
Comparison of MPI Benchmark Programs on an SGI Altix ccNUMA Shared

Memory Machine

Nor Asilah Wati Abdul Hamid, Paul Coddington and Francis Vaughan

School of Computer Science, University of Adelaide
Adelaide, SA 5005, Australia

{asilah,paulc,francis}@cs.adelaide.edu.au

Abstract

 The results produced by five different MPI bench-
mark programs on an SGI Altix 3700 are analyzed and
compared. There are significant differences in the results
for some MPI operations. We investigate the reasons for
these discrepancies, which are due to differences in the
measurement techniques, implementation details and
default configurations of the different benchmarks. The
variation in results on the Altix are generally much
greater than on a distributed memory machine, due pri-
marily to the ccNUMA architecture and the importance
of cache effects, as well as some implementation details
of the SGI MPI libraries.

1. Introduction

Several benchmark programs have been developed to
measure the performance of MPI on parallel computers.
The programs were primarily designed for, and have
mostly been used on, distributed memory machines.
However it is interesting to measure MPI performance
on shared memory machines such as the SGI Altix,
which has become a popular system for high-perform-
ance computing. The hierarchical non-uniform memory
architecture (NUMA) that is typical of large shared
memory machines means that analysis of the perform-
ance of shared memory machines is likely to be more
complex than distributed memory machines, which are
typically clusters with a fairly uniform communications
architecture.

In some recent work, we measured the MPI per-
formance of the SGI Altix 3700 using MPIBench [6], a
recently-developed MPI benchmark program. In order to
check the results, and in particular to investigate anoma-
lies in some results, we did similar measurements using
other MPI benchmarks, which are reported here. We
found that for some MPI routines, the results for differ-
ent MPI benchmark programs were significantly differ-

ent, and showed a greater variation than might have been
expected, given that our experience with similar com-
parisons on distributed memory machines showed much
smaller variation in the results from different benchmark
programs. In this paper we compare the results of differ-
ent MPI benchmarks on the SGI Altix, and investigate
the reasons for these variations, which are due to differ-
ences in the measurement techniques, implementation
details and default configurations of the different
benchmarks. Many of these differences concern cache
effects and communication patterns, which are much
more important on shared memory machines with a
cache-coherent NUMA architecture. However some of
the effects appear to be artifacts of the implementation
details of the SGI MPI libraries.

2. MPI Benchmark Software

There are several different MPI benchmark programs
that are in common use. They typically measure the av-
erage times to complete a selection of MPI routines for
different data sizes on a specified number of CPU using
the following basic approach:

loop over different MPI routines
 loop over different message sizes

 get start time
 loop over number of repetitions

if this is a collective communication routine, do
a barrier synchronization call the MPI routine

 end loop over repetitions
 get finish time

average time = (finish time - start time) /
 number of repetitions

 end loop over message sizes
end loop over MPI routines

Most benchmarks use the standard MPI timer
MPI_Wtime, and get accurate results by making lots of
repetitions of the measurements in order to compute the
average value. Most benchmarks have a fixed number of
message sizes (at least by default), but some also provide

1-4244-0054-6/06/$20.00 ©2006 IEEE

adaptive message length refinement in order to focus on
message sizes where the communication time is chang-
ing rapidly. Some benchmarks also provide error control
mechanisms to handle potentially large variations in
communication times that may be caused by external in-
fluences, such as other programs that are using the
communications network.

Most benchmark programs measure the time for col-
lective communications on the root process. However,
since the root process finishes first for many collective
operations, this can bias the results due to “pipelining”
effects where the root process finishes earlier and can
start the next repetition of the operation before other
processes have completed the previous operation. This is
usually avoided by adding a barrier synchronization after
each collective communication call.

An important point that can significantly affect the
results is whether the message to be sent is in cache
memory. Most benchmarks provide an option for speci-
fying whether or not the data to be sent is in cache. The
default setting for most benchmarks is that the data is in
cache, and they do some preliminary repetitions of the
MPI routine, which are not measured, in order to warm
up the cache.

