
Communication Concept for Adaptive Intelligent Run-Time Systems

Supporting Distributed Reconfigurable Embedded Systems

Michael Ullmann and Jürgen Becker

Universität Karlsruhe (TH), Germany

{ullmann, becker}@itiv.uni-karlsruhe.de

Abstract

Reconfigurable computing systems have already shown
their abilities to accelerate embedded hardware/ software

systems. Since standard processor-based embedded

applications have come to their limits we need new

concepts for controlling and managing embedded,

possibly distributed, reconfigurable hardware/ software

computing systems. Succeeding to previous papers which
dealt with management aspects of run-time reconfigurable

systems and related AI-approaches this contribution

describes an approach and proof of concept of a

transparent communication mechanism between the

application layer and its possibly distributed and

reconfigurable hardware/ software sub-function modules.

Keywords: management of embedded reconfigurable

systems, communication concepts

1. Introduction

During the last years the deployment of reconfigurable

hardware has become a growing trend in the academic and

commercial domains of electrical and computer

engineering. Because of the increasing risks and cost of

development ASIC prototypes are hardly affordable to

many academic institutions and small and medium-sized

enterprises. So despite of their higher device cost and

inefficient area use, reconfigurable devices have become

an interesting and competitive alternative for prototyping

compared to ASIC prototype designs. For many tasks,

ASICs are preferred over General Purpose Processors

(GPP), since ASICs perform significantly better.

However, they lack the possibility to adapt themselves to

varying environments. In contrast to this, GPPs can cope

with branched control flows including recursion etc. so

they adapt easily to new requirements. As next

evolutionary step reconfigurable computing can combine

the performance of ASICs and the flexibility of GPPs.

Many commercial vendors nowadays already include

reconfigurable building blocks like Field-Programmable

Gate Arrays (FPGAs) as core components in their

products since post-production reconfigurability

significantly reduces design risks and possible

maintenance costs so that hardware with reconfigurable

features is on its way to conquer the markets of tomorrow.

Additionally this influences the traditional hardware

design of circuits used in devices, like mobile phones or

PDAs. Another aspect is that state-of-the-art

microprocessor-based embedded solutions can no longer

overcome the growing computational demands of future

control and communications applications. Since modern

FPGAs are higher integrated than their previous

generations offering new features like partial run-time

reconfiguration and powerful hard-wired on-chip

processors (e.g. on Xilinx Virtex II pro FPGAs [26]) they

are highly predestined for a wide range of applications

making them attractive for a new class of future embedded

applications. Reconfigurable computing systems have

already shown the ability to greatly accelerate program

execution, thereby providing a high-performance

alternative to pure software-based implementations and a

programmable alternative to expensive ASICs. The

development of new architectural hardware/ software

system concepts [3, 10, 13, 19, 24] by exploiting these

powerful features of flexible and adaptive hardware-

accelerated coprocessors in combination with a design

paradigm shift is an adequate approach to adapt to the

market’s requirements. Nevertheless the availability of the

best superior reconfigurable architectures will not

guarantee their success, if no sophisticated control and

management mechanisms are provided by the system

developers dealing with fault tolerance aspects and

application scenarios with dynamically changing

power/performance constraints. While prior researchers

have addressed architecture design, programming and

compilation issues [7, 12], there is still not much

consensus on what kind of operating system (OS) support

should be provided for reconfigurable architectures.

Recent academic approaches already implemented

complete reconfigurable system-on-chip supporting run-

time reconfiguration of dedicated functions and their

management at run-time [6, 10, 18, 22, 23, 24]. Some of

these first approaches have already included low budget

1-4244-0054-6/06/$20.00 ©2006 IEEE

embedded operating systems running on soft-core or hard-

wired on-chip processors on FPGA (e.g. uClinux on a

Xilinx MicroBlaze, [4, 16, 25]). Combining these

approaches using one or several low-cost reconfigurable

devices plus dedicated hardware like ASICs or DSPs will

create flexible and highly adaptive multi-purpose systems

which can be applied in a variety of application domains

(e.g. automotive infotainment, multimedia, control-

oriented applications etc.) [8, 10, 18].

1.1. Reconfigurable Layered System Concept

The development and proof of concept of such a

versatile approach is a main research topic of our research

group. In the following we want to give a short overview

on our related previous work and the system concept. One

of our previous successful approaches consisted in the

development and implementation of a first run-time

reconfigurable system-on-chip, supporting flexible on-

demand hardware-task switching and a sophisticated run-

time reconfiguration and task management mechanisms on

Xilinx Virtex II FPGAs [9, 18, 19]. By exploiting the

column-wise reconfiguration possibilities of Xilinx Virtex

II FPGAs it offers at run-time a set of functionalities

which are switched on demand during operation in a time-

multiplexed way, so that a larger set of functionalities

appears to be available to the user [18, 19]. Furthermore

the internal bus-system was modified, so that local

bandwidth- and topology-adaptive Networks-on-Chip

(NoC) [2] can be created at run-time, allowing optimized

energy and resource saving communication and operation

modes between the instantiated modules [9]. Although the

tested application domain in our previous work targets

currently at automotive control applications with soft time

and security constraints we intend to extend our approach

to other fields of application as well. Figure 1

(middle/bottom section) above shows how this previous

approach can be re-used as one of multiple-instances of

run-time reconfigurable hardware/software sub-systems

based on FPGA, DSP or standard processor technology.

