calculus which is
closer to BSML with a parallel projection but without
nested parallelism. In section 2, an informal overview
of BSML is given. In section 3 we give some elements of
the previous BSλ-calculi in order to highlight the nov-
elties of the BSλat-calculus with projection (section 4).
Section 5 is devoted to examples and we end with re-
lated work 6 and conclusions 7.

2. Functional Bulk Synchronous Paral-
lelism

A BSP computer contains a set of uniform processor-
memory pairs, a communication network allowing
inter-processor delivery of messages and a global syn-
chronization unit which executes collective requests for
a synchronization barrier (for the sake of conciseness,
we refer to [24] for more details). A BSP program is
executed as a sequence of super-steps, each one divided
into (at most) three successive and logically disjointed
phases: (a) Each processor uses its local data (only) to
perform sequential computations and to request data
transfers to/from other nodes; (b) the network delivers
the requested data transfers; (c) a global synchroniza-
tion barrier occurs, making the transferred data avail-
able for the next super-step.

The performance of the machine is characterized by
3 parameters expressed as multiples of the local pro-
cessing speed s: p is the number of processor-memory
pairs, L is the time required for a global synchroniza-



bsp p: unit→ int
bsp g: unit→ float
bsp l: unit→ float

mkpar: (int → α ) → α par
apply: ( α → β ) par → α par → β par
put: (int→ α option) par → (int→ α option) par
at: α par → int → α

Figure 1. Primitives

tion and g is the time for collectively delivering a 1-
relation (communication phase where every processor
receives/sends at most one word). The network can
deliver an h-relation in time g × h for any arity h.
The execution time of a super-step is thus the sum of
the maximal local processing time, of the data delivery
time and of the global synchronization time.

There is no full implementation of a Bulk Syn-
chronous Parallel ML or BSML language but an imple-
mentation as a library for Objective Caml [16]. This
library is based on the primitives given at figure 1. It
is to notice that these primitives are not the same than
the primitives of the first BSML proposal and imple-
mentation. They are closer to the semantics which in
turn evolves to be closer to the implementation.

It gives access to the BSP parameters of the under-
ling architecture. In particular, bsp p() is p, the static
number of processes. This value is constant during ex-
ecution. bsp g() and bsp l() give the BSP parameters
g and L.

BSML offers a parallel data structure called parallel
vector. Its type is α par. It indicates than we have
p values (one per processor) of type α. This type α
should not be a type containing an occurrence of par
(this point is discussed in details in [12]). BSML pro-
grams are written as usual Caml program but using
the four parallel primitives for the creation and manip-
ulation of parallel vectors. A BSML program is thus a
kind of sequential program on a parallel data structure.
This is very different from SPMD programming (Single
Program Multiple Data) where the programmer must
use a sequential language and a communication library
(such as MPI). A parallel program is then the multiple
copies of a sequential program, which exchange mes-
sages using the communication library. In this case,
messages and processes are explicit, but programs may
be non deterministic and may contain deadlocks.

The asynchronous computation phase can be pro-
grammed with the two primitives mkpar and apply.
Two successive calls to these primitives do not need
any synchronization barrier.

The first one allows to create a parallel vector from
a function. (mkpar f) will give the following parallel
vector: v0 · · · vi · · · vp−1 where at
processor i, (f i) is evaluated to vi.

The second primitive applies a parallel vector of

functions to a parallel vector of arguments:

(apply f0 · · · fi · · · fp−1

v0 · · · vi · · · vp−1 )

= v′
0 · · · v′

i · · · v′
p−1

where at processor i, (fi vi) is evaluated to v′
i.

The BSP cost of these two primitives is max0≤i<p wi

where wi is the time needed to evaluate at processor i
the expression (f i) for mkpar or the expression (fi vi)
for apply.

Unlike BSPlib [14] or PUB [5] we do not distin-
guish communication phase and synchronization bar-
rier. The two primitives put and at are used to pro-
gram the communication phase implicitly and immedi-
ately followed by a synchronization barrier.

put uses the type α option defined by:
type α option = None | Some of α.

The argument of this primitive is a parallel vector of
functions which describe the messages to be sent. The
function fi at processor i indicates for each destination
processor j, either the data to be sent is (fi j) = Some v
or the constant None which indicates that no data will
be sent from i to j.