The following subsections summarize the important
features of the main MPI benchmark programs, and
highlight the areas where they differ from the basic ap-
proach described here.

2.1 Mpptest

The fundamental design philosophy of Mpptest [1,
11] is that the results of performance benchmarks should
be reproducible. To reduce biases due to external
influences, Mpptest spreads the test for each message
length over the full time of the benchmark run, and
measures the minimum average time over a number of
repetitions in order to reduce variations. The structure of
the measurement process for each MPI routine is:

loop over number of repetitions
 loop over different message sizes
 get start time
 loop over a small number of iterations
 call the MPI routine

end loop over iterations
 get finish time

 average time = (finish time - start time) /
 number of iterations

 if this is the fastest average time yet, accept it
 end loop over message sizes

end loop over repetitions

Mpptest provides a basic selection of MPI
communication measurements: MPI_Send, MPI_Bcast
and MPI_Scatter. It allows some options in the

measurements for some of these operations, such as
overlapping communication and computation. It prov-
ides adaptive message length refinement in order to
focus on message sizes where the communication time is
changing rapidly.

2.2 MPBench

MPBench [3, 12] follows the basic MPI benchmark
approach, except that it uses the Unix timer
gettimeofday(). MPBench measures the performance of
MPI_Send, MPI_Bcast, MPI_Reduce, MPI_Allreduce,
and MPI_Alltoall. It also measures bidirectional
bandwidth using non-blocking sends (MPI_Isend) in
both directions between two CPUs.

2.3 Pallas MPI Benchmark (PMB)

PMB [5] is a thorough, well-documented, user-
friendly and commonly-used benchmark program. PMB
measures a selection of common MPI routines: MPI_
Send, MPI_Sendrecv, MPI_Bcast, MPI_Allgather,
MPI_Allgatherv, MPI_Alltoall, MPI_Reduce, MPI_
Reduce_Scatter, MPI_Allreduce and MPI_Barrier. It
provides a number of different options for measuring
these routines, including multiple communicator groups
running the operations concurrently, and measuring
bidirectional point-to-point communication. For MPI_
Bcast and MPI_Reduce, instead of using barrier sync-
hronization to avoid biases due to pipelining effects,
PMB changes the root node for each repetition.

2.4 SKaMPI

SKaMPI [4, 10] probably provides the most function-
nality of all the MPI benchmarks, with a large number of
user definable parameters and MPI routines that can be
measured. SKaMPI has divided the measurements into
five categories: Point-to-Point, Master-Worker, Barrier
Measured Collective, Synchronous Measured Collective
and Simple pattern. The Point-to-Point includes all types
of MPI Point-to-Point communication. The purpose of
the Master Worker pattern is to test the network
throughput and its handling of simultaneous
communication, using MPI routines such as MPI_Wait-
some, MPI_Waitany and MPI_Any_Source. The Barrier
Measured Collective pattern is an older version that uses
the standard approach of a barrier synchronization after
each collective communication. The new version is the
Synchronous Measured Collective pattern, which uses a
globally synchronized clock to specify the time that each
CPU should call the collective routine, and uses the time
taken by the slowest process as the time for each
repetition. This is expected to give more accurate results
for collective communications, however it takes about

twice as long to run [8]. Both the new and old versions
can measure essentially all the MPI collective routines.
Finally, the Simple pattern covers MPI routines that
involve only one process and without any communica-
tion, such as MPI_Wtime and MPI_Comm_rank.

SKaMPI has more sophisticated error controls than
the other MPI benchmarks. SKaMPI handles problems
cause by external delays such as operating system
interrupts by providing the option to ignore the 25%
lowest and highest results to get the average. It also
allows the user to specify a maximum statistical error
(the default is 0.03%), and the measurements are
repeated until the statistical error drops below this value,
or the number of repetitions reaches a specified
maximum value. SKaMPI also allows adaptive
refinement of message sizes.

