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Abstract
In recent years, we have witnessed a growing interest in high performance computing 

(HPC) using a cluster of workstations. However, many challenges remain to be 

resolved before these systems become dependable. One of the challenges in a 

clustered environment is to keep system failure to the minimum level and while

achieving the highest possible level of system availability. High-Availability (HA)

computing attempts to avoid the problems of unexpected failures through active 

redundancy and preemptive measures.  In this paper, we propose to build HA-

clusters based model for high performance computing. Our model is based on

combination of both HPC and HA concepts, we also propose to investigate further

the hardware and the management layers of the HA-HPC cluster design, and the

parallel-applications layer (i.e. FT-MPI implementations). In this work, we focus 

upon the latter layer. We discuss our model, and present our simulation experiments 

we have carried out to evaluate our proposed model. 

1. Introduction
Commodity-hardware clusters offer several

advantages over the traditional supercomputers. First,

High Performance Clusters are intended to be a

cheaper replacement for the more complex/expensive 

supercomputers to run traditional technical

applications such as simulations, biotechnology,

financial market modeling, data mining and stream 

processing [1]. Second, cluster computing can scale to 

very large systems. Hundreds or even thousands of 

machines can be networked to suit the application 

needs. In fact, the entire Internet can be viewed as one 

truly huge cluster [3].  The third advantage is

availability; replacing a "faulty node” within a cluster

is trivial compared to fixing a faulty SMP component, 

resulting in a lower mean-time-to-repair (MTTR) for

carefully designed cluster configuration [18].

On the other hand, HPCs are not problems-free. First, 

clusters have higher network latency with a lower

network bandwidth compared to SMP and

supercomputers. However, as we will see in section 3,

this network difference is becoming insignificant,

thanks to the advancements in the network

interconnects. The second potential problem is the

frequency of hardware failures (Mean-time-to-failure,

or MTTF). Because of many heterogeneous

commodity hardware involved to build an HPC

cluster, the probability of a hardware failure is higher 

than an SMP machine. Therefore, most clusters are

unable to handle runtime system configuration

changes caused by transient failures and require a 

complete restart of the entire machine [18].

2. Motivation
One of the challenges in an HPC clustered

environment is to keep system failure to the minimum 

and to provide the highest possible level of system 

availability. Due to the fact that very large and

complex applications are being run on increasingly 

larger scale distributed computing environments,

High-Availability (HA) computing has become

critically important to the fundamental concept of

High Performance Computing (HPC). This is because

commodity hardware is employed to construct these 

clusters, and to a certain extent, the application code’s 

runtime exceeds the hardware’s mean-time-between-

failures (MTBF) rate for the entire cluster [15]. Thus, 

in order to efficiently run these very large and

complex applications, HA computing techniques must 

be employed in the HPC environment.

In this paper, we combine both HPC and HA models 

and layout the design of a HA-HPC cluster,

considering all possible measures. In particular, we

explore the hardware and the management layers of 
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the HA-HPC cluster design, as well as a more focused 

study on the parallel-applications layer (i.e. FT-MPI

implementations).

The rest of the paper is organized as follows: In the 

next section, we describe the general architecture of 

the Beowulf cluster, which is becoming the standard 

design of any HPC cluster. In section 4, we

demonstrate the modifications needed in the hardware

level, in order to make a large-scale Beowulf

architecture fault tolerant. In section 5, we discuss the 

fault tolerant issues in the management level by

demonstrating the High Availability Open Source

Cluster Application Resource (HA-OSCAR) that aims 

toward non-stop services in the HPC environment.

Next and in Section 6, we explore and compare, in

more details, the fault tolerant techniques in the

application level, mainly the MPI layer. In section 7,

we report our performance and test results.  The last 

section states our conclusions and summary.

3. The Beowulf Cluster Architecture
Originally developed at NASA, Beowulf clusters are 

developed worldwide to support scientific computing 

[22]. Fundamentally, it is a design for HPC clusters on 

inexpensive personal computer hardware. A typical

“large-scale” Beowulf cluster consists of the following 

major system components (figure 1):

Figure-1: A general “large-scale” Beowulf cluster layout

1) A master (or control) server: a master server 

is responsible for serving user requests and 

distributing them to clients via

scheduling/queuing software, such as Portable 

Batch System (PBS) or LSF [2]. To control 

access to the cluster, users are only permitted 

to access this node and are blocked from 

accessing the other nodes. In a simple

Beowulf cluster, the master node is

considered to be a single point of failure. In 

particular, a master node failure can render 

the entire cluster unusable. Therefore,

redundancy should exist in order to provide 

HA to the master node, as we will see in the

next section.

