
Exploiting Dynamic Proxies in Middleware for Distributed, Parallel, and Mobile
Java Applications

Willem van Heiningen1, Tim Brecht2, and Steve MacDonald2

1 Integrative Biology 2David R. Cheriton School of Computer Science
Hospital for Sick Children University of Waterloo

Toronto, ON Canada Waterloo, ON Canada
willem@sickkids.ca {brecht, stevem}@uwaterloo.ca

Abstract

Babylon v2.0 is a collection of tools and services that
provide a 100% Java compatible environment for develop-
ing, running and managing parallel, distributed and mobile
Java applications. It incorporates features like object mi-
gration, asynchronous method invocation and remote class
loading while providing an easy-to-use interface. The im-
plementation of Babylon v2.0 exploits dynamic proxies, a
feature added to Java 1.3 that allows runtime creation of
proxy objects. This paper shows how Babylon v2.0 exploits
dynamic proxies to implement several key features without
the need for special language or virtual machine extensions,
preprocessors, or compilers. The resulting Babylon pro-
grams are portable across all Java virtual machines, and
the development process is simplified by removing the extra
steps needed to invoke external stub compilers and incorpo-
rate the generated code into an application. This simplifi-
cation also allows remote objects to be created for any class
that supports an interface to its methods, even if source code
is not available.

1 Introduction

The Java language [6] has many features that facilitate
distributed systems programming. Java’s built-in security,
threading and dynamic class loading support can greatly
simplify the development of distributed applications. Fur-
thermore, Java applications are compiled into a machine in-
dependent representation called bytecodes that can be run
on any machine that runs the Java Virtual Machine (JVM).
Java also supports Remote Method Invocation (RMI) which
can hide much of the complexity of communication with
objects residing in other JVMs, possibly on other machines.

Nevertheless, Java and RMI do not include support for

many important features for distributed object programming
such as dynamic remote object creation, asynchronous re-
mote method invocation, remote object migration and re-
mote object administration facilities.

Babylon v2.0 overcomes these limitations by providing
programmers with Java classes and interfaces for remote
object creation, interaction, and administration [22]. It con-
tributes several new features and approaches in the area of
Java-based distributed and parallel computing. Most im-
portantly, it does so without the use of special language or
virtual machine extensions, preprocessors, or compilers. In-
stead, Babylon v2.0 uses dynamic proxies, a new feature
introduced in Java 1.3, that allows proxies to be created at
runtime. Dynamic proxies can fulfill all of the same re-
sponsibilities as proxies normally generated by special stub
compilers, like rmic for Java RMI. Thus, Babylon v2.0
can provide a Java-based solution without extending any of
Java components and without adding extra development or
compilation steps normally needed for stub compilers.

Specifically, this paper describes how dynamic proxies
are used to implement remote object creation and remote
method invocation. Remote objects can be created in one
of two ways, by creating an object on a remote machine
or by exporting an existing, serializable local object to an-
other machine. Both forms of remote object creation use a
dynamic proxy as the local placeholder for the remote ob-
ject. Remote method invocations in Babylon can be done
synchronously or asynchronously. The latter uses a novel
technique based on an asynchronous ticket. Both method
invocations are syntactically identical to local invocations,
but with altered semantics. These semantics are achieved
using different dynamic proxies to handle method calls.

An important contribution of this work is the reduction
in the requirements needed for a class to produce remote ob-
jects. Babylon v2.0 only requires that the class implement
an interface exporting client methods and be serializable.

1-4244-0054-6/06/$20.00 ©2006 IEEE

This makes it possible to create remote objects from classes
where source code in unavailable, including the Java stan-
dard class library, provided these requirements are met.

2 Related Work

2.1 Related Research Projects

There are a large number of commercial and academic
Java-based distributed computing projects in various stages
of development. The objectives and underlying technolo-
gies of each of these projects vary significantly. Some fo-
cus on the emerging grid, while others are designed for very
specialized groups of computational problems.

The original implementation of Babylon [11], referred to
here as Babylon v1.0, was an important initiative to make
distributed computing resources more widely available to
developers. Much of the design for Babylon v1.0 came
from experiences with Ajents [12] and ParaWeb [3]. Baby-
lon v1.0 built on these systems to provide mechanisms for
remote object creation, migration and remote I/O, but lacks
a flexible mechanism to use and interact with remote ob-
jects. Babylon v1.0 also suffers from deficiencies in other
key areas such as remote class loading and object migration.
However, the most serious drawback of Babylon v1.0 is its
reliance on a non-standard remote method invocation inter-
face that resembles method invocation with Java reflection.
This interface is awkward to use and error-prone because it
prevents normal compile-time checks.

Reflective RMI (RRMI) [21] adopts a reflective ap-
proach to remote method invocations. The user creates a
descriptor object specifying the desired method using its
name or signature, then creates a set of actual parameters for
the call and requires the method be invoked by the runtime.
The method can be run synchronously or asynchronously.
Like Babylon v1.0, this is a non-standard method syntax
that precludes compile-time checks. Synchronization with
asynchronous methods can be achieved using a future-like
object [8] called a completion handle or by registering a
listener object to be invoked when the computation is com-
plete and results (or thrown exception) are returned.