The result is also a parallel vector of functions which
describe the received messages. The function gj at pro-
cessor j applied to i will give Some v if processor i sent
the value v to processor j and will give None if i sent
nothing to j.

The BSP cost for the evaluation of a put is the
cost of a whole super-step. The messages to be sent
are evaluated (asynchronous computation phase) then
sent and the super-step is ended by a synchronization
barrier.

The primitive at projects the value of a parallel vec-
tor from a given process:

(at v0 · · · vi · · · vp−1 i) = vi

An expression containing this primitive should not be
evaluated in the context of a mkpar primitive (this
can be enforced by a type system [12]). The BSP cost
of the evaluation of at is the cost of a direct broadcast
(see below): (p − 1) × s × g + L where s is the size of
value vi.

The first BSλ-calculus contains a primitive called
global conditional (see section 3). The global control



cannot depend on the value of a parallel vector at a
given processor without this primitive. It is used to
express algorithms like:

Repeat
Parallel Iteration

Until Max of local errors < ε.
It is not possible to offer such a primitive as a func-

tion because Objective Caml is an eager language, but
one can write: (if (at vec n) then e1 else e2). Fur-
thermore, at can be used in other circumstances for
example with pattern matching match with.

These four parallel functions are called primitives
because they need lower-level libraries (C libraries
wrapped to Objective Caml code) to be implemented.
In the version of BSML under development the imple-
mentation of these functions rely on MPI, PUB [5], or
the TCP/IP functions provided by the Unix module of
Objective Caml.

Other functions are very often used when one write
BSML programs. Nevertheless these functions can be
defined using only the primitives and require no lower-
level libraries. They are part of what is called the stan-
dard library of BSML. The following functions are used
in the example at the end of this section:

let replicate x = mkpar(fun pid→ x)
let parfun f vv = apply (replicate f) vv
let noSome (Some x) = x

Consider the following BSML program:

(∗ val bcast: int → α par → α par ∗)
let bcast root vv =

let tosend=mkpar(fun pid v dst→ if pid=root
then Some v else None) in

let recv=put(apply tosend vec) in
parfun noSome (apply recv (replicate root))

(bcast root vv) broadcast the value of the parallel
vector vv at processor root to all other processors. The
BSP cost of a call to this function is: p + (p−1)× s×
g + L where s is the size of the value vv at processor
root.

3. BSλ-calculi

In this section we give an overview of the previous
BSλ-calculi.

3.1. The BSλ-calculus

The syntax used here is not the one used in the
cited publications, but is coherent with the name of
the BSML primitives and with the syntax of the other
semantics.

We refer to [4] for the definitions of free variables,
substitutions, etc., and for conventions.

We consider the disjoint sets V̇ of local variables and
V of global variables. Let ẋ, ẏ, . . . denote local vari-
ables and X, Y, . . . denote global variables from now
on. x will denote a variable which can be either local
or global. The same convention applies to terms.

The syntax of BSλ begins with local terms ė: λ-
terms representing programs or values stored in a pro-
cessor’s local memory. The set L of local terms is given
by the following grammar:

ė ::= ẋ | ė ė | λẋ. ė

where ẋ denotes an arbitrary local variable.
Let p be the finite number of processor names N ,

each being a closed λ-term in normal form. The BSλ-
calculus is parametrized by this set. The elements of
N will be always written ṅ and variants. | · | is a bijec-
tion from the set N of processors names to the subset
{0, 1, . . . , p − 1} of naturals. ṅ0 denotes any elements
of N whereas |0|−1 denotes the name of the processor
0.

Integers and booleans and the related operations can
be coded in pure λ-calculus [4]. For illustration pro-
cessors names will always be 0, . . . , p − 1, coded for
example as Church numeral (but one can also add new
constants and δ-rules).

