
Comparison of MPI Benchmark Programs on an SGI Altix ccNUMA Shared 

Memory Machine                                             

Nor Asilah Wati Abdul Hamid, Paul Coddington and Francis Vaughan 

School of Computer Science, University of Adelaide 
Adelaide, SA 5005, Australia 

{asilah,paulc,francis}@cs.adelaide.edu.au 

Abstract 

 The results produced by five different MPI bench-
mark programs on an SGI Altix 3700 are analyzed and 
compared. There are significant differences in the results 
for some MPI operations. We investigate the reasons for 
these discrepancies, which are due to differences in the 
measurement techniques, implementation details and 
default configurations of the different benchmarks. The 
variation in results on the Altix are generally much 
greater than on a distributed memory machine, due pri-
marily to the ccNUMA architecture and the importance 
of cache effects, as well as some implementation details 
of the SGI MPI libraries.  

1.  Introduction

Several benchmark programs have been developed to 
measure the performance of MPI on parallel computers. 
The programs were primarily designed for, and have 
mostly been used on, distributed memory machines. 
However it is interesting to measure MPI performance 
on shared memory machines such as the SGI Altix, 
which has become a popular system for high-perform-
ance computing. The hierarchical non-uniform memory 
architecture (NUMA) that is typical of large shared 
memory machines means that analysis of the perform-
ance of shared memory machines is likely to be more 
complex than distributed memory machines, which are 
typically clusters with a fairly uniform communications 
architecture. 

In some recent work, we measured the MPI per-
formance of the SGI Altix 3700 using MPIBench [6], a 
recently-developed MPI benchmark program. In order to 
check the results, and in particular to investigate anoma-
lies in some results, we did similar measurements using 
other MPI benchmarks, which are reported here. We 
found that for some MPI routines, the results for differ-
ent MPI benchmark programs were significantly differ-

ent, and showed a greater variation than might have been 
expected, given that our experience with similar com-
parisons on distributed memory machines showed much 
smaller variation in the results from different benchmark 
programs. In this paper we compare the results of differ-
ent MPI benchmarks on the SGI Altix, and investigate 
the reasons for these variations, which are due to differ-
ences in the measurement techniques, implementation 
details and default configurations of the different 
benchmarks. Many of these differences concern cache 
effects and communication patterns, which are much 
more important on shared memory machines with a 
cache-coherent NUMA architecture. However some of 
the effects appear to be artifacts of the implementation 
details of the SGI MPI libraries. 

2.  MPI Benchmark Software 

There are several different MPI benchmark programs 
that are in common use. They typically measure the av-
erage times to complete a selection of MPI routines for 
different data sizes on a specified number of CPU using 
the following basic approach:  

loop over different MPI routines 
 loop over different message sizes 

                     get start time 
        loop over number of repetitions 

if this is a collective communication routine, do 
a barrier synchronization call the MPI routine 

    end loop over repetitions 
                      get finish time 

average time = (finish time - start time) /  
                          number of repetitions 

       end loop over message sizes 
end loop over MPI routines

Most benchmarks use the standard MPI timer 
MPI_Wtime, and get accurate results by making lots of 
repetitions of the measurements in order to compute the 
average value. Most benchmarks have a fixed number of 
message sizes (at least by default), but some also provide 
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adaptive message length refinement in order to focus on 
message sizes where the communication time is chang-
ing rapidly. Some benchmarks also provide error control 
mechanisms to handle potentially large variations in 
communication times that may be caused by external in-
fluences, such as other programs that are using the 
communications network.  

Most benchmark programs measure the time for col-
lective communications on the root process. However, 
since the root process finishes first for many collective 
operations, this can bias the results due to “pipelining” 
effects where the root process finishes earlier and can 
start the next repetition of the operation before other 
processes have completed the previous operation. This is 
usually avoided by adding a barrier synchronization after 
each collective communication call. 

An important point that can significantly affect the 
results is whether the message to be sent is in cache 
memory. Most benchmarks provide an option for speci-
fying whether or not the data to be sent is in cache. The 
default setting for most benchmarks is that the data is in 
cache, and they do some preliminary repetitions of the 
MPI routine, which are not measured, in order to warm 
up the cache. 

