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Abstract

This paper is motivated by existing architectures of
field programmable gate arrays (FPGAs). To facili-
tate the design process we present an optimal schedul-
ing algorithm using a very universal framework, where
tasks are constrained by precedence delays and relative
deadlines. The precedence relations are given by an
oriented graph, where tasks are represented by nodes.
Edges in the graph are related either to the minimum
time or to the maximum time elapsed between the start
times of the tasks. This framework is used to model
the runtime dynamic reconfiguration, synchronization
with an on-chip processor and simultaneous availabil-
ity of arithmetic units and SRAM memory. The NP-
hard problem of finding an optimal schedule satisfying
the timing and resource constraints while minimizing
the makespan Cmax, is solved using two approaches.
The first one is based on Integer Linear Programming
and the second one is implemented as a Branch and
Bound algorithm. Experimental results show the effi-
ciency comparison of the ILP and Branch and Bound
solutions.

Index Terms – Off-line scheduling, high–level syn-
thesis, branch and bound, ILP, FPGA.

1 Introduction

The studied problem is motivated by existing archi-
tectures of field programmable gate arrays (FPGAs).
Some of these architectures support runtime dynamic
reconfiguration allowing one to change parts of the de-
vice, e.g. floating point units, while the rest operates at
full speed. An example of such an architecture is Xilinx
Virtex2 (i.e. starter kit from Memec with XC2V1000-
FG365-4) which contains a static part with a MicroB-

laze 32-bit RISC soft processor and a dynamically re-
configurable part [1]. Another one, based on Atmel
AT94K, contains a static part with the hard core of
the AVR 8-bit microcontroller and a dynamic part with
user defined designs [1], in our case different floating
point units.

The arithmetic units (i.e. coarse grain modules com-
puting some function) are usually pipelined. There-
fore, time properties of operations (tasks Ti) on the
units are characterized by the time needed to feed the
unit (processing time pi) and the input–output latency
(precedence delay). The input–output latency is for-
malized as a positive weight wij (associated with the
data produced by Ti). Synchronization with the exter-
nal environment (including an on-chip processor) can
be modeled by relative deadlines formalized as a nega-
tive weight wij .

For illustration of the arithmetic units, we may con-
sider two types of arithmetic libraries operating with
real numbers. The first type is the logarithmic number
system arithmetics, namely the High-Speed Logarith-
mic Arithmetic (HSLA) library [11] implementing mul-
tiplication, division and square-root operations sim-
ply as fixed-point addition, subtraction and right shift.
Addition and subtraction operations require more com-
plicated evaluation, hence only one pipelined addi-
tion/subtraction unit is usually available for a given
application. On the other hand, the number of mul-
tiplication, division and square root units can be al-
most unlimited. For that reason, the scheduling of al-
gorithms on HSLA (without reconfiguration) can be
formalized as scheduling of tasks with precedence de-
lays and relative deadlines on one dedicated processor.
This problem will be called 1–DEDICATED in the rest
of this article.

The second type is the floating-point library, namely
FP32 by Celoxica [5]. It uses the widely known IEEE
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format to store the data. In this case, each unit re-
quires an important number of hardware elements on
the gate array, hence only one unit of each kind is usu-
ally available for a given application. Scheduling of
algorithms on an FP32 can be formalized as scheduling
of tasks with precedence delays and relative deadlines
on the set of dedicated processors. This problem will
be called m–DEDICATED and can be reduced to the
1–DEDICATED problem.

The most important problem of dynamic reconfigu-
ration, not seen in the classical (i.e. static) design, is
the temporal interdependence of the individual parts
to be reconfigured. Scheduling algorithms have to dis-
tinguish, whether and when the reconfiguration is per-
formed. When task Tj is processed immediately after
task Ti and task Tj is processed by a different recon-
figurable unit (i.e. currently not available in FPGA),
the processing of Ti is charged by the reconfiguration
time. This makes it almost impossible to manually
produce efficient designs without a proper methodol-
ogy. For simplicity, in this article, we assume that
one unit is present in the reconfigurable part at a
given time. The monoprocessor version of this prob-
lem can be formalized as a monoprocessor problem with
changeover times. We will show its reduction to the m–
DEDICATED problem and direct solution by ILP.