The set G of global terms is given by the following
grammar:

E ::= X | E E | E ė | λX. E | λẋ. E
| (mkpar ė) | (applyE E) | (getE E)
| (ifE at ė thenE elseE)

and has the following meaning.
Global terms denote maps from N to local values,

functions between them or functions from local val-
ues to such maps. In particular the denotation of
(mkpar ė) has for value at processor ṅ the value (nor-
mal form) of (ė ṅ). The forms (applyE1 E2) and
(getE1 E2) are called point-wise parallel application
and get respectively.

get represents the communication phase of a BSP
super-step: a collective data exchange with a barrier
synchronization. In (getE1 E2), the resulting paral-
lel vector contains values from E1 taken at processor
names defined in E2. The exact meanings of apply
and get are defined by the BSλ rules.

The last form of global terms define syn-
chronous conditional expressions. The meaning of
(ifE1 at ė thenE2 elseE3) is that of E2 (resp. E3) if
the parallel vector denoted by E1 has value T (resp. F )
at the processor name denoted by ė T and F denotes
the coding (or new constants) of the boolean values.



∀ṁ ∈ N . ė2 ṁ →BSλ ṅ ∈ N
(get (mkpar ė1) (mkpar ė2)) →BSλ (mkparλẋ. ė1(ė2 ẋ))

(1)

(apply (mkpar ė1) (mkpar ė2)) →BSλ (mkparλẋ. (ė1 ẋ)(ė2 ẋ)) (2)

ė ė′ →BSλ T ė′ ∈ N
(if (mkparE)at ė′ thenE1 elseE2) →BSλ E1

ė ė′ →BSλ F ė′ ∈ N
(if (mkparE)at ė′ thenE1 elseE2) →BSλ E2

(3)

Figure 2. BSλ-calculus

get is not one of the BSML primitives of section 2. It
is possible to have a put primitive for the BSλ-calculus.
Nevertheless the principles of the calculus remains un-
changed but with more complicated rules.

The one-step reduction of local terms is simply:

(λẋ. ė)ė′ →BSλ ė[ẋ ← ė′] (4)

it could be applied in any context (context rules are
omitted, we refer to [20]).

The reduction of global terms is defined by syntax-
directed rules and context rules which determine the
applicability of the former. Each rule defines a reduc-
tion on global terms.

First, there are axioms for global beta-reduction:

(λX. E)E′ →BSλ E[X ← E′] (5)
(λẋ. E)ė′ →BSλ E[ẋ ← ė′] (6)

As terms (λẋ.E1)E2 are well formed terms, but that
substitution E1[ẋ ← E2] is not part of the syntax, the
two rules (5) and (6) are necessary.

There are also axioms for the interaction of the par-
allel vector constructor mkpar with the other BSP op-
erations.

Rules (1) and (2) encode the meaning of the BSP
operations on parallel vectors. In particular, get is
functional composition inside the parallel vector con-
struction. The value of (get (mkpar ė1) (mkpar ė2))
at processor name ṅ is (ė1 (ė2 ṅ)), i.e. the value of
(mkpar ė1) at processor name (ė2 ṅ).

Next, the global conditional is defined by two rules
whose numerators refer to local computations. The
two rules (3) generate the following bulk-synchronous
computation: first a pure computation phase where all
processors evaluate local term ė′ yielding value ṅ; then
processor ṅ evaluates (ė ṅ) into value v̇; if v = T (resp.
F ) then processor ṅ broadcasts the order for global
evaluation of E1 (resp. E2); otherwise the computation
fails.

3.2. The BSλp-calculus

The parallel interpretation of a term (mkpar ė) is:

ė |0|−1 · · · ė |i|−1 · · · ė |p − 1|−1

and each of these p local terms can be reduced.
An intentional description ė is replaced by p local

terms. If we want to consider a proofs of equivalence of
a given strategy of the BSλ-calculus with a semantics
close to the implementation in SPMD style, we have
to face the opposite transformation from p local terms
to an intentional term (mkpar ė) with the additional
constraint that this transformation should be compat-
ible with reduction. This is a problem. To avoid it we
designed the BSλp-calculus [18].

The (mkpar ė) construct is suppressed and replaced
by a enumerated parallel vector construct:

〈 ė , . . . , ė , . . . , ė 〉

It is always possible to write programs using the
mkpar operation. But it is no more a primitive but a
function defined by:

mkpar ≡ λė.〈 ė |0|−1 , . . . , ė |i|−1 , . . . , ė |p − 1|−1 〉

Rules (4), (5) and (6) belongs to the BSλp-calculus
and the other rules become simpler [18].

