
VHDL to FPGA automatic IP-Core generation: A case study
on Xilinx design flow

Fabrizio Ferrandi
DEI - Politecnico di Milano

e-mail: ferrandi@elet.polimi.it

Giovanna Ferrara
Siemens S.p.A.

e-mail: giovanna.ferrara@siemens.com

Roberto Palazzo
DEI - Politecnico di Milano

e-mail: roberto.palazzo@email.it

Vincenzo Rana
DEI - Politecnico di Milano

e-mail: vincenzo.rana@email.it

Marco D. Santambrogio
DEI - Politecnico di Milano

e-mail: marco.santambrogio@polimi.it

ABSTRACT
This paper aims at introducing a methodology that allows
an easy implementation of IP-Cores focusing only on their
functionalities rather than their interfaces and their inte-
gration in a given architecture. The proposed approach im-
plements all the communication infrastructure needed by a
component, described in VHDL, to be finally inserted into
a real architecture that can be implemented on FPGAs, re-
ducing the time to market of the final implementation of the
system. To validate the entire methodology, we have per-
formed a comparison based on the CoreConnect communi-
cation infrastructure, between our results with the classical
Xilinx design flow using EDK and ISE.

1. INTRODUCTION
The design of embedded systems has rapidly changed dur-

ing the last decade. It is possible to identify two main re-
sponsible factors: hardware/software codesign and dynamic
reconfigurable architecture.The typical target architecture
to which this kind of methodologies applies is one in which
a general-purpose microprocessor is used in conjunction with
a so called Intellectual Property Core (IP core), typically im-
plemented as a custom hardware component. The products
of the co-design process are thus the hardware description of
the IP core and the code for the software portion that will
run on the CPU. Together, the two components implement
the overall system. Recently, reconfigurable devices such
as Field Programmable Gate Arrays (FPGAs), which allow
fast and relatively low-cost prototyping, are also being used
in target architectures as IP cores. Moreover, these devices
introduce yet another degree of freedom in the design work-
flow: the designer can have the system autonomously modify
the functionality performed by the IP-Core according to the
application’s changing needs while it runs. Research in this
field is, indeed, being driven towards a more thorough ex-
ploitation of the reconfiguration capabilities of such devices,
so as to take advantage of them not only at compile-time,
i.e. at the time when the system is first deployed, but also
at run-time, which allows the reconfigurable device to be re-
programmed without the rest of the system having to stop
running. In both the co-design scenario and the dynamic re-
configuration case, the IP-Core functionality identification,
its generation and the possibility of having a flexible and
easy mechanism of plug-in of the IP-Core into a fixed and
known system are issues of primary concern.

In order to propose a methodology that can be really used
into the common design flow of an embedded system we de-
cide to focus our attention on the system design using the
Xilinx tool chain composed by EDK and ISE. The final im-
plementation of the system has been tested using the Vir-
texIIPro Xilix FPGAs such as the 2vp7 and the 2vp20.

The paper presents a first part that explain the IP-Core
integration into an EDK system, with special attention on
the standard bus interfaces already available in the EDK li-
brary. After the EDK description, in section 3 will present
the proposed methodology. In section 4, a real case study
based on the proposed methodology and the Caronte archi-
tecture has been presented and finally, in section 5, we will
propose a set of tests to validate the entire methodology.

2. THE EDK CASE
The Embedded Development Kit, EDK, produced by Xil-

inx, is designed to provide designers with a rich set of design
tools and a wide selection of standard peripherals required
to build embedded processor systems using MicroBlaze, the
Xilinx soft processor solution, and the new and unique fea-
ture in Virtex-II Pro, the IBM PowerPC CPU [1].

EDK can be used to easily implement a complete system
description that has to be implemented using the Virtex II
and the Virtex II Pro SoC platform. IBM PowerPC and
MicroBlaze soft-core processor are both implemented with
the IBM CoreConnect bus architecture, [2].