Not only the reconfigurable units, but also the mem-
ory units, become limited resources that have to be
taken into consideration in many practical applica-
tions of FPGAs. In such cases, some arithmetic units
and some memory units, may be required at one mo-
ment. This problem is formalized as multiprocessor
task scheduling. We will also show its reduction to the
m–DEDICATED problem and direct solution by ILP.

1.1 Related Work

Traditional off–line scheduling algorithms (e.g. [2]),
typically assume that deadlines are absolute, i.e. the
deadlines are related to the beginning of the schedule.
On the other hand, when assuming, for example, in-
teractions among an on-chip processor, pipelined units
and the external environment, we may conveniently
represent a given timing requirement by a deadline of
the task Tj related to the start time of the task Ti.
In such a case, when deadlines cannot be calculated a
priory, we use relative deadlines.

In connection with project planning, the concept of
precedence delays and relative deadlines (called posi-
tive and negative time-lags or start-to-start constraints
or generalized precedence relations) have been intro-
duced by Roy [12] and further developed by Brucker et
al. [4]. A heuristic solution by Hurink [7] is based on a

local search algorithm. Another heuristic approach to
the scheduling of signal processing algorithms with rel-
ative deadlines was studied in [8]. A more general prob-
lem known in the Operation Research literature as the
resource constrained project scheduling problem with
generalized precedence relations (or RCPSP/max) [6]
considers resources with capacity greater than 1.

From the time complexity point of view, the 1–
DEDICATED problem is NP-hard, since the schedul-
ing problem 1|rj , d̃j |Cmax [3] is reducible to it. More-
over, other NP-hard problems (e.g. the pipeline
scheduling problem presented in [10]) are also reducible
to it. On the other hand, the 1–DEDICATED problem
is decidable, since it can be solved by ILP.

1.2 Outline

This paper shows, how the time-optimal FPGA
design with several relevant architectural features
(pipelined units, FPGA fabric interaction with an on-
chip processor, arbitrary/restricted number of units,
simultaneous memory access, dynamic reconfigura-
tion) may be formalized as off–line scheduling of non–
preemptive tasks with precedence delays (minimum de-
lay between two tasks) and relative deadlines (maxi-
mum delay between two tasks). We adopt this simple
but very universal model, we propose two original algo-
rithms solving the scheduling problem and we evaluate
their performance. The first algorithm is based on the
Branch and Bound (B&B) method and the second one
on Integer Linear Programming (ILP).

The main contributions of this paper are: (a)
formalization of the time-optimal FPGA design
with pipelined units, an on-chip processor, arbi-
trary/restricted number of dedicated units, simulta-
neous memory access and dynamic reconfiguration by
the scheduling problem with precedence delays and rel-
ative deadlines. (b) an original solution of the m–
DEDICATED problem by B&B algorithm. (c) an orig-
inal ILP based solution of the m–DEDICATED prob-
lem. (d) direct ILP based solutions of multiproces-
sor task scheduling and the multiprocessor problem
with changeover times (i.e. without reduction to m–
DEDICATED). (e) a performance evaluation of the
B&B solution, ILP solution and heuristic solution [8].

This paper is organized as follows: Section 2
presents the formulation of the m–DEDICATED prob-
lem and polynomial reductions of the mentioned
scheduling problems. Section 3 presents the solution
of the m–DEDICATED problem by ILP and direct so-
lutions of multiprocessor task scheduling and the mul-
tiprocessor problem with changeover times. The next
section describes the B&B algorithm, which solves the



m–DEDICATED problem. Finally, the experimental
results and comparisons are summarized in Section 5.

2 Problem Statement

2.1 Formulation of the m–DEDICATED
Problem

The set of n tasks T = {T1, . . . Ti, . . . Tn} is con-
strained by the precedence relations, given by task-on-
node graph G. Each operation is represented by task
Ti corresponding to node Ti on graph G and has a
non-negative processing time pi. Timing constraints
between two nodes are represented by a set of directed
edges. Each edge eij from node Ti to node Tj is la-
beled by an integer weight wij . There are two kinds
of edges: the forward edges with positive weights and
the backward edges with negative weights. The forward
edge, from node Ti to node Tj with the positive weight
wij , indicates that sj , the start time of Tj , must be at
least wij time units after si, the start time of Ti. The
weight wij , associated with the forward edge, specifies
so called precedence delays. We use the precedence de-
lay to represent, for example, the input–output latency
of the pipelined unit.