4. A New Calculus with Projection

The parallel interpretation of a reduction of the
BSλ-calculus [20] gives informally a BSP cost to each
reduction. This is done using an evaluation of inten-
tional parallel vectors. The results looks partially like
an ancestor of the BSλp-calculus.

For the BSλp-calculus the parallel interpretation is
more direct [18]. Cost can be represented as a paral-
lel vector of numbers and it is possible to associate to
each rule of the calculus on global term a rule on cost
vectors. The only problem concerns the contexts: for
the local rule, it has an unitary cost in the context of
a parallel vector but it adds one unit of time at each
component of the cost vector in other cases. This phe-
nomenon appears clearly with distributed evaluation.



(λẋ.ė1) ė2 →at ė1[ẋ ← ė2] (7)
(λx̄.ē1) ē2 →at ē1[x̄ ← ē2] (8)
(λx̄.E1) ē2 →at E1[x̄ ← ē2] (9)

(λX.E1)E2 →at E1[X ← E2] (10)
(at 〈 ė0 , . . . , ėi , . . . , ėp−1 〉 ē) →at U(ė|D(ē)|) if ∀i.FV(ėi) = ∅ (11)

(replicate ē) →at 〈 D(ē) , . . . , D(ē) , . . . , D(ē) 〉 if FV(ē) = ∅ (12)
(apply 〈 ė1

0 , . . . , ė1
p−1 〉 〈 ė2

0 , . . . , ė2
p−1 〉) →at 〈 ė1

0 ė2
0 , . . . , ė1

i ė2
i , . . . , ė1

p−1 ė2
p−1 〉 (13)

(get 〈 ė1
0 , . . . , ė1

p−1 〉 〈 ė2
0 , . . . , ė2

p−1 〉) →at 〈 ė1
|ė2

0| , . . . , ė1
|ė2

i | , . . . , ė1
|ė2

p−1| 〉 (14)

Figure 3. The BSλat-calculus

The programming model corresponds to the BSλ-
calculi: it is a kind of sequential composition of primi-
tives on a parallel data structure. The execution model
(of the implementation) corresponds to a parallel com-
position of sequential programs. Going from one model
to the another is very important [6].

The distributed evaluation [19] offers an SPMD view
of the evaluation of the terms obtained by a kind of
compilation of BSλp terms. Starting from a BSλp term
we obtain p terms by projection. Each term can be
evaluated independently by one processor until a com-
munication primitive has to be evaluated. To obtain
these terms only one component (the same for one pro-
jection) of parallel vectors is preserved. The evaluation
of the communication primitives can only be performed
on p terms at the same time: there are synchronous op-
erations.

The grammars are as follows: local terms remain un-
changed, global terms are defined by a grammar sim-
ilar to the grammar of the global terms of the BSλp-
calculus, 〈 ė , . . . , ė 〉 being replaced by 〈ė〉. New terms
called distributed terms are also used, they represent
the whole SPMD program obtained by parallel compo-
sition of the p copies:

ED::=〈〈 E , . . . , E , . . . , E 〉〉 | 〈〈 ė , . . . , ė , . . . , ė 〉〉
For example the reduction,

〈 ė0 , . . . , ėi , . . . , ėp−1 〉 →BSλ 〈 ė0 , . . . , ė′i , . . . , ėp−1 〉
becomes

〈〈 〈ė0〉 , . . . , 〈ėi〉 , . . . , 〈ėp−1〉 〉〉
→SD 〈〈 〈ė0〉 , . . . , 〈ė′i〉 , . . . , 〈ėp−1〉 〉〉

in the distributed evaluation (unitary cost for one pro-
cessor).

But reduction E ė →BSλ E e′ becomes in the dis-
tributed evaluation:

〈〈 E ė , . . . , E ė , . . . , E ė 〉〉
→SD 〈〈 E ė′ , . . . , E ė , . . . , E ė 〉〉 →SD . . .
→SD 〈〈 E ė′ , . . . , E ė′ , . . . , E ė′ 〉〉

(unitary cost for each processor).