The following subsections summarize the important 
features of the main MPI benchmark programs, and 
highlight the areas where they differ from the basic ap-
proach described here. 

2.1 Mpptest 

The fundamental design philosophy of Mpptest [1, 
11] is that the results of performance benchmarks should 
be reproducible. To reduce biases due to external 
influences, Mpptest spreads the test for each message 
length over the full time of the benchmark run, and 
measures the minimum average time over a number of 
repetitions in order to reduce variations. The structure of 
the measurement process for each MPI routine is: 

loop over number of repetitions 
     loop over different message sizes 
          get start time 
          loop over a small number of iterations 
               call the MPI routine 

end loop over iterations 
                 get finish time 

   average time = (finish time - start time) /  
                      number of iterations 

     if this is the fastest average time yet, accept it 
          end loop over message sizes  

end loop over repetitions                

Mpptest provides a basic selection of MPI 
communication measurements: MPI_Send, MPI_Bcast 
and MPI_Scatter. It allows some options in the 

measurements for some of these operations, such as 
overlapping communication and computation. It prov-
ides adaptive message length refinement in order to 
focus on message sizes where the communication time is 
changing rapidly.  

2.2 MPBench 

MPBench [3, 12] follows the basic MPI benchmark 
approach, except that it uses the Unix timer 
gettimeofday(). MPBench measures the performance of 
MPI_Send, MPI_Bcast, MPI_Reduce, MPI_Allreduce, 
and MPI_Alltoall. It also measures bidirectional 
bandwidth using non-blocking sends (MPI_Isend) in 
both directions between two CPUs.  

2.3 Pallas MPI Benchmark (PMB) 

PMB [5] is a thorough, well-documented, user-
friendly and commonly-used benchmark program. PMB 
measures a selection of common MPI routines: MPI_ 
Send, MPI_Sendrecv, MPI_Bcast, MPI_Allgather, 
MPI_Allgatherv, MPI_Alltoall, MPI_Reduce, MPI_ 
Reduce_Scatter, MPI_Allreduce and MPI_Barrier. It 
provides a number of different options for measuring 
these routines, including multiple communicator groups 
running the operations concurrently, and measuring 
bidirectional point-to-point communication. For MPI_ 
Bcast and MPI_Reduce, instead of using barrier sync-
hronization to avoid biases due to pipelining effects, 
PMB changes the root node for each repetition. 

2.4 SKaMPI 

SKaMPI [4, 10] probably provides the most function-
nality of all the MPI benchmarks, with a large number of 
user definable parameters and MPI routines that can be 
measured. SKaMPI has divided the measurements into 
five categories: Point-to-Point, Master-Worker, Barrier 
Measured Collective, Synchronous Measured Collective 
and Simple pattern. The Point-to-Point includes all types 
of MPI Point-to-Point communication. The purpose of 
the Master Worker pattern is to test the network 
throughput and its handling of simultaneous 
communication, using MPI routines such as  MPI_Wait-
some, MPI_Waitany and MPI_Any_Source. The Barrier 
Measured Collective pattern is an older version that uses 
the standard approach of a barrier synchronization after 
each collective communication. The new version is the 
Synchronous Measured Collective pattern, which uses a 
globally synchronized clock to specify the time that each 
CPU should call the collective routine, and uses the time 
taken by the slowest process as the time for each 
repetition. This is expected to give more accurate results 
for collective communications, however it takes about 



twice as long to run [8]. Both the new and old versions 
can measure essentially all the MPI collective routines. 
Finally, the Simple pattern covers MPI routines that 
involve only one process and without any communica- 
tion, such as MPI_Wtime and MPI_Comm_rank.  

SKaMPI has more sophisticated error controls than 
the other MPI benchmarks. SKaMPI handles problems 
cause by external delays such as operating system 
interrupts by providing the option to ignore the 25% 
lowest and highest results to get the average. It also 
allows the user to specify a maximum statistical error 
(the default is 0.03%), and the measurements are 
repeated until the statistical error drops below this value, 
or the number of repetitions reaches a specified 
maximum value. SKaMPI also allows adaptive 
refinement of message sizes. 