2) Multiple identical client (compute) nodes:

these clients or compute nodes are normally 

dedicated to computation. Normally, users are 

blocked from direct access to these compute 

nodes. An HPC cluster may be as simple as 

two networked identical compute nodes or as 

complex as thousands of nodes connected

together via high speed network.

3) The management node: this node is used for 

administrative purposes, such as installing, 

configuring and administering all other client 

nodes.

4) Network Interconnect: currently, there are

several network interconnects that provide

low latency (less than 5 Micro seconds) and 

high bandwidth (multiple Gbps). The suitable 

HPC interconnect is determined by the

application that is intended to run on the

cluster. Two of the leading products are

Myrinet [7] and Quadrics. More recently,

InfiniBand [7] has entered the high

performance computing market. Unlike

Myrinet and Quadrics, InfiniBand was

initially introduced as a generic interconnect 

for inter-process communication and I/O.

Nevertheless, its high performance and

scalability make it also attractive as a

communication layer for high performance

computing. Tests [12,19] show that for small 

MPI messages, InfiniBand outperform other 

interconnects due to the higher bandwidth,

while Quadrics fits small MPI messages the 

best due to the very low latency. Table 1 

shows each interconnect option with its peak 

latency and throughput measures.

Gbit
Ethernet

Myrinet
D-Cards

Quadrics
QsNet

InfiniBand

Throughput 120MB/s 473MB/s 308MB/s 841MB/s**

Latency* 12.1 6.8 4.6 6.7

Price Cheap Moderate Moderate-
to-
expensive

Expensive

* Measures are in Microseconds. 
** limited by the PCI-X bus

Table-1: Network interconnects comparison
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In the next section, we start our proposed design by 

introducing redundancy and failover components in 

the lowest level of the HA-HPC clusters.

4. FT-HPC in the Hardware Layer
As we have seen from the standard Beowulf design, 

there are certain components where they are

considered to be a single point of failure, such as the 

master node and the network switches. In earlier

times, cost was a valid reason for systems designers to 

emphasize on the application needs and minimize the 

cost of building an HPC cluster by removing all the 

costly redundant hardware components. However, as 

the cost of commodity hardware is declining,

combining HPC and HA architectures is becoming 

feasible to achieve HA cluster that is used for High 

Performance Computing. For instance, various

techniques are currently available to have redundant

master nodes [18]. These implementations include

active/active, active/hot-standby, and active/cold-

standby nodes. In the active/active, both master nodes 

simultaneously provide services to external requests 

and once one node is down, the other will take over 

total control. Whereas, a hot standby head node

monitors system health and only takes over control 

when there is an outage at the primary node. The cold-

standby architecture is very similar to the hot-standby,

except that the backup head is activated from a cold 

start.

Figure 2 shows a completely hardware-modified FT-

Beowulf architecture. Each master node has two

network interfaces connected to two separate virtual

networks (VLANs); one is connected to the Internet 

by a public VLAN, and the other NIC is connected to 

the private LAN. In this setup, the standby server

monitors the primary server and waits for taking over 

when a failure in the primary server is detected. Note 

that the Local LAN Switches and the management 

nodes are completely redundant and the cluster may be 

operational even if one switch fails.

Figure2: A general fault-tolerant HPC cluster architecture

5. FT-HPC in the Management Layer
Systems that have the ability to hot-swap hardware

components need a management software layer that 

understands the concept of dynamic system

configuration, in order to keep the system alive. One 

of these management applications is the High

Availability Open Source Cluster Application

Resource (HA-OSCAR). HA-OSCAR is an Open

Source project that aims toward non-stop services in 

the HPC environment through a combined power of 

High Availability and Performance Computing

solutions [2].

5.1 HA-OSCAR
The OSCAR project is built by a mixture of academic 

and research members including: Bald Guy Software 

(BGS), DELL, IBM, Intel, MSC.Software, Indiana

University, the National Center for Supercomputing 

Applications (NCSA), Oak Ridge National Laboratory 

(ORNL), and University of Sherbrooke [4]. The HA-

OSCAR project’s primary goal is to enhance a

Beowulf cluster system for mission-critical

applications and sensitive HPC infrastructures. Its

basic package includes a set of “core” toolkits needed 

to build and maintain a cluster [4]. Other included 

tools cover most, if not all, commonly used HPC

applications, such as: LAM/MPI, PVM and MPICH 

for running parallel applications, Maui Portable Batch 

System (PBS) for batch job scheduling, OpenSSH for 

secure remote login, and System Installation Suite 

(SIS).