One can observe that local terms are handled very
differently depending on the context. This is a problem
as soon as non-functional features are introduced [11].

Another problem is that until now the calculi pro-
pose the global conditional whereas the BSMLlib li-
brary proposes the primitive at which of course can
be used to define a global conditional but which also
allows to do other very useful things in practice.

All this makes us design a new calculus which avoid
these problems. We consider now three kinds of terms:

• local term each processor: ė ::= ẋ | ė ė | λẋ.ė

• replicated terms which look like local terms if we
think in terms of type à la ML but which are in
fact copied on each processor of the parallel ma-
chine. They correspond of the second case pre-
sented above: ē ::= x̄ | ē ē | λx̄.ē | (at E ē)

The last term allows to obtain a replicated term
from a global term by taking the value of this
global term at a given processor.

• global terms (note that the global conditional dis-
appears):

E ::=X | E E | E ē | λX.E | λx̄.E
| (replicate ē) | (apply E E)
| 〈 ė , . . . , ė , . . . , ė 〉 | (get E E)

Rules are given in figure 3 where e and variants de-
note either a local, replicated or global term and where:⎧⎪⎨
⎪⎩

U(ẋ) = x̄

U(ė1 ė2) = U(ė1)U(ė2)

U(λẋ.ė) = λx̄.U(ė)

⎧⎪⎨
⎪⎩

D(x̄) = ẋ

D(ē1 ē2) = D(ē1)D(ē2)

D(λx̄.ē) = λẋ.D(ē)

When the functions used in rules are undefined then
the rule is considered to be inapplicable. Rules are ap-
plicable in any context using the contexts and contexts
rules of figure 4 where Γl[ė] is the term obtained by
replacing []l by the local term ė in context Γl ; Γr[e]



is the term obtained by replacing []r (resp. []g) by the
replicated term (resp. global) e in context Γr ; Γg[e]
is the term obtained by replacing []l (resp. []g) by the
local term (resp. global) e in context Γg.

Theorem 1 (Confluence) Let be e, e1 and e2 terms
such as: e →∗

at e1 and e →∗
at e2. Then there exists a

term e3 such as: e1 →∗
at e3 and e2 →∗

at e3.

5. Examples

Direct broadcast presented in section 2 can be writ-
ten as the following BSλat term:

bcast ≡ λr̄.λV.(get V (replicate r̄))

We assume that :

• the set N is the set of the p first Church naturals
(p > 1)

• | · | maps a Church natural to its corresponding
natural

• 1̄ is the replicated form of Church natural 1 :
U(λḟ .λẋ.(ḟ ẋ))

• ėi are closed terms

A possible reduction is given in figure 5.
With the new primitive at it is also possible to write:

bcast′ ≡ λr̄.λV.(replicate (at V r̄))
The reduction is then:

(bcast′ 1̄ 〈 ė0 , . . . , ėp−1 〉) (9)−→
(10)−→ (replicate (at 〈 ė0 , . . . , ėp−1 〉 (λf̄ x̄.(f̄ x̄))))

as |D(λf̄ x̄.(f̄ x̄))| = 1 we obtain,
(11)−→ (replicate ē1) where ē1 = U(ė1)
(12)−→ 〈 ė1 , . . . , ė1 , . . . , ė1 〉
As for the BSλp-calculus, the mkpar is not a prim-

itive of the BSλat-calculus but it can be defined as a
function :

this ≡ 〈 |0|−1 , . . . , |i|−1 , . . . , |p − 1|−1 〉
mkpar ≡ λf̄ .(apply (replicate f̄) this)

This suggests that BSML could con-
tain replicate and this as primitives in-
stead of mkpar with mkpar implemented as:
let mkpar f = apply (replicate f) this.

In this case replicate is particularly efficient since
it is implemented as identity. this would also be more
efficient but it is less interesting because it is not used
very often in BSML programs. The next release of
BSML will include this two primitives.

6. Related Work

BSλ-calculi adapt the notion of data fields [17] to
direct mode BSP: parallel data structures are “flat”
and correspond directly to processors. This difference
could seem unimportant but it is not: the evaluation of
BSML expressions does not need any flattening and the
programmer has a total control over communications
and synchronizations.