As can be seen from figure 1, the system is logically

divided into different layers. On top at the application

level different applications are executed depending on

their location and mode of operation (as parallel hardware

or sequential software tasks). Most applications are

conceived to have major parts in software and some

dedicated parts accelerated in reconfigurable hardware or

DSP. An application programming interface layer is

introduced separating the application level from lower

sub-system levels [22, 23]. This API offers dedicated

services for inter-layer communication and Quality of

Service (QoS) negotiation mechanisms which can be used

for sub-function calls. Another system level which can be

settled in the middle of the system hierarchy is responsible

for the proper allocation of sub-functions requested by the

application layer. Depending on the QoS demands, given

by a calling application an appropriate implementation of

the desired sub-function has to be found from a run-time

function repository. The retrieval of suitable

implementation variants of a requested function type

based on given QoS-parameters can be performed by

applying a hardware-accelerated Case-Based-Reasoning

(CBR) approach [1, 20]. Apart from the needed

information about available function implementations and

their QoS-features the system will need information about

its current load and power consumption status, which are

provided by the HW-Layer API one level below. This

HW-Layer API is the responsible interface concerning all

hardware relevant aspects like resource consumption, low-

level communication, fault tolerance aspects and

reconfiguration of system parts. It connects the high level

system layers to the local system controllers, which can be

located on different devices (e.g. standard CPU, FPGA

(soft-core CPU) or DSP) or on the same chip as well. The

local sub-controllers are responsible for the management

of local run-time reconfiguration and other sub-tasks like

local task/ resource management and communication

issues [18, 19]. It should be noted that the system as

shown in figure 1 can be comprehended as distributed

system built of discrete devices. Nevertheless the proposed

concept can be realized as system-on-chip as well. Since

we have already described detailed aspects of the proposed

system’s resource-allocation- management strategies and

CBR-approach in earlier papers [18, 19, 20] we will focus

in this contribution on another important aspect, the

system’s communications architecture providing

transparent communication between applications and their

allocated low-level sub-systems.

Our contribution is structured as follows. In section 2

we give an overview on the demonstrator's current

implementation and its different components. Section 3

outlines the internal hardware/software system structure

Figure 1. Reconfigurable system layers

Application1

(MP3-Player)

Application2

(Video)

Application3

(Automotive

ECU)

Application4

(Collision-

detection)

Application1

(MP3-Player)

Application2

(Video)

Application3

(Automotive

ECU)

Application4

(Collision-

detection)

Local Run-Time

Control (FPGA)

Modul/

Funktion

Modul/

Funktion

Local Run-Time

Control (ASIP)

Modul/

Funktion

Modul/

Funktion

Bus-Macro

Arbiter

M
o
d
u
le

 1

Bus Com 1

ID 1

M
o
d
u
le

 1

Bus Com 1

ID 1

M
o
d
u
le

 2

Bus Com 2

ID 2

M
o
d
u
le

 2

Bus Com 2

ID 2

M
o
d
u
le

 0

Bus Com 0

ID 0

M
o
d
u
le

 0

Bus Com 0

ID 0

M
o
d
u
le

 3

Bus Com 3

ID 3

M
o
d
u
le

 3

Bus Com 3

ID 3

Run-time

Module

Controller

µController
(MicroBlaze)

ICAP

Decompressor
Unit (LZSS)

Buffer

CAN-
Interface

B
u
ffe

r

B
u
ff
e
r

HW-Layer API (Data, Function-Negotiation, Reconfiguration)

Function- Allocation- Management

Local Run-Time

Control (GP-Proc.)

APPLICATION-API (QoS, Functions, Communication)

CBR-based Function-/ HW-Resource Selection

Opcode/Bitstream-Repositories (FLASH)

CPU
GP Proc.

CPU
GP Proc.

and operating system adaptations. In section 4 we

introduce the Universal Multiplexing Multi-channel

Message Transceiver (UM
3
T) concept and an example

scenario. Current FPGA synthesis results are presented in

section 5. The paper concludes with a summary and

perspectives on our future work.