Unlike the other MPI benchmarks, by default
SKaMPI ensures that the messages are not in cache.
SKaMPI provides a detailed configuration file to change
this default as well as many options, and to enable the
user to choose which MPI routines to measure. Results
are presented in a detailed report file.

2.5 MPIBench

MPIBench [2, 13] is the most recently developed
MPI benchmark. The main feature of MPIBench is that it
uses a very accurate, globally synchronized clock that is
based on CPU cycle counters. This allows accurate
measurement of individual MPI communications.
MPIBench is therefore able to provide distributions
(histograms) of communication times, rather than just
average values, which can provide additional insight into
communications performance. Rather than using a sim-
ple two processor ping-pong for point-to-point
communications, MPIBench measures results for N
processors communicating concurrently, and can
therefore take into account effects of network contention.
For collective communications, it can measure the
different completion times for each process.

MPIBench measures the most common MPI
communications: MPI_Send, MPI_Isend, MPI_Recv,
MPI_Irecv, MPI_Sendrecv, MPI_Bcast, MPI_Barrier,
MPI_Scatter, MPI_Gather, MPI_Allgather, MPI_Alltoall
and MPI_Reduce. In addition, MPIBench defines each
and total keywords to identify message sizes, where each
CPUs sends a fixed amount of message data or the total
amount of message data is divided equally between all
available processes, respectively.

Originally MPIBench assumed the message data was
in cache, however a newer version has been developed
that provides the option of using data that is not in cache.
MPIBench can optionally handle outliers by discounting
measurements that are larger than a specified factor
above the average value.

3. Related Work

There has been surprisingly little work on comparing
the results produced by different MPI benchmark pro-
grams. The papers describing the different MPI bench-
mark programs [1,2,3,4,5] typically provide a discussion
of the differences in some of the measurement tech-
niques used by the different benchmarks, but give little
or no results comparing measurements from the different
benchmark programs on different machines.

Mierendorff et al. [7] compare the results of PMB,
SKaMPI, MPBench and Mpptest on an SGI Origin 2000,
but only for point-to-point communication and only for 4
CPUs. However they provide useful insights into com-
munication performance issues related to cache effects
on ccNUMA architectures. Some related work that we
have previously reported [6] was primarily concerned
with the results from MPIBench measurements on the
SGI Altix shared memory machine, and a comparison
with MPIBench measurements taken on a distributed
memory machine, an AlphaServer SC with Quadrics
network. That paper included a brief comparison of
MPIBench results with other MPI benchmarks for
MPI_Send and MPI_Bcast operations, in order to illus-
trate the effects of some of the MPIBench measurement
techniques. However the work presented here focuses on
the comparison between results from different MPI
benchmarks on the Altix, with a lot more benchmark
comparison results, including results for more MPI op-
erations, and a more detailed analysis of the differences
in the results between different benchmarks.

4. Benchmark Experiments on an SGI Altix

The SGI Altix 3000 series has a cache coherent non-
uniform memory architecture (ccNUMA) based on the
hierarchical composition of two basic building blocks, or
bricks: compute nodes (C-bricks) and routers (R-bricks).
The C-bricks contain two compute nodes, each with two
Itanium-2 CPUs connected to a custom network and
memory controller ASIC, known as the SHUB. The two
CPUs share a 6.4 GB/s bus to a SHUB. The two SHUBs
in each C-brick are linked by a further 6.4 GB/s link.
Each SHUB has one SGI NUMAlink channel to the
outside, with a bandwidth of 3.2 GB/s (1.6 GB/s each
direction) for NUMAlink3. These external links provide
the cache coherent interconnect between C-Bricks. A set
of routers (the R-Bricks) are used to expand the network
in a scalable way. Each R-Brick provides 8 connections
of 1.6 GB/s in each direction. The R-Bricks are
configured so that four ports connect to C-Bricks, and
the other four interconnect with other R-Bricks to form a
fat tree network. Figure 1 shows a 128 CPU Altix.