The backward edge, from node Tj to node Ti with
the negative weight wji, indicates that sj must be no
more than |wji| time units after si. Therefore, each
negative weight wji represents d̃j(si), the deadline of
Tj , such that d̃j(si) = si+|wji|+pj . A so-called limited
graph can be obtained by removing all backward edges
from graph G. The limited graph is acyclic.

In this paper, we are concerned with non-preemptive
scheduling on the set of m dedicated processors P =
{P1, . . . Pd, . . . Pm}. The set of tasks T is a conjunction
of disjoint sets T1, . . . Td, . . . Tm. Both tasks Ti and Tj

are assigned to the dedicated processor Pd, if and only
if, Ti ∈ Td and Tj ∈ Td. Therefore, if si is the start time
of task Ti scheduled on processor Pd, then no other task
can be scheduled before si + pi time units on the same
processor.

The scheduling problem is to find a feasible schedule,
satisfying the timing and resource constraints, while
minimizing the makespan Cmax. Let S be a schedule
given as a vector S = (s1, s2, . . . sn), such that each
couple of nodes Ti and Tj with a nonzero edge wij has
the start times satisfying the equation

sj − si ≥ wij . (1)

Equation (1) holds for both, the forward and back-
ward edges.

Let T = {T1, . . . Td, . . . Tm} be the set of n = n1 +
. . .+nd+. . .+nm tasks to be scheduled, where nd is the
number of tasks assigned to the dedicated processor Pd.
The processing time vector p = (p1, p2, . . . , pn), n × n
dimensional matrix of weights W and the sets of tasks
running on the dedicated processors T1, . . . Td, . . . Tm

are input parameters of the addressed problem. Matrix
W is composed of timing constraints wij related to
edges eij (between tasks Ti and Tj). There is no edge
from node Ti to node Tj when wij = −∞. There is
a forward edge when wij > 0 and there is a backward
edge when wji < 0, and wii = −∞.

Example: One instance of the scheduling problem
under consideration containing six tasks T1,T2,. . .,T6

is given by the graph G and the corresponding ma-
trix of weights W in Figure 1. The set of tasks
T1 = {T1, T2, T6} is assigned to the first processor and
T2 = {T3, T4, T5} to the second one. The processing
times are p = (1, 3, 2, 3, 4, 5) and the precedence rela-
tions are given by the corresponding graph including
backward edges (the start time of task T6 has to be
at a maximum of 11 time units after the start time of
task T1, and the start time of task T3 has to be at a
maximum of 3 time units after the start time of task
T1).

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

−∞ −∞ 1 2 3 −∞
−∞ −∞ 4 4 4 13
−3 −∞ −∞ −∞ −∞ 4
−∞ −∞ −∞ −∞ −∞ 4
−∞ −∞ −∞ −∞ −∞ 4
−11 −∞ −∞ −∞ −∞ −∞

⎞
⎟⎟⎟⎟⎟⎟⎠
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Figure 1. A scheduling problem example.

2.2 Reduction of m–DEDICATED to 1–
DEDICATED

This subsection shows, how each task of the m–
DEDICATED problem can be transformed to an in-
stance of a 1–DEDICATED problem scheduled on one
virtual processor. The most important property of the
problem formulation by tasks with precedence delays
and relative deadlines is the universality. Brucker [4]
has shown that many scheduling problems can be poly-
nomially reduced to this problem and effectively solved
as outlined in Subsections 2.3 and 2.4.

The reduction from m–DEDICATED to 1–
DEDICATED requires an upper bound C of the Cmax,

that can be found e.g. as C =
n∑

i=1

max
(

pi, max
j∈〈1,n〉

lij

)
.

The main idea lies in the assignment of all tasks on one



virtual monoprocessor while using forward and back-
ward edges to enclose Td into the d-th interval on the
virtual processor. Let Ti ∈ Tdi

and Tj ∈ Tdj
, then task

Ti is assigned to the time interval
〈
(di − 1) · C, di · C

〉
on the monoprocessor while recalculating its start
time as s′i = si + (di − 1) · C.