HA-OSCAR addresses service level faults via the 

Adaptive Self Healing technique (ASH) [4]. ASH

MON daemon monitors service(s) availability at every 

interval (default is 5 seconds) and triggers alerts upon 

failure detection. When a failure is triggered, a hot-

standby node takes over. This hot-standby node is a 

clone of the active node that contains the entire HA-

OSCAR software bundle and will process user

requests when the active master node fails. 

To see how the master node’s hot-swapping process 

works with HA-OSCAR, consider the following

example that is illustrated in figure 3: HA-OSCAR

assigns a primary server public IP address to be used 

for external accesses and a private IP address to

connect to the compute nodes (a private VLAN as 

users are not allowed to access the compute nodes). 

For the standby server, the public IP address is

initially unassigned and its private IP address is

configured as shown in the figure:
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Figure -3: HA-OSCAR failover process to the master node

When a primary server failure occurs, all its network 

interfaces will go down. HA-OSCAR will trigger the 

network disconnection and the standby server takes 

over and clones the primary server network

configuration. The standby server will automatically 

mimic its both public and private network interfaces to 

be the same as the original IP addresses for the

primary master node. This IP cloning process only 

takes 3 to 5 seconds [4].

6. FT-HPC in the Application Layer
Up to this point, we have considered the hardware and 

management elements in designing a FT-HPC cluster. 

Now we present, in more details, the HA issues in the 

application level. Although other implementation

exists such as PVM (Parallel Virtual Machine), we

focus our study on the Message Passing Interface

(MPI) implementations, mainly because it is becoming 

the de facto standard communication protocol for

parallel processing and HPC, especially when

performance is the main concern [6].

6.1 Introduction to MPI
MPI is a library of routines that can be called from any 

programming language (mainly C or FORTRAN), on 

a distributed memory system. It is designed to allow a 

network of heterogeneous machines to be used as a 

single distributed parallel processor. MPI’s advantage 

over older message passing libraries is that it is both 

portable and fast (because each MPI implementation is 

optimized for the hardware it runs on) [6].

The need for a fault tolerant MPI standard arises from 

the growing concern with the reliability of processors, 

communication and systems’ structure. As current

HPC systems increase in size, fault tolerance in MPI 

becomes a very important concern for critical high 

performance applications using the MPI library. W. 

Gropp and E. Lusk [11] define the requirements of a 

fault-tolerance MPI as:

- Failure can be detected

- Information needed to continue the

computation is available

Moreover, they see that the highest level of MPI 

“survival” is that when MPI implementation

automatically recovers from faults while the MPI

program continues without significant change to its 

behavior. Their definition to the second level of

survival is when the applications are notified of the 

problem and are prepared to handle it. In each of two 

cases, the application may proceed without restarting 

because the program has enough information about the 

failing process and can assign another running process 

to pick up the work from there. A different level of 

survival is that an application aborts and restarts from 

a checkpoint. Here, the states of all processes are

saved outside the processes themselves, in a stable 

storage for example.

In the next section, we analyze some of the techniques 

that are used to build such fault tolerant MPI

packages, namely: Checkpointing, Message Logging 

and the Worker/Manager algorithm. We compare

these concepts and propose minor modifications to 

make them suit our complete HA-HPC design. Later, 

we review some of the existing fault tolerant MPI 

packages that are based on the mentioned techniques. 

Finally, we conclude our work by benchmarking a 

small-scale cluster and stating our findings and

comments.

6.2 MPI Error Handlers
Before moving to the various fault tolerant MPI

techniques, we first present the pre-defined MPI error-

handlers and describe their routines.

MPI error-handlers specify the action to be taken 

when the MPI program runs through a failure. The

specified error handling routine is used for any MPI 

exception that occurs during an MPI call for a

communication with the communicator. The set of

errors calls that are handled by MPI is

implementation-dependent. Therefore, a stable MPI 

implementation will attempt to handle as many errors 

as possible. Errors that are not handled by MPI will be 

either handled by the error handling mechanisms of 

the language run-time or the operating system.