Unlike the other MPI benchmarks, by default 
SKaMPI ensures that the messages are not in cache. 
SKaMPI provides a detailed configuration file to change 
this default as well as many options, and to enable the 
user to choose which MPI routines to measure. Results 
are presented in a detailed report file. 

2.5 MPIBench 

MPIBench [2, 13] is the most recently developed 
MPI benchmark. The main feature of MPIBench is that it 
uses a very accurate, globally synchronized clock that is 
based on CPU cycle counters. This allows accurate 
measurement of individual MPI communications. 
MPIBench is therefore able to provide distributions 
(histograms) of communication times, rather than just 
average values, which can provide additional insight into 
communications performance. Rather than using a sim-
ple two processor ping-pong for point-to-point 
communications, MPIBench measures results for N 
processors communicating concurrently, and can 
therefore take into account effects of network contention. 
For collective communications, it can measure the 
different completion times for each process.  

MPIBench measures the most common MPI 
communications: MPI_Send, MPI_Isend, MPI_Recv, 
MPI_Irecv, MPI_Sendrecv, MPI_Bcast, MPI_Barrier, 
MPI_Scatter, MPI_Gather, MPI_Allgather, MPI_Alltoall 
and MPI_Reduce. In addition, MPIBench defines each
and total keywords to identify message sizes, where each 
CPUs sends a fixed amount of message data or the total 
amount of message data is divided equally between all 
available processes, respectively.  

Originally MPIBench assumed the message data was 
in cache, however a newer version has been developed 
that provides the option of using data that is not in cache. 
MPIBench can optionally handle outliers by discounting 
measurements that are larger than a specified factor 
above the average value. 

3.  Related Work 

There has been surprisingly little work on comparing 
the results produced by different MPI benchmark pro-
grams. The papers describing the different MPI bench-
mark programs [1,2,3,4,5] typically provide a discussion 
of the differences in some of the measurement tech-
niques used by the different benchmarks, but give little 
or no results comparing measurements from the different 
benchmark programs on different machines. 

Mierendorff et al. [7] compare the results of PMB, 
SKaMPI, MPBench and Mpptest on an SGI Origin 2000, 
but only for point-to-point communication and only for 4 
CPUs. However they provide useful insights into com-
munication performance issues related to cache effects 
on ccNUMA architectures. Some related work that we 
have previously reported [6] was primarily concerned 
with the results from MPIBench measurements on the 
SGI Altix shared memory machine, and a comparison 
with MPIBench measurements taken on a distributed 
memory machine, an AlphaServer SC with Quadrics 
network. That paper included a brief comparison of 
MPIBench results with other MPI benchmarks for 
MPI_Send and MPI_Bcast operations, in order to illus-
trate the effects of some of the MPIBench measurement 
techniques. However the work presented here focuses on 
the comparison between results from different MPI 
benchmarks on the Altix, with a lot more benchmark 
comparison results, including results for more MPI op-
erations, and a more detailed analysis of the differences 
in the results between different benchmarks. 

4.  Benchmark Experiments on an SGI Altix 

The SGI Altix 3000 series has a cache coherent non-
uniform memory architecture (ccNUMA) based on the 
hierarchical composition of two basic building blocks, or 
bricks: compute nodes (C-bricks) and routers (R-bricks). 
The C-bricks contain two compute nodes, each with two 
Itanium-2 CPUs connected to a custom network and 
memory controller ASIC, known as the SHUB. The two 
CPUs share a 6.4 GB/s bus to a SHUB. The two SHUBs 
in each C-brick are linked by a further 6.4 GB/s link. 
Each SHUB has one SGI NUMAlink channel to the 
outside, with a bandwidth of 3.2 GB/s (1.6 GB/s each 
direction) for NUMAlink3. These external links provide 
the cache coherent interconnect between C-Bricks. A set 
of routers (the R-Bricks) are used to expand the network 
in a scalable way. Each R-Brick provides 8 connections 
of 1.6 GB/s in each direction. The R-Bricks are 
configured so that four ports connect to C-Bricks, and 
the other four interconnect with other R-Bricks to form a 
fat tree network. Figure 1 shows a 128 CPU Altix.  