Then the timing constraint (1) is translated to
s′j − s′i ≥ w′

ij , where w′
ij = wij + (di − dj) · C. Fur-

thermore, the enclosure of tasks Ti ∈ Tdi
into the in-

terval
〈
(di − 1) · C, di · C

〉
is realized by introduction

of a dummy task T0 with p0 = 0 and by introduction
of the couple of new edges for each task Ti such as
s′i − s′0 ≤ (di − 1) · C and s′0 − s′i ≤ di · C.

Finally, we add a second dummy task Tn+1 with
pn+1 = 0 to formulate the Cmax minimization of the
m–DEDICATED problem in terms of Cmax minimiza-
tion of the 1–DEDICATED problem. Therefore, for
each task Ti, we add one relation si + pi ≤ sn+1.

2.3 Reduction of the Problem with Mul-
tiprocessor Task to m–DEDICATED

The multiprocessor task scheduling problem is an
extension of the m–DEDICATED problem, where
task Ti is associated with a set of processors Pi ={
P 1

i , . . . , Pmi
i

} ⊂ P. The reduction of this problem
to the m–DEDICATED problem is based on the prop-
agation of each task Ti to the set of virtual tasks
T 1

i , . . . T v
i , . . . Tmi

i . These tasks have the same process-
ing time as Ti and each tasks T v

i is assigned to virtual
processor P v

i ∈ Pi. These tasks are forced to start at
the same time by a couple of synchronization relations

sv
i − s1

i ≥ 0 and s1
i − sv

i ≥ 0. (2)

Finally, we define the timing constraint (1) between
tasks T 1

i and T 1
j if and only if, there is a corresponding

timing constraint between the original tasks Ti and Tj .

2.4 Reduction of the Monoprocessor
Problem with Changeover Times to
m–DEDICATED

This scheduling problem extends the 1–
DEDICATED problem by partitioning the set of
tasks T into groups G1, . . . , Gr. If task Ti from
group Gk is scheduled immediately after task Tj from
different group Gl, there is a reconfiguratin time rlk

i.e. task Ti starts at the earliest rlk time units after
the finishing time of Tj , otherwise rlk = 0.

This problem can be also polynomially reduced to an
m–DEDICATED scheduling problem. All tasks from
T are processed on the first processor P1. Furthermore,
for each pair Ti, Tj belonging to different groups Gk, Gl

we introduce a virtual processor Pij . Two tasks T i
ij and

T j
ij , with processing time pi

ij = pi+rkl and pj
ij = pj+rlk

respectively, are dedicated to this virtual processor. By
a couple of synchronization relations, task T i

ij and T j
ij

are forced to start at the same time as Ti and Tj on
processor P1, respectively.

Finally Cmax minimization is given by Cmax of the
processor P1 that is reflected by introduction of a
dummy task Tn+1 in a similar way as in Subsection
2.2.

Due to the above mentioned reductions, we are able
to formulate many practical scheduling problems on
FPGA architectures with dynamic reconfiguration and
limited resources such as the 1–DEDICATED problem.
In the rest of the paper we show the solution of this
problem by ILP and B&B algorithm. In order to illus-
trate various features of our solutions, we shall develop
the more complex one, i.e. m–DEDICATED, and in
the experimental section we compare the performance
of ILP and B&B solutions.

3 Solution of m–DEDICATED Prob-
lem by ILP

Due to NP–hardness of the m–DEDICATED prob-
lem, it is meaningful to formulate it as problem of ILP,
since various ILP algorithms solve instances of reason-
able size in reasonable time. The schedule has to obey
two kinds of constraints. The first is the precedence
constraint restriction corresponding to Inequality (1).
Since each edge represents one precedence constraint,
we have ne inequalities (ne is the number of edges in
graph G).

The second kind of restrictions are processor con-
straints, i.e. for each couple of tasks Ti and Tj assigned
to the same processor, at maximum, one is executed at
a given time. Two disjoint cases can occur. In the first
case, we consider task Tj to be followed by task Ti. In
the second case, we consider task Ti to be followed by
task Tj .