2. System Platform Overview

 In the following we want to give an overview on the

system demonstrator and its used components. As figure 2

shows, the complete demonstrator consists of three main

components. The first bigger component is a Xilinx

ML 310 board featuring a Xilinx Virtex II pro XC2VP30

FPGA including two on-chip PowerPC processors (on-

board clock 100 MHz). The second main component is a

low cost Digilent FPGA-board equipped with a Xilinx

Spartan-3 XC3S400 low-power FPGA (on-board clock 50

MHz). The third main component is a standard of-the-

shelf 2 GHz Pentium M laptop computer which is used for

control and debugging purposes. As can be seen from

figure 2 both boards are connected through a Controller

Area Network-bus (CAN) [17] as shared communications

medium. The CAN-bus protocol is known as a robust

high-speed real-time capable serial-bus communication

standard in the automotive domain where it is used to

interconnect engine control units and other electronic

automotive devices. The laptop computer is connected to

the CAN-bus through a PCMCIA-CAN-connector card,

which enables for communication and bus sniffing

purposes. The laptop’s software functionalities for

accessing the CAN-bus are provided by the CANoe

software toolkit, which offers all needed means for

programming interactive CAN-aware applications [21].

The laptop can be alternately connected to both boards

through a JTAG-interface for configuration programming

and run-time debugging purposes. Additionally the laptop

is connected via a hyper-terminal on its COM RS-232

ports to both boards enabling for text I/O and ASCII-data

streaming. The ML 310 board features an attached LCD-

display for text output and a simple self-made audio

output device. As mentioned above both boards are

connected to CAN-bus through special CAN-transceiver

cards which provide an analog-digital interface between

CAN-bus and digital on-chip CAN-IP-core functionalities.

The used Verilog CAN-IP-core originates from an open-

source hardware project where it was developed on the

basis of the original CAN-bus system’s specifications [17]

for providing a free licensed CAN-IP-core to the

community. The interconnecting CAN-bus main cable and

the described CAN-transceiver cards are because of cost

reasons self-designed based on the given CAN-bus

system’s specifications. Unfortunately the deployed cable

has a lower performance compared to commercial

expensive high-quality CAN-connector bus-cables. The

main problem was to correct the cable’s wave impedance

adjustment to a value of 120 Ohms which was not such

successful so that our best efforts resulted in a 280 kbit/s

error free peak performance compared to a specified

theoretical value of 1 Mbit/s. Although it is possible to

operate the bus in the range of 1 Mbit/s the transmission

error rate was much too high for being tolerated.

3. Hardware/Software System Structure

As mentioned above the ML 310 features a

Virtex II pro FPGA with two hard-wired on-chip PowerPC

processors. These processors are used to set up an on-chip

multi processor system which is driven by a real-time

operating system in a master/slave fashion on both

processor cores. Figure 3 gives an overview on the internal

on-chip system structure. On every processor we

implemented an instance of the µC/OS-II real-time

operating system [11, 14]. On top of each OS

implementation a set of several dedicated system-service

and application tasks is provided. The service tasks are

responsible for the local resource management, peripheral

driver support and communications handling (UM
3
T,

section 4). A superordinate centralized function is inherent

in the allocation management function which is located on

Figure 2. Hardware system-setup

C
A

N
-B

u
s

LCD-DisplayLCD-Display

C
A

N
-

T
ra

n
s
c
e
iv

e
r

C
A

N
-

T
ra

n
s
c
e
iv

e
r

C
A

N
-

T
ra

n
s
c
e
iv

e
r

Xilinx ML 310

Virtex II Pro

XC2VP30

Digilent

SPARTAN 3 – 400

C
O

M

COM

C
O

M

COM

Text I/O

HyperTerm

Amp.

CAN

CANoe-based

User-Frontend

JTAG/

Debug IF

the master-processor (PPC0). As mentioned in section 1 it

is responsible for handling function requests from local

(and possibly non-local) application tasks [20].

The used operating system offers various advantages. It

is highly scalable and can be run from read-only memory

if needed. It features a preemptive and deterministic

multitasking kernel for microprocessors and micro-

controllers. Up to 63 application tasks (+1 kernel task)

can be handled and most common OS services like

semaphores, message queues and time/task management

are supported. The execution time for most of the provided

kernel services is constant and deterministic and does not

depend on the number of running application tasks. The

source code is completely available as ANSI C code and is

very well documented [11]. Furthermore it is completely

royalty free for non-commercial use. It can be ported to

various processor-based target architectures and only some

minor assembler level adaptations have to be done for

porting the operating system to a new hardware platform.

µC/OS-II is certified by FAA [5] and MISRA [15] for

compliance showing that µC/OS-II is a very robust and

reliable piece oft software. Since the actual on-chip

structure on the Virtex II pro FPGA is rather complex,

figure 3 shows only a simplified view of the modular

hardware/software on-chip interdependencies. Even

though it was possible to interconnect both processors via

a common On-chip-Peripheral Bus (OPB), we decided to

implement both processors with their own separate buses,

since we wanted to realize two more or less independent

subsystems. Nevertheless we had to provide a fast

communication channel between both processors.