The benchmark results reported in this paper were
carried out on an SGI Altix 3700 managed by the South

Figure 1: SGI Altix 3000 communications
architecture for 128 CPUs.

Figure 2: PMB and Mpptest Send/Recv.

Figure 3: SKaMPI and Mpbench Send/Recv.

Australian Partnership for Advanced Computing
(SAPAC), with 160 1.3 GHz Itanium 2 CPUs, a total of
160 Gbytes of memory, and a NUMAlink3 network. At
the time of the benchmarks, it was running SGI Linux
ProPac3. The benchmark programs were compiled using
Intel compilers and the SGI MPI libraries.

On shared memory machines, the operating system
can switch processes between CPUs to try to improve
overall system utilization. However this can adversely
affect parallel programs, since after process migration,
data will no longer be available in local cache. The
performance of MPI programs on the Altix can be
improved significantly by binding each process to a par-
ticular CPU. For our benchmark measurements we set
the MPI_DSM_CPULIST environment variable, which
assigns MPI processes in order to a specified list of
CPUs. For each measurement we used a contiguous set
of CPUs, starting with number 32, in order to maintain
the hierarchical pattern of 32 CPU groups shown in
Figure 1, while avoiding the use or CPU 0, which is used
to run system processes, and so would affect the results.

By default, the SGI MPI implementation buffers
messages, but uses single copy (i.e. no buffering) for
large message sizes in most collective communication
routines and in MPI_Sendrecv, which significantly im-
proves performance [9]. The message size where the
communication changes to single copy is not specified
in the documentation but our measurements indicate
it is around 2 Kbytes. By default, single copy is not used
for MPI_Send, however it is possible to force the use of
single copy by setting the environment variable
MPI_BUFFER_MAX n, where n is the maximum mes-
sage size where buffering will be used, so messages lar-
ger than n will use single copy. The choice of buffering
or single copy can give a big difference in the
performance of MPI_Send for large message sizes.

5. Point-to-Point Communication

All MPI benchmark applications measure point-to-
point communication using MPI_Send/ MPI_Recv. The

main difference between the benchmark applications is
the communication pattern. Figures 2-4 illustrate the
communication patterns of the different benchmarks for
8 CPUs. Figure 2 shows the default point-to-point
communications pattern for PMB and Mpptest, which
involve CPUs 0 and 1 only. In order to measure
communications times between CPUs that are not on the
same node, the locations of the CPUs would have to be
specified when calling mpirun. Mpptest also provides an
option for specifying the distance between CPUs. PMB
also provides an option for having multiple sets of CPUs
communicating at once, however these are neighbouring
pairs of CPUs (0-1, 2-3, etc) so this does not allow an
accurate measure of contention in a hierarchical network.

Figure 3 is for SKaMPI and MPBench, which use the
first and last CPUs. SKaMPI actually does short tests on
all CPUs to find which has the slowest communication
with CPU 0, and then does its timings using that CPU.
However for the communication network on the Altix,
this would be equivalent to choosing the last CPU,
assuming processes are allocated to a contiguous set of
CPUs, as was done in our experiments.

MPIBench measures not just the time for a ping-pong
communication between two CPUs, but also measures
the effects of contention when all CPUs simultaneously
take part in point-to-point communication. The default
communication pattern used by MPIBench is shown in
Figure 4. MPIBench sets up pairs of communicating
CPUs, with CPU p communicating with CPU (p + n/2)
mod n when n CPUs are used. Half of the CPUs send
while the other half receive, and then vice versa. The
send/receive pairs are chosen to ensure that for a cluster
of SMPs, or a hierarchical network (such as on the
Altix), the performance of the full network hierarchy can
be measured, not just local communications within an
SMP node (or a brick on the Altix). MPIBench also
allows the user to specify another communication pattern
by specifying a list of communication partners.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 4: MPIBench Send/Recv.