Exclusive OR relation between the first case and the
second case hinders the solution to the problem directly
by LP (Linear Programming), since there is AND rela-
tion among all inequalities in the LP program. There-
fore, we use a binary decision variable xij (xij = 1
when Ti is followed by Tj and xij = 0 when Tj is fol-
lowed by Ti) and a very large positive number C (C is
the upper bound of Cmax).

Then the restrictions can be formulated as one
double–inequality

pj ≤ si − sj + C · xij ≤ C − pi. (3)



To derive a feasible schedule, the double–inequality
(3) must hold for each unordered couple of two tasks
assigned to the same processor. Therefore, there are at
maximum

∑m
d=1(n

2
d − nd)/2 double–inequalities speci-

fying processor constraints, where nd = |Td|. The (3)
is redundant for tasks Ti and Tj when there is a path
on the limited graph from Ti to Tj or from Tj to Ti

since the order of tasks is determined by precedence
constraints as wij ≥ pj for the forward edges.

Makespan minimization is realized by adding one
variable Cmax satisfying

si + pi ≤ Cmax, ∀Ti ∈ T (4)

for all sink nodes of the limited graph. Then the ob-
jective function is to minimize Cmax. The summarized
ILP program, using variables si, xij , Cmax, is shown
in Figure 2.

min Cmax

subject to
sj − si ≥ wij , ∀eij ∈ G
pj ≤ si − sj + C · xij ≤ C − pi, ∀i < j : Ti, Tj ∈ Td

si + pi ≤ Cmax, ∀Ti ∈ T sink node
where
si ∈

〈
0, C − pi

〉
, xi ∈ {0, 1}, Cmax ∈ 〈

0, C
〉

si, xij are integers.

Figure 2. ILP program solving the m–
DEDICATED scheduling problem.

3.1 Direct Solution of Problems with
Multiprocessor Task and Changeover
Times

The generality of ILP allows one to formulate
scheduling problems outlined in Subsections 2.3 and 2.4
directly without polynomial reduction that increases
the number of nodes in both cases. The problem with
multiprocessor task can be solved by the ILP program
in Figure 2 by a slight modification of the processor
constraints (3). The processor constraint between Ti

and Tj in the m–DEDICATED problem is considered,
when Ti, Tj ∈ Td, i.e. both tasks are dedicated to the
same processor, otherwise it is omitted. Therefore,
in the problem with multiprocessor task, the proces-
sor constraint between Ti and Tj is considered when
Pi∩Pj �= ∅, i.e. tasks Ti and Tj can not overlap if they
require the same processor.

The monoprocessor scheduling problem with
changeover times can also be directly solved by
modification of the processor constraints (3). Since

the processor constraint restricts the overlap between
a couple Ti and Tj only, then processing times pi and
pj can be considered different for different couples of
tasks, i.e. different processor constraints. Therefore,
considering tasks Ti and Tj belonging to different
groups Gk, Gl, the processing time used in the pro-
cessor constraint (3) for these tasks is considered as
pi

ij = pi + rkl and pj
ij = pj + rlk, respectively. For

tasks from the same group the processor constraint
(3) stays the same.

4 Solution of the m–DEDICATED
Problem by the Branch and Bound
Algorithm

The Branch and Bound algorithm creating schedule
S defines a partitioning of T , the set of tasks, into three
disjoint subsets TS(S), TC(S) and TR(S), where TS(S)
is the set of already scheduled tasks, TC(S) is the set
of candidate tasks and TR(S) is the set of remaining
tasks.

A task Tk ∈ TC is a candidate to be scheduled into
the partial schedule S if Tk has not been scheduled
yet and all its predecessors belong to TS , the set of
scheduled tasks.

If node Tk ∈ TC , assigned to the processor Pd, is
chosen to be scheduled at time hd, it is added to the
current partial schedule S with the start time equal to
the maximum of all its precedence timing constraints
and the current time hd

sk = max(hd, max
∀Ti∈TK

(si + wik))

TK = {Ti ∈ TS : wik > 0} . (5)

After scheduling task Tk, sets TS(S), TC(S) and
TR(S) have to be actualized.