Although there possibly exist better solutions we

implemented a shared-memory by using on-chip dual-

ported Block-RAM (BRAM) resources enabling both

processors to access the RAM-block via their own

Processor-Local-Bus (PLB) interconnections. The

available on-chip RAM resources where not sufficient for

providing enough program-memory for both operating

systems and their application executables, since we needed

the BRAM resources for other hardware functions (like

the CAN-IP core and CBR-unit) also. So we used the

plentiful available on-board 256 MB DDR RAM for

storing there all operating system and application

executables in disjoint memory regions. The Xilinx

Embedded Development Kit (EDK 6.3) [26] which was

used for the development, synthesis and testing did not

allow common memory areas for both processors. So we

used a little trick by mapping a block of 16 KB dual-

ported BRAMs as shared memory into both memory

areas. The shared-memory communication channel is set

up by low-level driver threads which synchronize by a

simple handshake protocol. Apart from the shared-

memory the on-chip implementation features some

peripherals like UART/COM, CAN-IP, LCD-Display and

a simple DAC for sound output. Since these peripherals

are connected separately to their local processor’s OPB

they are treated by their processors as private peripherals,

which is important for the resource management approach

as it will be briefly outlined in section 4.

Figure 4 gives a simplified overview on the Spartan-3

FPGA secondary slave system. Compared to the previous

PowerPC platform the Spartan-3 does not come with a

hard-wired CPU so we mapped the Xilinx MicroBlaze 32-

bit soft-core RISC processor [26] together with its OPB-

connected UART, CAN-IP and some small test-IP

peripherals on FPGA. Like on the Virtex II pro platform

the available on-chip memory resources were not

sufficient for the executables so that we moved all

executables on the 1M-byte fast asynchronous on-board

SRAM which offered enough resources for our purposes.

The Spartan-slave platform uses nearly the same µC/OS-II

implementation like on PowerPC. Apart from some minor

low-level modifications concerning timer & interrupt

handling we could migrate the OS-kernel and management

source codes without any extensive adaptations, which is

one of the great benefits of µC/OS-II. Since we had to use

on-board memory in both cases for storing the run-time

Figure 3. Virtex II pro platform

A
p

p
l.

-T
h

re
a
d

F
1

A
p

p
l.

-T
h

re
a
d

F
2

L
o

c
a
l
M

g
m

t.

H
W

-D
ri

v
e
r

T
h

re
a
d

s

U
M

3
T

A
p

p
l.
-T

h
re

a
d

F
3

H
W

-D
ri

v
e
r

T
h

re
a
d

s

A
ll

o
c
.

M
g

m
t.

L
o

c
a
l

M
g

m
t.

U
M

3
T

DAC

PPC1PPC1

MEM

PPC0PPC0
Shared

MEM

µC/OS-II (Slave) µC/OS-II (Master)

UART
RS232

COM

Ext-CAN-

Transceiver

CAN

MEM

LCD-DisplayLCD-Display

CAN-

IP-Core

HW

CBR-Unit

Figure 4. SPARTAN-3 platform

A
p

p
l.

-T
h

re
a

d
F

4

A
p

p
l.

-T
h

re
a

d
F

5

H
W

-D
ri

v
e

r

T
h

re
a

d
s

U
M

3
T

L
o

c
a

l
M

g
m

t.

On-board

MEM

µC/OS-II (Slave)

UART
RS232

COM
MicroBlaze

Test

IP1

Ext-CAN-

Transceiver

CAN

CAN-

IP-Core

LED

Test

IP2

executables it was not possible to embed the opcodes

inside the FPGAs’ bitstreams. So we had to upload

subsequently all executables after FPGA configuration

through the processors’ JTAG-debugger interface. Albeit

we intend to replace in near future the resource limited

Spartan-board by a modified µC/OS-II adapted run-time

reconfigurable FPGA-sub-system, we wanted to get some

first motivating results on the feasibility of our sub-system

spanning concept.

4. Universal Multiplexing Multi-channel

Message Transceiver Concept (UM
3
T)

As previously mentioned in section 1 the resource and

allocation management mechanism is responsible for

handling the application’s reservation requests on sub-

functions calls. The central allocation manager’s main

tasks are the retrieval of suitable function-implementation

variants and a feasibility check of the found functions in

the context of the callers priority by considering the

resource consumption and assignment. At run-time the

manager stores administrative data on the current set of

active instantiated functions in a function resource

allocation table (FRAT) (figure 6 bottom). It contains

relevant allocation and reference informations like the

application handler (Alloc ID) and on which hardware-

unit the function was instantiated. The table contains as

many entries as functions implementations can be

provided by the sub-systems. Each implementation variant

offered by a sub-system is identified by its unique

identifier (UID). Furthermore the table stores the calling

application’s priority and its reservation status. Other

table-fields store information on each implementation’s

power consumption (PC) and required bandwidth (BWR)