The MPI error-handlers do not necessarily allow the 

user to continue to use MPI. Instead, they allow a user 

to issue user-defined error messages and to take

actions unrelated to MPI (such as flushing I/O buffers, 

having a memory dump or calling other outside

routines) before a program exits. However, it is not 

required from a non-fault tolerant MPI implementation 

to use error handlers.
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MPI error-handlers can be either built in or user

defined [17]. The built- in error-handlers are

MPI_ERRORS_ARE_FATAL (The default error-

handler) and MPI_ERRORS_RETURN. The first

error-handler indicates that if an MPI function returns 

unsuccessfully then all the processes in the

communicator will abort. The latter handler indicates 

that MPI functions will attempt to return an error code. 

User defined error-handlers are attached to the MPI 

communicators. The ability to support user-defined

error-handlers is important for developers when

building their own MPI interfaces.

6.3 Fault Tolerant MPI Techniques
In this section, we cover the commonly used

techniques for implementing fault tolerant MPI. In

particular, we study checkpointing (Global,

independent and coordinated checkpointing), Massage

Logging, and Manager/Worker techniques.

6.3.1 MPI Checkpointing

Checkpointing is a technique where the status of the 

computation is saved in different stages of running, 

allowing the application to be restarted from that point 

in the event of a failure. The primary advantage of 

checkpointing is that it is easy to implement.

However, it is often considered expensive because the 

time taken to do a checkpoint can rapidly grow.

Therefore, fast I/O media is usually used to connect 

the cluster’s nodes to the shared storage (e.g. fiber 

links), and checkpointed data are saved in a reliable 

storage that should not be affected by the application 

failure. Normally, a parallel file system, such as GPFS 

or SNFS [13], is used for checkpointing, since more 

than one process will be writing to the same storage.

Checkpointing can be classified as user-directed and 

system-directed. In user-directed checkpointing, the

programmer manually writes out any data that will be 

needed to restart the application. The user has to 

ensure that all needed data is saved, which might not 

be an easy task. Moreover, the checkpoints must be 

taken at particular points in the program, typically 

when there is no interaction between processes, which 

again can be difficult, especially for programs that are 

not well-structured. Certain tools and APIs exist to 

assist programmers to determine where and when to 

checkpoint [8]. Although user-directed checkpointing 

seems complicated, system-directed checkpointing is 

much harder to implement because the processes

states might be scattered throughout the cluster [2]. 

Locally-stored
Global
Checkpointing

Independent
Checkpointing

Coordinated
Checkpointing

Checkpoint All at once Independent of
each other

All at once

Restart All at once All at once Subset of

processes

Storage Local to each

process

Centralized Centralized

Complexity Easy to
checkpoint,
difficult to
restart

Difficult to
checkpoint and
restart

Easy to
checkpoint and 
restart

Tabele-2 checkpointing techniques comparison

6.3.2 Message Logging

As checkpointing can grow rapidly and become very 

expensive, message logging is developed in order to 

reduce the checkpointing cost, but still enable

recovery. The basic idea underly ing message logging 

is to log all the operations of message transmissions, 

and replay them in case of failures to reach a globally 

consistent state, without having to restore that state

from stable storage. In initial checkpoint state is

needed as a starting point, and then all messages that 

have been sent since are simply replayed from the log 

and retransmitted accordingly. 

Message logging technique has the advantage of

avoiding to checkpoint the whole application, and 

therefore save storage space. However, it is clear that 

message logging technique has to coexist with

checkpointing. That is, a starting checkpoint should be 

available to implement message logging. Therefore, 

checkpointing performance affects the overall

message logging performance as well.

6.3.3 The Manager/Worker Technique
In the generic architecture, the MPI process does not 

connect directly to the other ones. Instead, it uses a 

communication daemon that handles sending,

receiving, recording messages, and establishing

connections with all components of the system. In the 

standard MPI, the failure of any one MPI process 

affects all processes in the communicator, even those 

that are not in direct communication with the failed 

process. In contrast, in non-MPI client-server

programs, the failure of a client does not effect on the 

server, because each peer is aware about the status of 

the other peer. For example, the client can easily 

recognize that the server has failed and stop

communicating with it. W. Gropp and E. Lusk [11]

tried to mimic this scheme and apply it in the MPI 

context. In this algorithm, a manager process use

MPI_Comm_spawn to create the workers and submits 

small tasks to them, while keeping track of them.
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Then, workers return their results to the manager,

simultaneously requesting a new task. This sort of 

communication makes it easy to recover after faults 

because the manager keeps a copy of the task

specification and can simply re-assign it to another 

worker if one dies. In particular, the manager marks 

the failing communicator as invalid and does not use it 

again. When a worker dies, the MPI_Comm_spawn 

routine is used to replace the worker and continue

processing with no fewer workers. According to [11],

this program may not work on every implementation 

of MPI, because the MPI implementation must be able 

to return a non-success return code in the case of a 

communication failure such as an aborted process or 

failed network link.