The IBM CoreConnect bus architecture eases the inte-
gration and reuse of processor, system, and peripheral cores
within standard product and custom system-on-a-chip (SOC)
designs, [3]. The versatility of CoreConnect bus architec-
ture allows engineers to assemble custom SOC designs using
cores designed to CoreConnect specifications. With time-
consuming performance, functional, and timing pattern is-
sues resolved, designers can focus on product differentiation
- dramatically reducing costs and time-to-market for simple
and complex SOC designs, [3, 4]. The CoreConnect bus ar-
chitecture is a standard SOC design point, [3], and consists
of three buses, [2, 4]:

• PLB: The Processor Local Bus is a 64-bit width pri-
mary high-performance memory bus that interfaces di-
rectly with the processor, both IBM PowerPC and Mi-
croBlaze.

• OPB: The On-chip Peripheral Bus is designed for less
time-critical connections to peripherals, it is a 32-bit

1-4244-0054-6/06/$20.00 ©2006 IEEE

data-width bus used for interfacing slow peripheral, or
slow peripheral interfaces to the system.

• DCR: The Device Control Register bus is used mainly
to save OPB and PLB bandwith.

Any custom IP-Core that connects to the CoreConnect
bus must meet the principles of the PLB or the OPB proto-
col and the design must meet the requirements of Platform
Generator and CoreGen flow to take advantage of the simple
automated flow that generates the system-level architecture
as well as other template scripts supported by Xilinx.

The Xilinx Platform Studio, XPS, the EDK tool chain
used to implement hw and sw platforms, can be used to de-
sign embedded system combining together several IP-Cores
that communicate with each other through the CoreConnect
bus architecture and the final system implementation that
can be mapped onto the Xilinx FPGA. In order to develop
EDK-based system designs able to meet different require-
ments according with the designer needs, XPS provides the
possibility of extending its library components adding cus-
tom IP-Cores designed by users. Although this operation is
very powerful and flexible it still requires a lot of time to
be completed and it can be done only using the EDK in-
tegrated design environment, that means a huge amount of
computational resources.

3. THE PROPOSED METHODOLOGY
The proposed approach allows the designer to create his

own architecture and system description using EDK; there-
fore we decided to focus our attention on this solution just
to be able to propose a first real prototyping implementation
of the flow that can be used in real application, as shown
in section 4 and 5. Once the architecture has been defined,
it provides a tool chain that, accepts as input the system
architecture and the new functionalities described in VHDL
and produces the final configuration bitstream file describ-
ing the architecture with the new functionalities plugged in
it and ready to be used on the FPGA.

3.1 IP-Core generator
The creation of a component is a process that can be di-

vided into two distinct parts: the implementation of the IP-
Core logic and the interconnection with the external world.
These two parts allow the component to carry out its func-
tionality, but only the first one is responsible of data elabo-
ration, while the second one interacts the architecture. This
second part can be further separated in two other parts: the
communication with the bus and the registers mapping.

The IP-Core generator tool has been developed to solve
the problem of the automatic creation of an EDK-compatible
core starting from a generic VHDL functionality.

The IP-Core generator tool can be described as consti-
tuted by three main steps:

• The input phase: the tool needs the name and the
VHDL description of the core;

• The Reader process computes the first part of the
IP-Core generator tool:

– Parse the VHDL core description;

– Builds the signals list: the basic idea is that when
a signal is recognized, it is analyzed and its infor-

mation is stored in the signals list, this action is
repeated until the end of the core is reached;

– Save the core name in a variable used by the fol-
lowing process.

• The second process, the Writer, is characterized by
the following actions:

– Accept as inputs the signals list, generated by the
Reader, and the core name, provided by the user;

– Create a stub file between the Core and the IP-
Core description VHDL files;

– Design the top architecture which is the final IP-
Core: according to the bus architecture chosen,
OPB or PLB, the correct communication infras-
tructure is created to complete the generated stub
file to realize the final IP-Core design.