which have been pre-estimated by previous simulation and

testing of the functions’ models. These information can be

evaluated in future versions for run-time optimizations. It

should be noted that each table is characterized by a

realization identifier (RID). This RID is provided by the

CBR-retrieval unit [20] which checks a function-database

for suitable function realization variants which match best

to the application’s request description. Figure 5 and 6

give a brief overview on the needed steps that occur

during a function allocation. Figure 5 shows the decision

steps to be taken if a requested (and unique) resource is

already in use by an other application. Depending on its

priority the calling application may preempt the

application of lower priority. In that case the FRAT gets

updated and the preempted application either may request

another resource providing the same function type with

lower quality or it can try to request the resource until it

gets a new grant. Figure 6 gives a different view on the

allocation steps. An example application (UID 68)

demands an FIR-filter function (1). The allocation

manager forwards the relevant parts of the request to the

CBR-retrieval unit (2) which attempts to find a set of best

matching realizations and their related RIDs (3).

Depending on the found RIDs the FRAT is checked for

matching non-used table entries (4). Allocated resources

get only de-allocated if no free resources were found and

the requesting application’s priority overrides the allocated

resource’s application priority. In the next step the

allocation manager will allocate the function module by

Figure 5. Preemptive priority controlled

Resource allocation mechanism

Resource

request
FRAT lookup

Resource

is free

Resource

is occupied

FRAT

update

Msg to new

Res. owner

Caller prio.

higher

Msg to old

Res. owner

Msg to new

Res. owner

Caller prio.

lower

Deny request

to caller

FRAT

update

CBR-Retrieval

Figure 6. Resource -allocation by using UM
3
T

Appl. MP3

UID=68

Request:

Type „FIR“

Request:

Type „FIR“

RID Set: [10, 13, 15]

IDs of Realizations

OK, Use

UID=130

HW-Node- Y Ressources

IIR-1
UID=130

(not used)

Sub-System Local- Manager /

Local-Message Distributor

IIR-2
UID=131

(not used)

UM3T: Allocate

UID 130 for UID 68

UM3T:

ACK

UM3T:

DATA

UM3T:

RESULTS

FIR
UID=129

Targ.ID=68

9

5

1

7

3

2

6

10 11

Allocation-

Manager
CBR-

Retrieval

Type

DAC

FIR

FIR

LCD

Type

DAC

FIR

FIR

LCD

8

RID

9

1

1

2

RID

9

10

10

22

Function- Ressource Allocation Table (FRAT) - excerpt

UID

55

130

230

209

UID

55

130

230

209

4

App. Prio

“high”

Used

false

true

false

68 “low” true

App. Prio

“high”

Used

false

false

true

false

Alloc.ID

72

Alloc.ID

72

PC

90

150

180

30

PC

90

150

180

30

BWR

64

128

254

20

BWR

64

128

254

20

Update FRAT

sending an allocation command through UM
3
T to the local

sub-system manager where the resource gets configured

and prepared to run (5)(6). The local sub-system manager

responds by sending a positive acknowledge via UM
3
T to

the allocation manager (7) who updates its FRAT (8).

Finally the successful allocation will be reported back to

the calling application (9) which in return can

communicate directly with its allocated function (10)(11).

The universal multiplexing multi-channel message

transceiver (UM
3
T) concept is basically a node-bridging

packet oriented routing protocol mechanism. It is a central

system layer which multiplexes the inter-module and

application⇔system⇔module communication (see figure

7). The used data frame format was derived from the CAN

message data payload format, since CAN is a central bus

of the demonstrator so that data-frame transformations

between different physical ports can be simplified due to

this fact. An UM
3
T-data-frame consists of a target UID,

source UID, data length and up to 8 data bytes. Since

CAN furnishes this UM
3
T-frame with its own headers,

and provides low-level error-detection and retransmit-

services this does not need to be handled by UM
3
T,

although corresponding high-level services are

conceivable for future versions. UM
3
T performs the

conversion and forwarding of incoming buffered data

packets to other communication ports (e.g. shared

memory, UART and other peripherals) which are

connected to the same local device node. The packet

forwarding is performed by the corresponding low-level

port drivers, bypassing communication without involving

the application layer (see figure 7). Local UM
3
T port

tables are used containing UID-ranges and their

corresponding output ports (see figure 8 top). The UID-

range identifies all function-modules and sub-system

managers which can be (in)-directly reached through the

given output port. This way, devices which don’t have a

direct connection to a central system bus, get the

possibility for sending their data to their destinations

without having to know about the route to be taken. This is

an interesting aspects for integrated systems

communicating through bridged networks-on-chip [2].