A simple modification to the worker/manager

technique in order to make it work is to add a timeout 

period in which the manager assumes the death of the 

worker process. This way, the manager process is

notified about the dieing process (or worker) and

assigns the task again to another worker. Moreover, 

we may reduce the amount of messages exchanged by 

having the manager and all the workers write their 

status into a single shared storage, using a reliable 

parallel file system [2,3]. This way, when a worker 

fails and is assigned as a bad node, the manager 

allocates a new stand-by node, which reads the last 

status of the failing node and picks up the work from 

there.

6.4 Related Work on Fault Tolerant MPI
Many fault tolerant MPI implementations exist, such 

as LAM/MPI, Open MPI, WMPI (Windows

implementation), and FT-MPI …etc. The main

difference between these implementations is the way 

they react to process or nodes failures in a way beyond 

that of the standard MPI interface. In particular,

several implementations direct their fault tolerant

techniques to the application level, while other

techniques target their implementation to the transport 

and data-link levels [21]. Now we study one of these 

implementations in more detail:

6.4.1 StarFish MPI
The initial implementation of StarFish runs on Linux 

and supports both Myrinet and Ethernet

communication links [19]. Each node in a Starfish 

cluster runs a daemon, and all Starfish daemons form a 

process group. Starfish daemons maintain some data 

for each application process running on the machine, 

as well as some shared state that defines the current 

cluster configuration and settings. These daemons are 

responsible for interacting with clients, spawning the 

application processes, tracking and recovering from 

failures, and maintaining the system configuration [2].

Further, each application process is composed of 5

major components. These are: a group handler, which

is responsible for communicating with the daemon, an 

application part, which includes the user supplied MPI 

code, a checkpoint/restart module, an MPI module,

and a virtual network interface. These components 

communicate using an object bus based listener model 

[14]. To guarantee low latency and minimal impact on 

performance, the application part has a separate fast

data path to and from the MPI module.

Starfish offers two forms of fault-tolerance for

applications: The main fault-tolerant mechanism

employed by Starfish is checkpoint/restart. The

checkpoint/restart module of Starfish is capable of 

performing both coordinated and uncoordinated

checkpoint, which is either system driven or

application driven. Thus, when a node failure occurs, 

Starfish can automatically restart the application from 

the last checkpoint. The other form of fault tolerance 

offered by Starfish is more application dependent, and 

is suitable mostly to applications that can be trivially 

parallelized. For such applications, whenever a node 

that runs one of the application processes crashes, the 

event is delivered to all surviving application

processes. Once the surviving members find out about 

the failure of a node, they repartition the data sets on 

which each process computes, and continue to run 

without interruption. 

When an application is submitted to Starfish, the client 

determines the fault tolerant policy that should be

applied to this application, i.e., should automatic

restart or process notifications be used, and some rules 

regarding how to choose the node on which a process 

will be started after a partial failure.

6.4.3 Other Fault Tolerant Message Passing 

Implementations
As mentioned previously, MPI has a rich set of

communication functions, which makes MPI favored 

over other implementations [2]. However, there are

other popular parallel interfaces, such as PVM

(Parallel Virtual Machine), and its various fault

tolerant implementations, such as DynamicPVM and 

MPVM that provide the same MPI functionality. PVM

is different than MPI in a way that it is built around 

the concept of a virtual machine, so it has the

advantage when the application is going to run over a 

networked collection of hosts, especially if the hosts 

are heterogeneous. Moreover, PVM contains resource 
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management and process control functions that are 

important for creating portable applications that run on 

clusters of workstations. G. Geist and J. A. Kohl P. M. 

Papadopoulos in [22] explore more on the differences 

between PVM and MPI. For completeness, we view 

one of PVM implementations and study how it

handles fault tolerant in parallel applications.

6.4.3.1 DynamicPVM

In general, PVM transmit communication messages 

using daemons, i.e. a message is first transferred to the

sender’s daemon, then forwarded to the daemon of the 

receiver and then delivered to the receiver [6].