The benchmark results reported in this paper were 
carried out on an SGI Altix 3700 managed by the South 



Figure 1: SGI Altix 3000 communications  
architecture for 128 CPUs. 

Figure 2: PMB and Mpptest Send/Recv.

Figure 3: SKaMPI and Mpbench Send/Recv.

Australian Partnership for Advanced Computing 
(SAPAC), with 160 1.3 GHz Itanium 2 CPUs, a total of 
160 Gbytes of memory, and a NUMAlink3 network. At 
the time of the benchmarks, it was running SGI Linux 
ProPac3. The benchmark programs were compiled using 
Intel compilers and the SGI MPI libraries. 

On shared memory machines, the operating system 
can switch processes between CPUs to try to improve 
overall system utilization. However this can adversely 
affect parallel programs, since after process migration, 
data will no longer be available in local cache. The 
performance of MPI programs on the Altix can be 
improved significantly by binding each process to a par-
ticular CPU. For our benchmark measurements we set 
the MPI_DSM_CPULIST environment variable, which 
assigns MPI processes in order to a specified list of 
CPUs. For each measurement we used a contiguous set 
of CPUs, starting with number 32, in order to maintain 
the hierarchical pattern of 32 CPU groups shown in 
Figure 1, while avoiding the use or CPU 0, which is used 
to run system processes, and so would affect the results. 

By default, the SGI MPI implementation buffers 
messages, but uses single copy (i.e. no buffering) for 
large message sizes in most collective communication 
routines and in MPI_Sendrecv, which significantly im-
proves performance [9]. The message size where the 
communication changes to single copy is not specified  
in  the  documentation  but  our  measurements indicate 
it is around 2 Kbytes. By default, single copy is not used 
for MPI_Send, however it is possible to force the use of 
single copy by setting the environment variable 
MPI_BUFFER_MAX n, where n is the maximum mes-
sage size where buffering will be used, so messages lar-
ger than n will use single copy. The choice of buffering 
or single copy can give a big difference in the 
performance of MPI_Send for large message sizes. 

5. Point-to-Point Communication  

All MPI benchmark applications measure point-to-
point communication using  MPI_Send/ MPI_Recv. The 

main difference between the benchmark applications is 
the communication pattern. Figures 2-4 illustrate the 
communication patterns of the different benchmarks for 
8 CPUs. Figure 2 shows the default point-to-point 
communications pattern for PMB and Mpptest, which 
involve CPUs 0 and 1 only. In order to measure 
communications times between CPUs that are not on the 
same node, the locations of the CPUs would have to be 
specified when calling mpirun. Mpptest also provides an 
option for specifying the distance between CPUs. PMB 
also provides an option for having multiple sets of CPUs 
communicating at once, however these are neighbouring 
pairs of CPUs (0-1, 2-3, etc) so this does not allow an 
accurate measure of contention in a hierarchical network. 

Figure 3 is for SKaMPI and MPBench, which use the 
first and last CPUs. SKaMPI actually does short tests on 
all CPUs to find which has the slowest communication 
with CPU 0, and then does its timings using that CPU. 
However for the communication network on the Altix, 
this would be equivalent to choosing the last CPU, 
assuming processes are allocated to a contiguous set of 
CPUs, as was done in our experiments. 

MPIBench measures not just the time for a ping-pong 
communication between two CPUs, but also measures 
the effects of contention when all CPUs simultaneously 
take part in point-to-point communication. The default 
communication pattern used by MPIBench is shown in 
Figure 4. MPIBench sets up pairs of communicating 
CPUs, with CPU p communicating with CPU (p + n/2) 
mod n when n CPUs are used. Half of the CPUs send 
while the other half receive, and then vice versa. The 
send/receive pairs are chosen to ensure that for a cluster 
of SMPs, or a hierarchical network (such as on the 
Altix), the performance of the full network hierarchy can 
be measured, not just local communications within an 
SMP node (or a brick on the Altix). MPIBench also 
allows the user to specify another communication pattern 
by specifying a list of communication partners.  

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 4: MPIBench Send/Recv. 