During this flow, if one of the two processes fails, the flow is
halted and an error message containing useful information
about the problem, is provided to the user. If the flow ends
with no error the system reaches the end of the IP-Core
generation tool and it is ready for the next phase, which is
described in the following section.

3.2 EDK System creator
Aim of this phase is to provide a tool able to automate

the binding between a generic IP-Core, in the proposed flow
it is provided by the IP-Core generator tool, and a given
system EDK-compatible architecture. Both these compo-
nents are considered as the input of the EDK system creator
tool with also a configuration file containing the physical ad-
dresses for the IP-Core. This tool has been tested using a
IBM PowerPC-based architecture, but there is no concep-
tual problem of using also a MicroBlaze or a multiprocessor
one. Basically the EDK system creator tool is composed by
two phases:

• Import of the IP-Core: set all the necessary param-
eters to allow the IP-Core to be treated as an EDK
component;

• Insertion of the IP-Core: insert the IP-Core in the
EDK architecture provided as input.

3.2.1 Import of the IP-Core
The import phase receives as input the address space of

the IP-Core, specified in the configuration file, and the VHDL
files and creates the full IP-Core directory tree of the IP-
Core, the PAO and MPD description files, needed by EDK,
according with the EDK requirements. The input files and
the IP-Core name are taken from a repository, specified by
default, or modified by the user changing the configuration
file, as ”./repository”, while the IP-Core addresses, used to
define its working space, are provided in the configuration
file. The import phase starts with the creation of the cor-
rect tree directory structure, using system calls, in order to
adapt the IP-Core definition to an EDK compatible one; if
one of these calls does not succeed, the program rises a warn-
ing, but does not abort its computation, this is useful in the
case a directory already exists, but the files are not yet cor-
rectly stored. After ending the directory structure creation
the program copies the files stored in the repository, whose
name respects naming requisites, to the correct directory,

copying also all the necessary files for the correct interface
architecture. At the end of this process, the correct PAO
and the MPD files are created in the correct location, e.g
$correct path/data. Also during this part of the process, if
one of the operations fails the program just stores the error
in a log file but does not abort itself, for the same reason
explained for the tree directories creation.

3.2.2 Insertion of the IP-Core
After the first phase, Section 3.2.1, the IP-Core has been

correctly imported into the available IP-Core list of the ar-
chitecture, but it has not been inserted into the base archi-
tecture. This action has to be done by the second phase of
the EDK System creator tool. This second phase consists
in the connection of the IP-Core to the correct bus and its
correct integration in the base architecture.

To achieve this point the program must modify two files
that are in the base architecture directory, and are named
system.mhs, containing a hardware description of the con-
nection between IP-Core and architecture, and system.mss,
defining the software description. In order to know which
part of these files must be modified, this tool needs to know
the IP-Core name that has been provided by command line
at the tool invocation. If no name has been passed to the
startup, the program aborts itself. If no error occurs, at
this point the EDK system creator modifies the system.mss
and the system.mhs files to add the characteristics of the
new IP-Core. In the last file the EDK System creator cor-
rectly sets the name of the instance (usually IP-Core name -
component 1) and the bus to connect to the new IP-Core.
Now the IP-Core is fully linked to the architecture and, once
a suitable driver for it is written, it can be synthetized and
executed on the target FPGA.

4. A REAL CASE STUDY: CARONTE
In this section we will discuss how to apply the proposed

methodology into a real working flow, Caronte, for the im-
plementation of a dynamic reconfigurable system using a
common fpga. The Caronte methodology could be applied
within any specific device just porting it to a different design
technology, [5]. In order to show the possibility of imple-
menting the reconfiguration design flow we decided to use
the Xilinx tools but it could be easily ported to be reused
for different systems that can achieve embedded dynamic
reconfiguration [1].