5.1 Send/Receive

The difference in communication patterns between
the different benchmarks leads to different results, as
shown in Figure 5 for the default settings of the SGI MPI
implementation for the Altix (i.e. buffered copy for
MPI_Send). MPIBench has the highest results due to the
contention effects from all 8 CPUs, while MPBench and
SKaMPI obtain the second highest results since they are
measuring the communication times between two C-
Bricks. The lowest results are obtained by Mpptest and
PMB, since they just measure intranode communication
within a C-Brick. By carefully selecting the CPUs that
are used (e.g. P0 and P7), it is possible to force each of
the benchmarks to measure the same thing, i.e. point-to-
point communication between two CPUs across any
level of the communication hierarchy, and then the
results for different benchmarks agree fairly closely,
within a few percent. This is similar to benchmarking
clusters of SMP nodes, where care must be taken
(particularly for PMB and Mpptest) in choosing the
CPUs to ensure measurement of internode rather than
intranode communication.

On the SGI Altix it is possible to significantly im-
prove the benchmark results for MPI_Send by enabling
the option of single copy (i.e. non-buffered) sends in the
SGI MPI implementation, as shown in Figures 5 and 6.
As shown in Figure 6, it is best to set the
MPI_BUFFER_MAX value to be very small, although
there is little or no effect below about 256 bytes. Note
that the improvement from using single copy can be
large, up to a factor of 10, however it is much less for
very large message sizes.

In measuring the results using single copy
MPI_Send, we were surprised to find that while most of
the benchmarks gave the expected improvement in per-
formance, the results for SKaMPI and MPIBench were
the same as for the default MPI setting that uses buffered
copy. After much experimentation and comparison of the
benchmark codes, we concluded that this problem is
because both SKaMPI and MPIBench use the same array
to hold send and receive message data. When we
changed the MPIBench code to declare different arrays
for send and receive data, the results showed the
expected improvement, as shown in Figure 5. This
appears to be an artefact of the SGI MPI implementation.
We did not change the SKaMPI program, so we do not
present SKaMPI results for the single copy option.

5.2 Combined Send and Receive

 Only MPIBench, PMB and SKaMPI provide meas-
urements for MPI_Sendrecv. For SKaMPI and PMB,
each process sends to the right neighbour and receives
from the left neighbour in a ring of N CPUs. MPIBench

has a different approach, using the same communication
pattern as it does for MPI_Send/ MPI_Recv (see Fig. 4),
however each CPUs does a combined MPI_Sendrecv to
its communication partner, rather than alternating sends
and receives. Most communication networks are capable
of providing the same bandwidth if messages are sent
simultaneously in both directions on the same
communications link. MPI_Sendrecv provides a good
way of testing that the MPI implementation can indeed
provide this bidirectional bandwidth. The MPIBench
approach means that if this is the case, then the results
for MPI_Sendrecv and MPI_Send/MPI_Recv should be
similar. The results for MPI_Sendrecv in Figure 7 show
that in general this is the case for the SGI Altix, e.g. the
result for 256 Kbyte message size for 8 CPUs is similar
to the result for 8 CPUs in MPI_Send/ MPI_Recv with
Single Copy option (see Figure 5).

1

10

100

1000

10000

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

36
0

Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

MPIBench

PMB

Skampi

Mpptest

MPBench

MPIBench-SC

MPBench-SC

Mpptest-SC

PMB-SC

1

10

64 256 1024 4096 16384 65536 262144 1E+06 4E+06

Size of Data (Bytes)

2p

4p

8p

16p

32p

Figure 5: Point-to-Point (send/receive)
using 8 CPUs for default settings and
Single Copy (SC).

Figure 6: Ratio of MPI_Send times using
buffered copy and single copy for PMB.

Figure 9: MPI_Bcast on 8 CPUs.

1

10

100

16 64 256 1024 4096 16384 65536 262144

Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s

e
c

o
n

d
s
)

MPIBench

PMB

SKaMPI

However MPIBench results show a hump around 1
Kbyte, since by default the SGI MPI implementation
uses single copy for MPI_Sendrecv, but only for mes-
sage sizes of 2 Kbytes or more. The approach used by
SKaMPI and PMB cannot be used to test bidirectional
bandwidth, however both these benchmarks provide
other options for doing this type of measurement. Re-
sults for SKaMPI and PMB are a little higher than for
MPIBench and also higher than the results for single
copy MPI_Send. We are not sure why this is the case.