5.1 Send/Receive 

The difference in communication patterns between 
the different benchmarks leads to different results, as 
shown in Figure 5 for the default settings of the SGI MPI 
implementation for the Altix (i.e. buffered copy for 
MPI_Send). MPIBench has the highest results due to the 
contention effects from all 8 CPUs, while MPBench and 
SKaMPI obtain the second highest results since they are 
measuring the communication times between two C-
Bricks. The lowest results are obtained by Mpptest and 
PMB, since they just measure intranode communication 
within a C-Brick. By carefully selecting the CPUs that 
are used (e.g. P0 and P7), it is possible to force each of 
the benchmarks to measure the same thing, i.e. point-to-
point communication between two CPUs across any 
level of the communication hierarchy, and then the 
results for different benchmarks agree fairly closely, 
within a few percent. This is similar to benchmarking 
clusters of SMP nodes, where care must be taken 
(particularly for PMB and Mpptest) in choosing the 
CPUs to ensure measurement of internode rather than 
intranode communication. 

On the SGI Altix it is possible to significantly im-
prove the benchmark results for MPI_Send by enabling 
the option of single copy (i.e. non-buffered) sends in the 
SGI MPI implementation, as shown in Figures 5 and 6.
As shown in Figure 6, it is best to set the 
MPI_BUFFER_MAX value to be very small, although 
there is little or no effect below about 256 bytes. Note 
that the improvement from using single copy can be 
large, up to a factor of 10, however it is much less for 
very large message sizes. 

In measuring the results using single copy 
MPI_Send, we were surprised to find that while most of 
the benchmarks gave the expected improvement in per-
formance, the results for SKaMPI and MPIBench were 
the same as for the default MPI setting that uses buffered 
copy. After much experimentation and comparison of the 
benchmark codes, we concluded that this problem is 
because both SKaMPI and MPIBench use the same array 
to hold send and receive message data. When we 
changed the MPIBench code to declare different arrays 
for send and receive data, the results showed the 
expected improvement, as shown in Figure 5. This 
appears to be an artefact of the SGI MPI implementation. 
We did not change the SKaMPI program, so we do not 
present SKaMPI results for the single copy option. 

5.2  Combined Send and Receive  

 Only MPIBench, PMB and SKaMPI provide meas-
urements for MPI_Sendrecv. For SKaMPI and PMB, 
each process sends to the right neighbour and receives 
from the left neighbour in a ring of N CPUs. MPIBench 

has a different approach, using the same communication 
pattern as it does for MPI_Send/ MPI_Recv (see Fig. 4), 
however each CPUs does a combined MPI_Sendrecv to 
its communication partner, rather than alternating sends 
and receives. Most communication networks are capable 
of providing the same bandwidth if messages are sent 
simultaneously in both directions on the same 
communications link. MPI_Sendrecv provides a good 
way of testing that the MPI implementation can indeed 
provide this bidirectional bandwidth. The MPIBench 
approach means that if this is the case, then the results 
for MPI_Sendrecv and MPI_Send/MPI_Recv should be 
similar. The results for MPI_Sendrecv in Figure 7 show 
that in general this is the case for the SGI Altix, e.g. the 
result for 256 Kbyte message size for 8 CPUs is similar 
to the result for 8 CPUs in MPI_Send/ MPI_Recv with  
Single Copy  option  (see Figure 5).  
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Figure 6: Ratio of MPI_Send times using 
buffered copy and single copy for PMB. 



Figure 9: MPI_Bcast on 8 CPUs.
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However MPIBench results show a hump around 1 
Kbyte, since by default the SGI MPI implementation 
uses single copy for MPI_Sendrecv, but only for mes-
sage sizes of 2 Kbytes or more. The approach used by 
SKaMPI and PMB cannot be used to test bidirectional 
bandwidth, however both these benchmarks provide 
other options for doing this type of measurement. Re-
sults for SKaMPI and PMB are a little higher than for 
MPIBench and also higher than the results for single 
copy MPI_Send. We are not sure why this is the case.  