The scheduling problem can be solved by the enu-
meration of a finite set F of feasible solutions respect-
ing timing constraints while the objective is to find
an optimal solution S∗ ∈ F with the minimal Cmax.
For enumeration of F , the Branch and Bound (B&B)
method is used.

The branching procedure can be conveniently repre-
sented as a search tree (see Figure 3). Each vertex in
the n-th level represents one final solution. All n tasks
are scheduled in the final solution. All vertices in levels
1 to n−1 correspond to a partial solution representing
an uncompleted schedule.

In order to implement the scheme of the B&B al-
gorithm for our scheduling problem, one must first de-
scribe the branching procedure and the search strat-
egy. A very simple recursive procedure creating the



search tree of feasible solutions (see Equation (1)) can
be stated as follows:

B&B algorithm:

1. [Initialization] Set si = ∞ ∀ Ti ∈ T . TS = ∅.
Find TC , the set of schedulable tasks (tasks with-
out predecessors). The best known final solution
SB = S.

2. [Recursion] Call vertex exploration(TS ,TC , S).
3. S∗ = SB

Recursive procedure: vertex exploration(TS , TC , S)

1. [Bounding] Explained in Section 4.1. If the solu-
tion is feasible, then go to step 2, otherwise go to
step 4.

2. [Test the solution]

(a) If TC = ∅, the current solution S is a final
solution. Assign the current solution S to
SB if Cmax(S) < Cmax(SB). Go to step 4.

(b) If TC �= ∅, the current solution is a partial
solution and then go to step 3.

3. [Scheduling of candidates] ∀Tk ∈ TC do:

• Schedule the task Tk by creating SN such
that sN

i = si for all i �= k and sk is calcu-
lated using Equation (5).

• Create new sets T N
C and T N

S .
• Call vertex exploration(T N

S , T N
C , SN ).

4. [Return]

Example: (continued from Section 2.1) The com-
plete set of solutions and partial solutions arranged in
the search tree can be found in Figure 3. The leaves
in the 6-th level of the search tree are the final so-
lutions. The non-feasible solutions are crossed out.
In this example, there are two feasible final solutions
S1 = (3, 0, 4, 6, 9, 13) and S2 = (3, 0, 4, 10, 6, 14) there-
fore, the solution S1 is optimal, i.e. S∗ = S1.

(? ,? ,? ,? ),? ,?

0 ,1 ,? ,? ,? ,?

0 ,1 ,5 ,? ,? ,? 0 ,1 ,? ,? ,5 ,?

0 ,1 ,? ,9 ,5 ,?

0 ,1 ,12,9 ,5 ,?

Direction of searchlevel

0

1

2

3

4

5

0 ,1 ,? ,5 ,? ,?

0 ,1 ,? ,5 ,8 ,?

0 ,1 ,12,5 ,8 ,?

3 ,0 ,? ,? ,? ,?

3 ,0 ,? ,? ,6 ,?

3 ,0 ,? ,10,6 ,?

3 ,0 ,13,10,6 ,?

3 ,0 ,? ,5 ,? ,?

3 ,0 ,? ,5 ,8 ,?

3 ,0 ,12,5 ,8 ,?

3 ,0 ,4 ,6 ,? ,? 3 ,0 ,4 ,? ,6 ,?

3 ,0 ,4 ,6 ,9 ,? 3 ,0 ,4 ,10,6 ,?

3 ,0 ,4 ,6 ,9 ,13 3 ,0 ,4 ,10,6 ,14

3 ,0 ,4 ,? ,? ,?

6

0 ,? ,? ,? ,? ,? ? ,0 ,? ,? ,? ,?

non-feasible solution

Figure 3. An example of the search tree.

4.1 Bounding in the Search Tree

A bounding mechanism reduces the size of the search
tree (used in step 1 of the vertex exploration proce-
dure). At the same time the bounding mechanism can-
not eliminate any vertex on the unique path from the
root to S∗, the optimal solution.

Our B&B algorithm uses two bounding methods
Critical Path Bounding and Remaining Processing
Time Bounding reducing the number of search steps of
the B&B algorithm. These methods are based on the
lower bound estimation of sj and they are implemented
as an extension of step 1 in the vertex exploration pro-
cedure. For more details see [13].