6. Barrier

Figure 8 shows the MPI_Barrier results for SKaMPI,
MPIBench and PMB. The result for SKaMPI is a bit
higher than MPIBench and PMB. This is probably due to
the global clock synchronization that is set by default for
their measurement. The developers of SKaMPI argue
that this is a more accurate result since it avoids pipelin-
ing effects where some processes (e.g. the root) finish
the barrier earlier and can start the next barrier operation
before other processes have exited the barrier [8].

0

2

4

6

8

10

2 4 8 16 32 64 128

No. of Processors

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
) MPIbench

Skampi

PMB

7. Broadcast

All benchmark applications measure MPI_Bcast.
There are some differences in the measurement tech-
nique between the benchmark applications. The main
difference is that by default SKaMPI makes the assump-
tion that data should not held in cache memory, so it en-

sures data to be broadcast is not in cache before each
measurement repetition. MPIBench, on the other hand,
always sends the same data for each repetition, and does
some preliminary “warm-up” repetitions (that are not
measured) to ensure that the data is in cache before
measurements are taken. The other benchmarks allow
the user to choose whether or not data to be broadcast is
in cache, although the default is that data is in cache
memory. In a real application, data to be broadcast may
or may not be in the cache, so there is really no “right”
choice for whether or not an MPI benchmark should
place the data in the cache.

Another difference is how the broadcasts are syn-
chronized. Most MPI benchmarks measure collective
communication time on the root node. However for
some collective operations, such as broadcast, the root
node is the first to finish, and this may lead to biased re-
sults due to pipelining effects. Most benchmarks get
around this problem by inserting a barrier operation
(MPI_Barrier) after each repetition of the collective
communication operation. This provides an additional
overhead which will affect the average time, although
only for very small message sizes, since broadcast of a
large message takes much longer than a barrier opera-
tion. Mpptest and PMB adopt a different approach to
avoid this problem – they assign a different root node for

each repetition.
Figure 9 shows the average times reported by the dif-

ferent MPI benchmarks to complete an MPI_Bcast op-
eration. Clearly there are significant differences in the
measured results due to the differences in measurement
technique. Mpptest and PMB give the highest results,
presumably due to the overhead of changing the root
node at each iteration. We are not sure why Mpptest is so
much higher than PMB. The only difference between the
two approaches seems to be that PMB uses different ar-
rays for the broadcast data on the root node and the other
CPUs. SKaMPI has the next highest result, since it uses
data that is not in the cache, while MPIBench and
MPBench obtained the same results with the same
measurement techniques.

0

50

100

150

200

250

300

16 64 256 1024 4096 16384 65536

Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s

e
c
o

n
d

s
)

MPIBench

PMB

Skampi

Mpptest

MPBench

Figure 7: MPI_Sendrecv on 8 CPUs.

Figure 8: MPI_Barrier for 2 to 128 CPUs.

Figure 11: Distributions from MPIBench for
MPI_Bcast at 4MBytes on 8 CPUs.

Figure 10: Node time produced by SKaMPI for
MPI_Bcast at 4MBytes on 8 CPUs.

On a distributed memory cluster the effects of
changing the root and having messages in cache has little
affect on the results, however because of the cache co-
herency protocol on the shared memory Altix, moving
the root to a different CPU has a significant overhead,
which is reflected in the results. To check that these dif-
ferences in the benchmark measurement techniques were
causing the difference in broadcast times, we enabled the
option to warm up the cache in SKaMPI, and for
Mpptest and PMB we commented out the code to move
the root process at each repetition, and then reran the
benchmarks. The results after modifying the programs
were very similar, with all results within a few percent.