The Caronte Flow is mainly composed of three phases:

HW–SSP Phase The HardWare Static System Photo Phase
identifies a set of edk system descriptions that will
be (partially) dynamically reconfigured at run–time.
These functional blocks are called BlackBox cores, see
section 4.2 for a deep definition of this component. In
the Caronte flow this phase can be considered as the
most expensive one, although this is a very repetitive
activity, according to the time that the designer has
to spent to define each HW-SSP. Using the IP-Core
generator tool to define all the BlackBoxes and the
EDK system creator tool to create all the HardWare
Static System Photo needed to represents all the fea-
sible system configuration, the fulfillment time can be
drastically reduced, as shown in the section 5.

Design Phase Aim of this phase is collecting all the infor-
mation needed to compute all the bitstreams to phys-

Figure 1: Caronte design flow.

ically implement the embedded reconfiguration of the
fpga.

It solves three different problems:

• Identify the structure of each reconfigurable block
providing a specific implementation for each of
them. This phase is based on the Xilinx Modular
Based Design approach;

• Identify, using the Floorplanner tool provided in
the ise tool chain, the area of each reconfigurable
component of the system;

• Solve the communication problem between recon-
figurable modules, by introducing Bus Macros that
allow signals to cross over a partial reconfigura-
tion boundary.

Bitstream Creation Phase This phase creates all the bit-
streams needed to implement the system description
onto an fpga through the dynamic embedded recon-
figuration.

Figure 1 shows the described methodology and how it can
be included into the standard fpga flow.

4.1 The caronte architecture
Let us first describe the architecture of the solution re-

sulting from the Caronte Methodology described in [5].
In order to manage reconfiguration internally it is neces-

sary to always have a processing element running on the chip
that communicates with the icap port. This means that it
will be necessary to have a part of the fpga which always
remains the same during runtime (the fixed side, managing
reconfiguration, while the rest of the available area is free
for dynamic reconfiguration (the reconfigurable side).

Hence the area of the reconfigurable part is divided in
rectangular boxes, all sharing a minimal interface that al-
lows them to interact with the rest of the system, such as the

ibm CoreConnect bus. These boxes are called BlackBoxes,
4.2. Aside from that, each BlackBox has also a process-
ing layer part which can be reconfigured to various tasks,
always retaining the communication functionalities offered
by the communication layer. The bus macro technology is
used to establish fixed routing channels between modules.
From the implementation point of view, this means that
each BlackBox is in fact an edk component made up of
two vhdl, Verilog or edif files, the first one containing the
architecture–dependent logic interface and the second one
the processing element hardware description and that is ex-
actly the perfect scenario to use the IP-Core generator tool
to have a fast implementation of each BlackBox, focusing
the attention only on the processing element description.

4.2 Fast BlackBox generation
The BlackBox generation phase is a static and automatic

process that takes a lot of time if implemented using the
EDK import peripheral wizard. The user has always to
repeat the same actions for each BlackBox, starting from
a VHDL description, create an EDK IP-Core component
without changing the communication interfaces and insert
the resulting IP-Core in the EDK system architecture.

In order to be able to implement a partial reconfiguration
of a portion of the fpga, it is important to know which is the
portion that has to be reconfigured. The XPS Tool of edk,
used to create fpgas architectures, offers an automatic syn-
thesis engine that generates a real project implementation
by arranging each logic unit in a standard way. A BlackBox
provides all the interfaces needed by the vhdl description of
a processing element to dialog with all the other components
of the architecture, such as the CoreConnect bus, the pro-
cessor, the interrupt controller and the other BlackBoxes.
This operation is part of the HW-SSP phase described in
section 4. Defining an HardWare System Static Photo ba-
sically means to create an EDK system that is composed of
all the necessary IP-Cores to complete a specific task that
can be assigned to the system in a certain time during its
computation. That means that the designer has to create all
the EDK system architecture just preserving the core part of
the architecture, which remains always the same, and plug
into it the IP-Cores needed. According to this description
is easy to see that, as the BlackBoxes generation phase, also
this phase is characterized by the fact that it is extremely
long and moreover it always remains the same. In order to
speed up this process the designer can use the EDK sys-
tem creator that will autonomously create all the HW-SSPs
without any further waste of time.