Another benefit of UM
3
T that we figured out is its

potential use for bus-diagnosis purposes. Instead of buying

expensive CAN-diagnosis hardware we can use for

example the cheap Spartan-board and its UART/ UM
3
T

connection for diagnostic measurements on the connected

CAN-bus. The use of UID ranges offers potentials

concerning an optimization of the port mapping tables’

size and access speed by organizing the heterogeneous

network as a hierarchical spanning tree. This way every

sub-tree gets its own unique UID-range. Additionally it is

possible to subdivide the UID into a node-ID and a sub-ID

for addressing the local node’s manager and sub-modules.

The UM
3
T port table mapping and forwarding procedure

is rather simple and can be potentially moved from

software implementation into a dedicated interface IP-

block if the network node does not provide processor

resources. Every legal packet which arrives at its final

destination node will be forwarded to the node’s local

message distributor, a sub-unit of UM
3
T. There a local

table is used for assigning the packet to its destination

function-module (see figure 8).

It should be noted here that the CAN-bus protocol does

a one-to-many communication where the sender and not

its destination is identified in the CAN-packet header, so

Figure 7. System view - UM
3
T-layer

UM3T Transport Layer

App1

Allocation- ManagerAllocation- Manager

Local HW Driver(s)Local HW Driver(s)

HW Module(s)HW Module(s)

Local SW Module(s)Local SW Module(s)

App2 Appn

Bypass application

Figure 8. UM
3
T Data forwarding after allocation

Appl. MP3

UID=68

CAN-Bus

Port 1

UM3T

Instance I

Msg. to: UID=130

(from UID=68)

Physical

Border

UART-

OPB

Port 3

UART-

OPB

Port 3

UART-

OPB

Port 2

UART-

OPB

Port 2

UID Module

Local Table

128 System

129 Module 1

130 Module 2

UID Module

Local Table

128 System

129 Module 1

130 Module 2

Active Modules

Module1 Module2

Local Port

Shared

MEM

Port 2

Shared

MEM

Port 2

U-UID

63

L-UID

Port Table

48

O-Port

Port 2

U-UID

79

159

143

L-UID

Port Table

64

144

128

O-Port

Port 1

Port 2

Local

U-UID

79

159

143

U-UID

79

159

143

L-UID

Port Table

64

144

128

O-Port

Port 1

Port 2

Local

O-Port

Port 1

Port 2

Local

Port 1

79

255

143

64

240

128

Local

Port 3

Port 1

UID Module

Local Table

64 System

68 App.MP3

69 TxtStrm

UID Module

Local Table

64 System

68 App.MP3

69 TxtStrm

Local

Message

Distributor

Node UID 64

Node UID 128

Local Port

I/O Message

Buffer

(Free-list Q)

UM3T

Instance I

Local

Message

Distributor

I/O Message

Buffer

(Free-list Q)

each node connected to CAN-bus has to accept all arriving

packets from the bus. This overhead can be easily handled

by UM
3
T which checks only the UM

3
T-headers target

UID on its local port map. If input port and output port are

equal the incoming packet can be dropped for preventing

from packet duplication. Broadcast communication is

currently not supported by UM
3
T since most data

dependencies between applications and their sub-functions

are simple single layered trees than complex hierarchic

structures. Nevertheless we conceive as a future extension

sub-modules that may allocate other sub-functions by

themselves, creating this way chains and trees. As shown

in figures 2, 3, 4 we implemented the demonstrator as a

heterogeneous network. The system was tested by

applying different application request scenarios. We used

the laptop computer for inserting text (1) and audio (2)

data streams into the connected RS232-COM (1) (via

Spartan-board) and CAN channels (2). Both PowerPC

processor’s provided the handling applications that

reserved the needed peripheral output and display

resources by using the allocation management service.

After their reservation the incoming streaming data were

directly sent via UM
3
T to their output destinations (LCD-

display, low-rate 16 kHz WAV-out). We programmed on

the laptop a high priority CANoe-based application that

could alternately request and release the already allocated

resources for its own data streams. Each time we claimed

through that application one or both output peripherals we

could observe the immediate switching of the output

streams. As soon as we released the seized resources the

previous owners regained the output devices and

continued their job. A buffering of interrupted streams,

although possible, was not implemented in this version.

Just to test and show that communication of third party

applications is not interfered an additional application (on

PPC1) performed distributed calculations by using a

reserved hardware-IP on the Spartan-board. The results

were sent back to their calling application and their

sequential order and correctness were verified. Exclusive

measurements of the shared memory channel between

PPC0 and PPC1 showed a possible peak data rate of 195

kB/s. Although table 3 shows that much faster CAN-data

rates are possible in principle we had to reduce the bus-

speed to 280 kBit/s (35 kB/s), since during our tests we

identified our self-designed CAN-bus connector-cable as

bottleneck, which prevented us from doing other stress

tests on the system. Apart from this problem we could

prove the operativeness and feasibility of our concept.

5. Implementation Results

The tables 1-4 give an overview on the needed FPGA

resources on Virtex II pro and Spartan-3. Because of the

larger size of Virtex II pro we still have plenty of free

CLB resources left (approx. 67 %), that we can use for

other purposes. On the other hand the reached maximum

frequency of 101 MHz is very close to the on-board clock.