The first work on a formal semantics for BSP is [15]
and there are a lot of other papers since then In all
cases a set of algebraic rules for imperative sequential
languages is extended with new constructs and rules for
parallelism, like parallel composition and communica-
tions through shared variables. The solved problems
are for example how to handle the different number of
synchronization barriers or determinism problems.

More recently, BSPA [21] is a process algebra with
which one can describe BSP programs, with a notion of
enumerated parallel vector and global synchronization.
It also preserves the point-to-point communications of
CCS. This allows in particular to describe the coordi-
nation of several BSP machines. A BSP cost model is
compatible with strong bissimulation.

7. Conclusions and Future Work

We have design a calculus of BSP functional pro-
grams with a projection primitive. The formalism has
the same advantages as our previous work BSλ [20]
and BSλp [18] but it is closer to the practical language,
Bulk Synchronous Parallel ML, and the parallel inter-
pretation is more direct by the introduction of a new
class of terms called replicated terms.

The last formal step will be a distributed abstract
machine that will be correct w.r.t this calculus (us-
ing an intermediate distributed evaluation). We will
then obtain a complete formal basis for the design
of a complete programming environment containing:
a polymorphic strongly typed parallel functional lan-
guage (BSML), tools for performance prediction, tools
to help to prove programs correction and tools to
derive programs, the derivation being driven by the
costs. This is the program of the Propac project
(http://wwwpropac.free.fr).
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Γl ::= []l | λẋ.Γl | Γl ė | ė Γl

Γr ::= []r | λx̄.Γr | Γr ē | ē Γr | (at Γg ē) | (at E Γr)
Γg ::= []g | λx.Γg | Γg e | E Γl | E Γg | (get Γg E) | (get E Γg) | (apply Γg E) | (apply E Γg)

| 〈 Γl , . . . , ė , . . . , ė 〉 | . . . | 〈 ė , . . . , Γl , . . . , ė 〉 | . . . | 〈 ė , . . . , ė , . . . , Γl 〉

ė →at ė′

Γl[ė] →at Γl[ė′]
e →at e′

Γr[e] →at Γr[e′]
e →at e′

Γg[e] →at Γg[e′]
(15)

Figure 4. Contexts and context rules

(bcast 1̄ 〈 ė0 , . . . , ėp−1 〉) (9)−→(10)−→ (get 〈 ė0 , . . . , ėp−1 〉 (replicate (λf̄ .λx̄.(f̄ x̄))))
(12)−→ (get 〈 ė0 , . . . , ėp−1 〉 〈 λḟ .λẋ.(ḟ ẋ) , . . . , λḟ .λẋ.(ḟ ẋ) , . . . , λḟ .λẋ.(ḟ ẋ) 〉) as |λḟ .λẋ.(ḟ ẋ)| = 1
(14)−→ 〈 ė1 , . . . , ė1 , . . . , ė1 〉

Figure 5. Example: bcast
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ming. In École de Printemps sur le Data-Parallélisme,
Springer, 1996.

[18] F. Loulergue. BSλp: Functional BSP Programs on
Enumerated Vectors. In J. Kazuki, editor, Interna-
tional Symposium on High Performance Computing,
LNCS 1940, pages 355–363, Springer, 2000.

[19] F. Loulergue. Distributed Evaluation of Functional
BSP Programs. Parallel Processing Letters, (4):423–
437, 2001.

[20] F. Loulergue, G. Hains, and C. Foisy. A Calculus of
Functional BSP Programs. Science of Computer Pro-
gramming, 37(1-3):253–277, 2000.

[21] A. Merlin and G. Hains. A generic cost model for con-
current and data-parallel meta-computing. In Draft
proceedings of AVOCS’04, 2004.

[22] J. Sipelsten and G. Blelloch. Collection-oriented lan-
guages. In Proceedings IEEE, volume 79, pages 504–
23, 1991.

[23] D. B. Skillicorn, M. Danelutto, S. Pelagatti, and
A. Zavanella. Optimising data-parallel programs us-
ing the BSP cost model. In Europar’98, LNCS 1470,
pages 698–715, Springer, 1998.

[24] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl.
Questions and Answers about BSP. Scientific Pro-
gramming, 6(3):249–274, 1997.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