5. TEST AND RESULTS
The flow described in the previous section has been tested

under different operating systems and architectures with a
variety of components, starting from some small IP-Core
such as an adder, a xor, two different multipliers to some
more complex examples, e.g a Direct Fourier Transforma-
tion core, various implementations of the AES algorithm, a
Siemens description of a complex ALU and a video editing
core that changes the image coloring plane from RGB to
YCbCr, as shown in Table 1. The proposed flow has suc-
cessfully passed all these tests, generating working compo-
nents, imported them into an EDK architecture and finally
the resulting bitstreams have been downloaded onto the Vir-
texIIPro, xc2vp7, FPGA to verify their correctness. Table

1 presents some results produced by the IP-Core generator
tool. The input component of the tool is the core compo-
nent implemented by the designer, while the output of the
system is the final EDK-compliant IP-Core.

Table 1: IP-Core generator tool tests

IP-Core 4-input luts Perc. Slices Perc. Time (s)
Core: Mult2 64 1% 37 1%
IP-Core: Mult2 339 4% 205 4% 0.053
Core: IrDA 15 1% 11 1%
IP-Core: IrDA 146 1% 103 2% 0.045
Core: FIR 273 2% 153 3%
IP-Core: FIR 308 3% 173 3% 0.058
Core: AES128 4124 42% 2132 43%
IP-Core: AES128 4314 44% 2250 46% 0.075
Core: RGB2YCbCr 1028 10% 913 18%
IP-Core: RGB2YCbCr 848 9% 940 19% 0.063

The time of elaboration is quite constant and on the av-
erage is of 0.065 seconds. The range in which elaboration
time is located starts from 0.045 seconds and ends to 0.075
seconds, as shown in Table 1, while for the EDK system cre-
ator the import phase is executed in about 0.2s, while the
insert phase in about 10ms. According to these results the
entire flow starting from the Core VHDL specification to its
insertion into an EDK-based system architecture needs less
than 0.3s.

6. CONCLUSIONS
The proposed approach allows the designer to focus only

on the development of the VHDL core description without
taking into account communication problems and without
loosing time into plugging it into a prototyping system ar-
chitecture. This goal is reached due to the definition of an
automated flow for the interfacing process of IP-Cores and
their integration into a complete system architecture with-
out requiring the user interaction. Preliminary results show
that the proposed methodology, implementing an IP-Core
automate generator system, based on an EDK system de-
scription, provides a low cost approach to the fast generation
and prototyping of embedded systems. Some improvements
can be done by introducing a support also for other reconfig-
urable devices trying to keep abstract the problem as much
as possible. It would be also interesting to extend the frame-
work with other works such as the one proposed in [4].

7. REFERENCES
[1] Xilinx Inc. Embedded Development Kit EDK 7.1i.

Xilinx Inc., 2005.

[2] IBM corporation. The CoreConnect Bus Architecture,
white paper. International Business Machines
Corporation., 2004.

[3] IBM Corporation. IBM official website.
http://www-03.ibm.com/chips/products/coreconnect/.

[4] Tien-Lung Lee and Neil W. Bergmann. An interface
methodology for retargettable fpga peripherals. In
Engineering of Reconfigurable Systems and Algorithms,
pages 167–173, 2003.

[5] Alberto Donato, Fabrizio Ferrandi, Marco D.
Santambrogio, and Donatella Sciuto. Exploiting partial
dynamic reconfiguration for soc design of complex
application on fpga platforms. In IFIP VLSI-SOC
2005, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