Table 2 shows that the resources of Spartan-3 are

completely exhausted. Since we mapped a MicroBlaze

processor, CAN-IP and small test-peripherals on that chip

we had to spend some efforts until synthesis and place &

route were successful. The standalone synthesis of our

adapted CAN-IP cores (see also table 3) showed that they

can be operated at even higher frequencies. Table 4 shows

the size of the different executables on PowerPC and

MicroBlaze. Although PPC0 and PPC1 are configured with

different applications and system services the code sizes

are only slightly different, since both use the same OS-

and UM
3
T-implementation. Compared to that results the

MicroBlaze-implementation consumes only the half size

of code which might be caused by other compiler settings.

6. Conclusions and Outlook

This contribution presented a system concept of

interconnected heterogeneous hardware/ software

components that can dynamically allocate and release

system resources depending on priorities and QoS

demands. We introduced and demonstrated a first version

of the UM
3
T-protocol which allows indirect

Table 1. XC2VP30 synthesis results

External IOBs 94 out of 556 16%
PPC405s 2 out of 2 100%

RAMB16s 91 out of 136 66%

SLICEs 4532 out of 13696 33%
BUFGMUXs 7 out of 16 43%

DCMs 2 out of 8 25%

JTAGPPCs 1 out of 1 100%
TBUFs 8 out of 6848 1%

Max frequency 101 MHz

Table 2. Spartan-3-400 synthesis results

External IOBs 85 out of 173 49%
RAMB16s 9 out of 16 56%

SLICEs 3300 out of 3584 92%

 SLICEMs 356 out of 1792 19%
BUFGMUXs 2 out of 8 25%

MULT18X18s 3 out of 16 18%

Max frequency 52 MHz

Table 3. CAN IP resource usage

SLICEs (XC2VP30) 1000 out of 13696 7%

SLICEs (Spartan 3-400) 855 out of 3584 23%

External IOBs 3 on both FPGA types
RAMB16s 3 “

BUFGMUXs 2 “

Max frequency (XC2VP30) 124 MHz (standalone)
Max frequency (Spartan 3-400) 89 MHz (standalone)

Table 4. Overall size of executables (KB)

ML 310 Virtex II pro PPC0 295 kb (Kernel approx. 60 %)

ML 310 Virtex II pro PPC1 294 kb “
Spartan-3 MicroBlaze 150 kb “

communication between the system’s functional

components regardless of location and local physical layer

properties. It should be noted that UM
3
T can be flexibly

extended by other bridge modules supporting other

standards like LIN, USB or Ethernet. Additionally it is

conceivable to move later the UM
3
T functionality into

HW-accelerated IP-blocks, including message buffering,

translation and forwarding. We plan to extend the current

resource reservation process in a way that sub-module

chains and trees can be created, which implies changes to

the allocation/ de-allocation mechanism concerning

aspects like locality/ neighborhood relations of resources

and garbage collection issues. To get closer to our goals it

is furthermore intended to include partial run-time

reconfigurable hardware modules on our Virtex II pro

platform which are interconnected by a packet oriented

local network on-chip as a part of UM
3
T. Finally the

project shall be driven into the direction of the highly

topical organic computing paradigm providing new

features like self-adaptation, self-healing and self-

optimization.

7. References

[1] A. Aamodt and E. Plaza, "Case-Based Reasoning:

Foundational Issues, Methodological Variations, and System

Approaches," Int’l Journal on Intelligent Automation and Soft

Computing, vol. 7, no. 1, 1994, pp. 39-59.

[2] L. Benini and G. De Micheli, "Networks on chips: a new SoC

Paradigm," IEEE Computer, vol. 35, no. 1, 2002, pp. 70-78.

[3] G.J. Brebner, "A Virtual Hardware Operating System for the

Xilinx XC6200," in Proc. 6th Int’l Conf. Field Programmable

Logic Smart Applications, New Paradigms and Compilers
(FPL'96), LNCS vol. 1142, R.W. Hartenstein and M. Glesner,

Edt., Springer-Verlag, 1996, pp. 327-336.

[4] K. Danne, "Operating Systems for FPGA Based Computers

and Their Memory Management," Proc. Organic and

Pervasive Computing, Workshop (ARCS'04), Köllen Verlag,

2004, pp. 195-204.

[5] Federal Aviation Administration, 2005, http://www.faa.gov/

[6] J.C. Ferreira and M.M. Silva, "Run-Time Reconfiguration

Support for FPGAs with Embedded CPUs: The Hardware

Layer," Proc. 19th IEEE Int’l Parallel and Distributed

Processing Symp. (IPDPS'05) (CD-ROM), IEEE CS Press,

2005, pp. 165a-165a.