4.2 Scheduling Anomaly

The branching mechanism only determines the order
of the tasks scheduled, as soon as possible, according
to Equation (5). This approach satisfies feasibility only
with respect to the forward edges and the minimum
Cmax of the schedule. Unfortunately, this mechanism
may result in a scheduling anomaly in the constructed
schedule with respect to feasibility given by backward
edges. Let us consider a backward edge eij from task
Tj to Ti. If lateness Lj = si − sj − wji of task Tj is
greater than zero (task Tj missed its deadline by Lj

ticks) then it is necessary to test, whether task Ti can
be scheduled Lj ticks later (see example in Figure 4).

The test is performed via shifting Ti by Lj and by
recalculation of the start times of other scheduled tasks
while Equation (5) is used to satisfy feasibility with re-
spect to the forward and backward edges. This “shift-
ing” can cause an increase of sj by the value in 〈0, Lj〉.
If this value is 0, “shifting” does not increase the start
time of Tj , the solution is feasible and the branching
procedure can continue with the recalculated schedule
SN . Otherwise, the partial solution is infeasible.

w =-1
32

T TT1 32

0 2 41 3

t

w =-1
32

T TT1 32

0 2 41 3

tT1 1 T2 1 T3 1

3

1 1

-1 non-feasible feasible

Figure 4. A scheduling anomaly.

5 Experimental Results

The presented scheduling algorithms were imple-
mented and tested in C language. The integer linear
program was solved by a non-commercial ILP solver
tool LP SOLVE [9].



# CPU time [s] # inspected vertices [-]
tasks B&B0 B&B ILP B&B0 B&B ILP
12 0.0016 0.0005 0.0244 516 63 137
14 0.0237 0.0022 0.1282 5605 264 868
16 0.2229 0.0116 0.8583 38490 1183 5355
18 5.3345 0.0835 7.4887 755950 6120 38740
20 133.8341 0.7664 51.0145 15991000 51000 221000

Table 1. Experimental results of the schedul-
ing algorithm complexity.

To compare the ILP method with the B&B algo-
rithm we measured the average CPU times for ran-
domly generated instances. The weights of the for-
ward edges wij were chosen from a uniform dis-
tribution on the interval 〈1, 16〉 (and rounded to
the nearest integer). The processing time pi was
generated from uniform distribution on the interval〈
1,minTj∈T (wij)

〉
. And weights of the backward edges

wji were chosen from a uniform distribution on the in-
terval 〈fij , 2.2 · fij〉 where fij is the longest path by
the forward edges. A dedicated processor for a node
was chosen from a uniform distribution on the interval
〈1,m〉.

CPU time depends on the efficiency of the algo-
rithm implementation, compilation and speed of the
computer. ILP also uses a branch and bound algo-
rithm while solving linear programs in each vertex of
its search tree. Therefore, comparison of the average
number of processed vertices allows one to examine the
results of both methods. The total number of pro-
cessed vertices of ILP in Table 1 is given by an average
value of the variable total nodes declared in lpkit.h of
LP SOLVE tool.

Table 1 shows the algorithm complexity for one ded-
icated processor (m = 1). Five hundred scheduling in-
stances have been generated per each number of nodes
(tasks) and the mean value of the CPU time and the
number of inspected solutions in each scheduling prob-
lem is shown in Table 1. The scheduling problems were
generated in a random manner as explained above. The
number of forward edges in Table 1 is equal to 3 · n/2
and the number of backward edges is equal to n/2.

When all bounding methods are combined together
(column B&B in Table 1), the number of inspected
states is 0.3% of all feasible solutions (B&B0) for 20
nodes. The ILP solution is less efficient, since it in-
spects 1.4% of all feasible schedules in the same case.

The influence of the number of processors is illus-
trated in Table 2, where column B&B indicates the
performance of the B&B algorithm solving the m–
DEDICATED problem as described in Section 4. Col-
umn B&B R indicates the case, when the instance of

# CPU time [s] # insp. vertices [-]
processors B&B B&B R ILP B&B B&B R ILP

1 0.084 0.084 7.489 6120 6120 38740
2 0.610 0.266 0.228 50426 6620 1387
3 1.251 0.205 0.086 105420 4340 540
4 2.000 0.132 0.029 181230 2270 160
5 3.838 0.090 0.018 276620 1550 70

Table 2. Influence of the number of proces-
sors (for 18 nodes with 27 forward edges and
9 backward edges).