While standard PVM offers only a static process

assignment to the application, DynamicPVM provides 

dynamic process assignment and task scheduling, so 

that processes are migrated during runtime during 

failures. In particular, when a process failure is

triggered in DynamicPVM, the local daemon on a new 

node prepares itself to receive the messages from the 

failing node, and sets its message buffer. The routing

information of the local daemon on the old node gets 

updated so that messages which are still being sent to 

the old node are forwarded to the daemon on the new 

node. The sender daemon is informed about the new 

location of the process so that, in future, it sends

directly to this process. One limitation in the current 

DynamicPVM implementation is that it is only

possible to migrate one process at a time.

7. Experimental Results
In this section, we analyze our small-scale HA-HPC

functionality and evaluate its performance. In our

evaluation, we used eight-clustered nodes, each

equipped with a Pentium-4 3.2GHz processor, 1.0

GHz memory and run Linux RedHat 9.0. Two of these 

nodes are set as the master nodes, a primary and a hot-

standby, and are managed by HA-Oscar. The other six 

nodes are configured as the compute nodes and are 

interconnected by a 100MB/s network. We used

DynamicPVM and FT-MPI interfaces to handle our 

parallel jobs, with POV-Ray package [1] on top. POV-

Ray is a 3D ray-tracing engine that takes users’ input 

and simulates the way light interacts with the defined 

objects to create 3D pictures and animation. POV-Ray

has the ability to distribute a rendering across multiple 

systems, in the form of one-master and many-slave

task. The master node has the responsibility of

dividing the image up into small blocks, which are

assigned to the slaves. When the slaves finish

rendering the blocks, they are sent back to the master, 

which combines them to form the final image. In our 

experiment, we used a 2600 bytes script file to render 

a 1024x768 picture with an output size of 2.3MB.

First, we ran our benchmarks with varying number of 

nodes, while keeping the number of processes in each 

node fixed, as shown in figure-4a. Clearly, the best 

performance/nodes was obtained while rendering on 

four nodes. This performance increase rate has

dropped as we increased the nodes to eight. We expect 

that this performance gain would be flattened with 12 

nodes.

Next, we ran other benchmarks while varying the 

number of nodes and the running processes at the

same time, as in figure-4b. The best run cases were 

when the number of processes matched the number of 

nodes that are running (i.e. one process on each node). 

By increasing the number of processes beyond the 

number of nodes, the inter-process communication 

overhead became noticeable, causing the image to take 

more time to render.

Figure-4c shows how much TCP traffic is generated 

on the master node. Obviously, the traffic increases as 

we increase the number of nodes, due to the further

processes’ distribution among nodes. In Figure-4d, we 

show how image resolution affects the rendering time. 

While the dashed curve demonstrates the rendering 

time when we enforce POV-Ray to evenly distribute 

the processes among the nodes, the continuous curve 

shows the rendering time when we let the program 

freely distribute the processes among nodes. 

Figure-4e shows the performance comparison between 

FT-MPI and DynamicPVM when rendering the same 

image on both message passing interfaces, using 200

processes in each node. FT-MPI showed a

performance increase compared to DynamicPVM,

especially with low number of nodes, but they

performed comparatively with 8 nodes. Finally, we 

tested FT-MPI and DynamicPVM performance with a 

single node fault. Figure-4f shows the time taken to 

render the image while dropping one node during the 

process (for example, 2-1 in the figure means

dropping from 2 nodes to one). Both interfaces

showed approximately the same performance, even

though they use different recovery schemes, as we

discussed in section-2.
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Figure-4: a) Number of nodes vs. rendering time  b) number of 

processes vs. rendering time c) Communication traffic node on the 
master d) Image resolution vs. rendering time e) DynamicPVM vs. 
FT-MPI  f) DynamicPVM vs. FT -MPI (with faults).

8. Conclusions
In this paper, we have presented an architecture model

that can be used to build a FT-HPC cluster. These

include maintaining high availability at the hardware 

layer, cluster manageability and fault tolerance in the 

application level. In particular, we explored the

hardware and the management layers of the HA-HPC

cluster design, as well as a more focused study on the 

parallel-applications layer (i.e. fault tolerant MPI

implementations). We also showed that the

Manager/worker algorithm that was proposed by [1] 

can be improved to suit most of the FT-MPI

implementations. Finally, we have presented a small-

scale fault tolerant HPC cluster using HA-OSCAR and 

different MPI implementations, to study the behavior 

of such a system. Our results show that combining

HPC and HA architectures is feasible, in order achieve 

HA cluster that is used for High Performance

Computing.
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