6. Barrier 

Figure 8 shows the MPI_Barrier results for SKaMPI, 
MPIBench and PMB. The result for SKaMPI is a bit 
higher than MPIBench and PMB. This is probably due to 
the global clock synchronization that is set by default for 
their measurement. The developers of SKaMPI argue 
that this is a more accurate result since it avoids pipelin-
ing effects where some processes (e.g. the root) finish 
the barrier earlier and can start the next barrier operation 
before other processes have exited the barrier [8]. 
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7. Broadcast 

All benchmark applications measure MPI_Bcast. 
There are some differences in the measurement tech-
nique between the benchmark applications. The main 
difference is that by default SKaMPI makes the assump-
tion that data should not held in cache memory, so it en-

sures data to be broadcast is not in cache before each 
measurement repetition. MPIBench, on the other hand, 
always sends the same data for each repetition, and does 
some preliminary “warm-up” repetitions (that are not 
measured) to ensure that the data is in cache before 
measurements are taken. The other benchmarks allow 
the user to choose whether or not data to be broadcast is 
in cache, although the default is that data is in cache 
memory. In a real application, data to be broadcast may 
or may not be in the cache, so there is really no “right” 
choice for whether or not an MPI benchmark should 
place the data in the cache.  

Another difference is how the broadcasts are syn-
chronized. Most MPI benchmarks measure collective 
communication time on the root node. However for 
some collective operations, such as broadcast, the root 
node is the first to finish, and this may lead to biased re-
sults due to pipelining effects. Most benchmarks get 
around this problem by inserting a barrier operation 
(MPI_Barrier) after each repetition of the collective 
communication operation. This provides an additional 
overhead which will affect the average time, although 
only for very small message sizes, since broadcast of a 
large message takes much longer than a barrier opera-
tion. Mpptest and PMB adopt a different approach to 
avoid this problem – they assign a different root node for 

each repetition.
Figure 9 shows the average times reported by the dif-

ferent MPI benchmarks to complete an MPI_Bcast op-
eration. Clearly there are significant differences in the 
measured results due to the differences in measurement 
technique. Mpptest and PMB give the highest results, 
presumably due to the overhead of changing the root 
node at each iteration. We are not sure why Mpptest is so 
much higher than PMB. The only difference between the 
two approaches seems to be that PMB uses different ar-
rays for the broadcast data on the root node and the other 
CPUs. SKaMPI has the next highest result, since it uses 
data that is not in the cache, while MPIBench and 
MPBench obtained the same results with the same 
measurement techniques. 
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Figure 7: MPI_Sendrecv on 8 CPUs. 

Figure 8: MPI_Barrier for 2 to 128 CPUs.



Figure 11: Distributions from MPIBench for 
MPI_Bcast at 4MBytes on 8 CPUs.

Figure 10: Node time produced by SKaMPI for 
MPI_Bcast at 4MBytes on 8 CPUs. 

On a distributed memory cluster the effects of 
changing the root and having messages in cache has little 
affect on the results, however because of the cache co-
herency protocol on the shared memory Altix, moving 
the root to a different CPU has a significant overhead, 
which is reflected in the results. To check that these dif-
ferences in the benchmark measurement techniques were 
causing the difference in broadcast times, we enabled the 
option to warm up the cache in SKaMPI, and for 
Mpptest and PMB we commented out the code to move 
the root process at each repetition, and then reran the 
benchmarks. The results after modifying the programs 
were very similar, with all results within a few percent.  

By default, both SKaMPI and MPIBench use a bar-
rier operation to synchronize the start of all collective 
communications. However they also have the option of 
avoiding the overhead of the barrier operation by using a 
synchronized start, where each CPUs starts each broad-
cast at a prescribed time, and the time reported for each 
repetition is the time taken by the slowest process. 
Clearly this requires a globally synchronized clock, 
which is provided by MPIBench and SKaMPI. Since 
they both use a globally synchronized clock, they are 
able to generate average times for each process in a col-
lective communication, which can be significantly dif-
ferent. Figure 10 shows a figure from the SKaMPI report 
for an MPI_Bcast operation on 8 CPUs (using cache 
warmup to enable a direct comparison to MPIBench re-
sults), which shows the average completion time for 
each CPUs. The SKaMPI report also states that the aver-
age time for the MPI_Bcast is about 9500 µs, which is 
very different to the largest times for each node shown in 
Figure 10. We are not sure why this is the case. Figure 11
show the distribution results for MPI_Bcast on 8 CPUs 
for the same data size. This figure shows the combined 
results for all 8 CPUs, although recently MPIBench has 
been modified to allow distributions to be generated in-
dividually for each CPUs, so we are able to check that 
the overall distribution shown in Figure 11 shows peaks 
that are consistent with a binary tree broadcast algo-
rithm, with the first peak corresponding to completion 
times for CPUs 0 and 1, the second peak is for CPUs 2 
and 3 and final peak is for 4-7. 