# backward CPU time [s] # insp. vertices [-]
edges B&B ILP B&B ILP

8 0.0686 5.6610 5193 28765
12 0.0440 2.5917 2896 13343
16 0.0298 1.3459 1888 6763
20 0.0129 0.3298 703 669
24 0.0043 0.1041 210 478

Table 3. Influence of the number of backward
edges (for 18 nodes with 27 forward edges on
one processor).

the m–DEDICATED problem is firstly transformed to
the 1–DEDICATED problem and then solved by the
B&B algorithm. With a growing number of proces-
sors, B&B R behaves much better than B&B, since it
does not suffer from enumeration of multiple partial so-
lutions. The average CPU times of the ILP method de-
creases with the number of processors since for a fixed
number of nodes the ILP model, for the problem with
more dedicated processors, has less decision variables
(
∑m

d=1(n
2
d − nd)/2). On the other hand the B&B al-

gorithm has the opposite behavior since the number of
combinations increases with the number of processors.

Table 3 shows the influence of the number of back-
ward edges on the average CPU time and the average
number of inspected vertices in the search tree. For
both methods, it holds that with the increase of the
number of backward edges the time complexity of the
problem decreases, since each relative deadline limits
the state space of feasible solutions and the optimal
solution can be found faster.

The comparison with polynomial heuristics H0 and
H1 [8] is shown in Table 4. The first column (failure)
shows the percentage of cases when H0, H1 respec-
tively have not found any feasible solution, while both
B&B and ILP give the feasible solutions. The second
column shows the average relative error of Cmax(SH0)
and Cmax(SH1) found by heuristics H0 and H1 respec-
tively, with respect to the optimal value of Cmax(S∗)
in cases when H0, H1 respectively have found the fea-
sible solution. The relative error was calculated as
(Cmax(SH0) − Cmax(S∗))/Cmax(S∗), (Cmax(SH1) −



# backward failure [%] avg. rel. err. [%]
edges H0 H1 H0 H1

4 42.2 15.6 29.01 24.98
6 55.6 23.5 22.43 17.12
8 65.1 30.3 10.71 10.70
10 73.2 32.4 7.60 8.30
12 79.8 33.7 5.05 6.42
14 81.1 35.3 3.41 4.52
16 83.9 38.7 1.77 3.06

Table 4. Comparison with heuristics H0 and
H1. Influence of the number of backward
edges (for 18 nodes with 27 forward edges
on one processor).

Cmax(S∗))/Cmax(S∗) respectively. The results in Ta-
ble 4 show limited applicability of heuristics H0 and
H1 for instances with a growing number of backward
edges, where the B&B algorithm and ILP method have
much lower computing time requirements (see Table 3).

Note: The experiments were performed on a PC In-
tel Pentium 4, 2.4GHz. Results in tables 2, 3 and 4
are mean values over two hundred randomly generated
sets of input data.

6 Conclusions

This paper deals with problems related to the opti-
mal scheduling of FPGA design with pipelined function
units, an on–chip processor, an arbitrary/restricted
number of units, simultaneous memory access and dy-
namic reconfiguration. We have shown that all these
problems can be polynomially reduced to the schedul-
ing problem with precedence delays and relative dead-
lines.

Furthermore, we have presented our original Branch
and Bound algorithm and ILP based solution for the
scheduling problem with precedence delays and relative
deadlines on the set of dedicated processors. It was
shown that the ILP based solution can solve problems
with simultaneous memory access and dynamic recon-
figuration without adding virtual tasks (required by
reduction to the m–DEDICATED problem) and there-
fore is more effective. Experimental results show im-
pressive power of the rather simple and elegant ILP
solution, namely in the case of the increasing number
of dedicated processors. In comparison with the avail-
able heuristics, it is obvious that the heuristics are not
suitable for instances with more relative deadlines. On
the other hand, the B&B and ILP solutions have lower
computation requirements with increasing number of
relative deadlines and therefore the optimal solution
can be found faster.
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