By default, both SKaMPI and MPIBench use a bar-
rier operation to synchronize the start of all collective
communications. However they also have the option of
avoiding the overhead of the barrier operation by using a
synchronized start, where each CPUs starts each broad-
cast at a prescribed time, and the time reported for each
repetition is the time taken by the slowest process.
Clearly this requires a globally synchronized clock,
which is provided by MPIBench and SKaMPI. Since
they both use a globally synchronized clock, they are
able to generate average times for each process in a col-
lective communication, which can be significantly dif-
ferent. Figure 10 shows a figure from the SKaMPI report
for an MPI_Bcast operation on 8 CPUs (using cache
warmup to enable a direct comparison to MPIBench re-
sults), which shows the average completion time for
each CPUs. The SKaMPI report also states that the aver-
age time for the MPI_Bcast is about 9500 µs, which is
very different to the largest times for each node shown in
Figure 10. We are not sure why this is the case. Figure 11
show the distribution results for MPI_Bcast on 8 CPUs
for the same data size. This figure shows the combined
results for all 8 CPUs, although recently MPIBench has
been modified to allow distributions to be generated in-
dividually for each CPUs, so we are able to check that
the overall distribution shown in Figure 11 shows peaks
that are consistent with a binary tree broadcast algo-
rithm, with the first peak corresponding to completion
times for CPUs 0 and 1, the second peak is for CPUs 2
and 3 and final peak is for 4-7.

8. Other Collective Communications

Only MPIBench and SKaMPI provide measurements
for MPI_Scatter and MPI_Gather, and both benchmark
applications apply the same measurement technique.
Scatter and gather are typically used to distribute data at
the root process (e.g. a large array) evenly among the
CPUs for parallel computation, and then recombine the
data from each CPUs back into a single large data set on
the root process. Figure 12 shows the comparison
between MPIBench and SKaMPI for MPI_Scatter on 32
CPUs. The results show that MPIBench and SKaMPI
report very similar times. The results also show an
unexpected hump at a data sizes between 128 bytes and
2 KBytes per process, so that the time for scattering
larger data sizes than this is actually lower. This is be-
cause by default SGI MPI uses buffered communications
for message sizes less than 2 KBytes. Note that overall,
the time for an MPI_Scatter operation grows remarkably
slowly with data size.

The performance of MPI_Gather is mainly deter-
mined by how much data is received by the root process,
which is the bottleneck in this operation. Hence the time
taken is expected to be roughly proportional to the total
data size for a fixed number of CPUs, with the time
being slower for larger numbers of CPUs due to se-
rialization and contention effects. Figure 13 shows com-
parison results between MPIBench and SKaMPI for 32
CPUs. As with MPI_Scatter, MPIBench and SKaMPI
agree closely with each other.

The final collective communication operation that we
measured is MPI_Alltoall, where each process sends its
data to every other process. MPI_Alltoall is measured by
MPIBench, PMB and SKaMPI. Figure 14 shows the re-
sults for 32 CPUs which are similar to MPI_Scatter, but
with a sharper increase for larger data sizes probably
indicating effects of contention. The results from the dif-
ferent benchmarks for different data sizes and numbers
of CPUs mostly agree within about 10%.

n o d e t im e s f o r m e s s a g e le n g t h 4 1 9 4 2 8 8

8 2 5 0

8 3 0 0

8 3 5 0

8 4 0 0

8 4 5 0

8 5 0 0

1 2 3 4 5 6 7 8

n o d e n u m b e r (s o r t e d)

ti
m

e
 (

m
ic

ro
s
e
c
.)