8. Other Collective Communications 

Only MPIBench and SKaMPI provide measurements 
for MPI_Scatter and MPI_Gather, and both benchmark 
applications apply the same measurement technique.  
Scatter and gather are typically used to distribute data at 
the root process (e.g. a large array) evenly among the 
CPUs for parallel computation, and then recombine the 
data from each CPUs back into a single large data set on 
the root process. Figure 12 shows the comparison 
between MPIBench and SKaMPI for MPI_Scatter on 32 
CPUs. The results show that MPIBench and SKaMPI 
report very similar times. The results also show an 
unexpected hump at a data sizes between 128 bytes and 
2 KBytes per process, so that the time for scattering 
larger data sizes than this is actually lower. This is be-
cause by default SGI MPI uses buffered communications 
for message sizes less than 2 KBytes. Note that overall, 
the time for an MPI_Scatter operation grows remarkably 
slowly with data size. 

The performance of MPI_Gather is mainly deter-
mined by how much data is received by the root process, 
which is the bottleneck in this operation. Hence the time 
taken is expected to be roughly proportional to the total 
data size for a fixed number of CPUs, with the time 
being slower for larger numbers of CPUs due to se-
rialization and contention effects. Figure 13 shows com-
parison results between MPIBench and SKaMPI for 32 
CPUs. As with MPI_Scatter, MPIBench and SKaMPI 
agree closely with each other. 

The final collective communication operation that we 
measured is MPI_Alltoall, where each process sends its 
data to every other process. MPI_Alltoall is measured by 
MPIBench, PMB and SKaMPI. Figure 14 shows the re-
sults for 32 CPUs which are similar to MPI_Scatter, but 
with a sharper increase for larger data sizes probably 
indicating effects of contention. The results from the dif-
ferent benchmarks for different data sizes and numbers 
of CPUs mostly agree within about 10%. 
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Another collective communication that is measured 
by PMB, SKaMPI and MPBench is MPI_Reduce. 
MPI_Reduce does a reduction operation such as sum-
mation of data distributed over processes and brings the 
results to the root process. SKaMPI and MPBench use 
MPI_SUM as the parameter to MPI_Reduce, and there-
fore do a global sum. PMB uses a null operation and 
therefore only measures the communication involved in 
the reduction operation, and hence gives very different 
results to the other two benchmarks.  

9. Summary 

We have found that different MPI benchmarks can 
give significantly different results for certain MPI rou-
tines on the SGI Altix. This is primarily due to the Altix 
having a hierarchical ccNUMA architecture, which can 
enhance the variations due to different measurement 
techniques employed by the different benchmarks com-

pared to a typical distributed memory architecture. For 
point-to-point communications, the variations are due to 
the different communications patterns used by the differ-
ent benchmarks, and differences in how averages are 
computed, There are also significant effects due to im-
plementation details of SGI MPI on the Altix, which af-
fects whether single copy of buffered copy is used, 
which has a major impact on communications speed. 
There are also significant differences in measurements of 
some collective communications routines, particularly 
broadcast, due to differences in use of cache and in syn-
chronizing the calls to the routines on each CPUs. 

MPI benchmarks were designed primarily for use on 
distributed memory machines, and our results show that 
some of the design decisions can significantly affect the 
results for ccNUMA shared memory machines. Users of 
MPI benchmarks on such machines should therefore be 
careful in the interpreting the benchmark results, and de-
velopers of MPI benchmarks might consider making 
some minor modifications to their benchmark programs 
to provide more accurate results for ccNUMA machines. 
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Figure 13: MPI_Gather on 32 CPUs. 

Figure 12 : MPI_Scatter on 32 CPUs. 

Figure 14: MPI_Alltoall on 32 CPUs. 
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