[7] S.C. Goldstein et al., "PipeRench: a Reconfigurable

Architecture and Compiler," IEEE Computer, vol. 33, no. 4,

2000, pp. 70-77.

[8] B. Griese, S. Oberthür and M. Porrmann, "Component Case

Study of a Self-optimizing RCOS/RTOS System: A

Reconfigurable Network Service," Proc. Int’l Embedded
Systems Symp. (IESS), Springer-Verlag, 2005, pp. 267-277.

[9] M. Hübner et al., "Scalable Application-Dependent Network

on Chip Adaptivity for Dynamical Reconfigurable Real-Time

Systems," in Proc. 14th Int’l Conf. Field Programmable Logic

and Applications (FPL'04), LNCS vol. 3203, J. Becker, M.

Platzner and S. Vernalde, Edt., Springer-Verlag, 2004, pp.

1037-1041.

[10] M. Hübner, K. Paulsson and J. Becker, "Parallel and Flexible

Multiprocessor System-On-Chip for Adaptive Automotive

Applications based on Xilinx MicroBlaze Soft-Cores," Proc.
19th IEEE Int’l Parallel and Distributed Processing Symp.,

Reconfigurable Architectures Workshop (IPDPS'05), IEEE CS

Press, 2005, pp. 149-154.

[11] J. Labrosse, MicroC/OS-II: The Real-Time Kernel, CMP

Books, 2002.

[12] Z. Li, K. Compton and S. Hauck, "Configuration Caching

Management Techniques for Reconfigurable Computing,"

Proceedings of the 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'00),
IEEE CS Press, 2000, pp. 22-36.

[13] T. Marescaux et al., "Interconnection Networks Enable Fine-

Grain Dynamic Multi-tasking on FPGAs," in Proc. 12th Int’l
Conf. Field Programmable Logic and Applications,

Reconfigurable Computing Is Going Mainstream (FPL'02),
LNCS vol. 2438, M. Glesner, P. Zipf and M. Renovell, Edt.,

Springer-Verlag, 2002, pp. 795-805.

[14] Micriµm Technologies Corporation, "Micrium - µC/OS-II

RTOS," 2005, http://www.ucos-ii.com/.

[15] MISRA, The Motor Industry Software Reliability Association,

2005, http://www.misra.org.uk/

[16] V. Nollet et al., "Hierarchical Run-Time Reconfiguration

Managed by an Operating System for Reconfigurable

Systems," Proc. 3rd Int’l Conf. Eng. Reconfigurable Systems
and Algorithms (ERSA'03), CSREA Press, 2003, pp. 81-87.

[17] Robert Bosch GmbH, "CAN Specification," 2003,

http://www.semiconductors.bosch.de/pdf/can.pdf.

[18] M. Ullmann et al., "An FPGA Run-Time System for

Dynamical On-Demand Reconfiguration," Proc. 18th Int’l
Parallel and Distributed Processing Symp. (IPDPS'04)(CD-

ROM), IEEE CS Press, 2004, pp. 135-142.

[19] M. Ullmann et al., "On-Demand FPGA Run-Time System for

Dynamical Reconfiguration with Adaptive Priorities," in Proc.

14th Int’l Conf. Field Programmable Logic and Applications
(FPL'04), LNCS vol. 3203, J. Becker, M. Platzner and S.

Vernalde, Edt., Springer-Verlag, 2004, pp. 454-463.

[20] M. Ullmann, W. Jin and J. Becker, "Hardware Support for

QoS-based Function Allocation in Reconfigurable Systems,"

Proc. Conf. Design, Automation and Test in Europe (DATE
'05), IEEE CS Press, 2005, pp. 259-264.

[21] Vector CANtech Inc., "CANoe," 2005,

http://www.vector-cantech.com.

[22] M. Vuleti et al., "Operating System Support for Interface

Virtualisation of Reconfigurable Coprocessors," Proc. Conf.
Design, Automation and Test in Europe (DATE '04), IEEE CS

Press, 2004, pp. 10748.

[23] M. Vuleti, L. Pozzi and P. Ienne, "Seamless Hardware-

Software Integration in Reconfigurable Computing Systems,"

IEEE Design & Test of Computers, vol. 22, no. 2, 2005, pp.

102-113.

[24] J.W. Williams and N. Bergmann, "Programmable Parallel

Coprocessor Architectures for Reconfigurable System-on-

Chip," Proc. IEEE Int’l Conf. Field-Programmable

Technology (FPT'04), IEEE CS Press, 2004, pp. 193-200.

[25] J.W. Williams and N. Bergmann, "Embedded Linux as a

Platform for Dynamically Self-Reconfiguring Systems-on-

Chip," Proc. 4th Int’l Conf. Eng. of Reconfigurable Systems

and Algorithms (ERSA'04), CSREA Press, 2004, pp. 163-169.

[26] Xilinx, 2005, http://www.xilinx.com/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