0

150

3 00

4 50

6 00

7 50

9 00

8 .6 8 .8 9 9 .2 9 .4 9 .6 9 .8

T im e (m i lis e c e c o n d)

O
c
c
u

ra
n

c
e

s

10

100

1000

10 100 1000 10000 100000
Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s

e
c

o
n

d
s

)

MPIBench

Skampi

10

100

1000

10000

10 100 1000 10000 100000

Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s

e
c

o
n

d
s

)

MPIBench

Skampi

100

1000

10000

10 100 1000 10000 100000

Size of Data (Bytes)

T
im

e
 (

M
ic

ro
s

e
c

o
n

d
s
)

MPIBench

PMB

Skampi

Another collective communication that is measured
by PMB, SKaMPI and MPBench is MPI_Reduce.
MPI_Reduce does a reduction operation such as sum-
mation of data distributed over processes and brings the
results to the root process. SKaMPI and MPBench use
MPI_SUM as the parameter to MPI_Reduce, and there-
fore do a global sum. PMB uses a null operation and
therefore only measures the communication involved in
the reduction operation, and hence gives very different
results to the other two benchmarks.

9. Summary

We have found that different MPI benchmarks can
give significantly different results for certain MPI rou-
tines on the SGI Altix. This is primarily due to the Altix
having a hierarchical ccNUMA architecture, which can
enhance the variations due to different measurement
techniques employed by the different benchmarks com-

pared to a typical distributed memory architecture. For
point-to-point communications, the variations are due to
the different communications patterns used by the differ-
ent benchmarks, and differences in how averages are
computed, There are also significant effects due to im-
plementation details of SGI MPI on the Altix, which af-
fects whether single copy of buffered copy is used,
which has a major impact on communications speed.
There are also significant differences in measurements of
some collective communications routines, particularly
broadcast, due to differences in use of cache and in syn-
chronizing the calls to the routines on each CPUs.

MPI benchmarks were designed primarily for use on
distributed memory machines, and our results show that
some of the design decisions can significantly affect the
results for ccNUMA shared memory machines. Users of
MPI benchmarks on such machines should therefore be
careful in the interpreting the benchmark results, and de-
velopers of MPI benchmarks might consider making
some minor modifications to their benchmark programs
to provide more accurate results for ccNUMA machines.

References

[1] W. Gropp, E. Lusk. Reproducible Measurements of MPI
Performance Characteristics. In Proc. of the PVM/MPI
Users’ Group Meeting (LNCS 1697), pages 11-18, 1999.

[2] D.A. Grove and P.D. Coddington. Precise MPI
Performance Measurement Using MPIBench, in Proc. of
HPC Asia, September 2001.

[3] P.J. Mucci, K. London, and J. Thurman. The MPBench

Report. Technical Report UT-CS-98-394, University of
Tenessee, Dept of Computer Science, November 1988.

[4] R. Reussner, P. Sanders, L. Prechelt, and M. Muller.
SKaMPI: A Detailed, Accurate MPI Benchmark. Proc. of
5th European PVM/MPI Users’ Group Meeting, 1998.

[5] Pallas MPI Benchmark (PMB) Homepage.
http://www.pallas.de/pages/pmbd.htm

[6] N.A.W Abdul Hamid, P.D. Coddington and F. A. Vaughan
Performance Analysis of MPI Communications on the SGI
Altix 3700, Proc. Australian Partnership for Advanced
Computing Conference (APAC'05), Gold Coast,
Australia, September 2005.

[7] H. Mierendorff, K. Cassirer and H. Schwamborn. Working
with MPI Benchmarking Suites on ccNUMA
Architectures, Proc. of the 7th European PVM/MPI
Users' Group Meeting, 2000.

[8] T. Worsch, R. Reussner and W. Augustin. On

Benchmarking Collective MPI Operations, Proc. of 9th
European PVM/MPI Users' Group Meeting, 2002.

[9] SGI Altix 3000.
http://www.sgi.com/products/servers/altix/.

[10] SKaMPI. http://liinwww.ira.uka.de/~skampi/.
[11] Mpptest. http://www-unix.mcs.anl.gov/mpi/mpptest/.
[12] MPBench.

http://icl.cs.utk.edu/projects/llcbench/mpbench.html
[13] MPIBench

http://www.dhpc.adelaide.edu.au/projects/MPIBench

Figure 13: MPI_Gather on 32 CPUs.

Figure 12 : MPI_Scatter on 32 CPUs.

Figure 14: MPI_Alltoall on 32 CPUs.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