Several other existing systems, such as JavaParty [9] and
Java/DSM [25], use a modified JVM or special preproces-
sors and language extensions to implement a functional dis-
tributed Java framework. Babylon v2.0 provides support
for writing general distributed programs without requiring
a modified JVM implementation, new keywords or other
custom language extensions.

Other systems, such as Javelin [13], Charlotte [2], Nin-
flet [18], and Satin [24], only support distributed systems
that can be formulated as a specific process structure, like
master-worker, branch-and-bound, and divide-and-conquer.

Babylon v2.0 does not limit itself to a particular computa-
tional model and provides support for general remote object
interaction using standard Java method invocation syntax.
As a result, distributed applications that require more com-
plex object interactions, such as a grid-based heat diffusion
computation, can be written using Babylon v2.0. In con-
trast, such an application can not be implemented using the
aforementioned systems.

ProActive [1, 10] provides similar services to Babylon
v2.0, using similar techniques that do not require JVM
changes or external tools. As well, it provides a group
communication abstraction. ProActive generates proxies
for remote objects at runtime using bytecode engineering
libraries as it predates Java’s dynamic proxies. This ca-
pability is used to create new remote objects and export
local ones. ProActive can execute remote methods syn-
chronously or asynchronously. This choice is not made by
the programmer, but rather is based on implicit rules that
consider the return type of the method and the presence of
checked exceptions. These rules, which are evaluated at
runtime, are:

• If the method does not throw a checked exception and
the return type is either a class that can be subclassed
or is void, the method in called asynchronously.

• If the method throws a checked exception or the return
type is a primitive type or cannot be subclassed (i.e., is
final), the method is called synchronously by default.

• If the method throws a checked exception and the re-
turn type is a class that can be subclassed (or void),
the user can introduce some concurrency if the method
is called within a try/catch block. ProActive in-
cludes primitives that allow the method to execute
asynchronously, but these primitives force the method
to complete before the try block ends (to ensure any
exceptions can be handled). This requires three library
calls that must be at specific locations in the applica-
tion code, and provides limited parallelism.

Asynchronous calls in ProActive return a future object [8],
which is a proxy that resolve to a final value when a method
is called on it.

All proxy classes generated by ProActive, for both re-
mote objects and futures, are subclasses of the originals
that override all public methods. Thus, proxy objects can
be substituted for original objects. This provides polymor-
phism between local and remote objects and between local
return values and futures, and obviates the need for inter-
faces. It also allows future objects to transparently imple-
ment wait-by-necessity. However, it limits the classes that
can be used to create remote objects or used as return types
in methods. Final classes and methods, including arrays,
cannot be used as they cannot be subclassed or overridden.

In addition, a remote object can only be run one method at a
time, which can make some applications difficult to imple-
ment efficiently. For example, a grid-based heat diffusion
application requires a separate remote method invocation
for each iteration to allow edge data to be exchanged, in-
creasing communication costs [23].

In contrast, Babylon v2.0 uses an explicit approach to
selecting synchronous versus asynchronous method invoca-
tions, which provides more control over both method in-
vocation semantics and inter-object synchronization. Dy-
namic proxies in Java cannot be subclasses of an existing
class, so delegation is used. This requires interfaces, but
does not suffer from problems with final classes and meth-
ods. Babylon v2.0 uses Java RMI semantics at the server,
where each remote method is run in a separate thread. This
allows fewer remote methods in the grid-based heat diffu-
sion application, but adds thread synchronization to Baby-
lon v2.0 application code [23].

Babylon v2.0 uses Java RMI in its dynamic proxies.
Since the remote method call is encapsulated by these prox-
ies, it would be possible to use an alternate protocol or
message passing layer like Ibis [10]. Ibis provides a high-
performance, portable message passing layer that can use
different protocols and networking hardware. Ibis perfor-
mance results also show that object serialization in Java are
a performance bottleneck, which is relieved using a byte-
code rewriter to generate Java serialization code. The use of
this rewriter is counter to the stated goals of Babylon, which
is to avoid extra preprocessing or compilation. Instead,
Babylon could use the serialization optimizations presented
in [19], which optimize serialization costs and reduce mes-
sage sizes using a drop-in replacement for standard Java se-
rialization.

2.2 Dynamic Proxies in Java

A proxy is an object that stands in for another, acting in
place of the original [5]. The proxy implements the same
interface as the original object, which allows the proxy to
be used where the original is expected.

Proxies are used in distributed object systems to fulfill
the same roles as client-side stubs in remote procedure call
systems. The proxies marshal arguments before sending the
data to the remote server holding the remote object. In Java
RMI, these proxies are generated using the rmic stub com-
piler, which generates class files containing the stub and
corresponding skeleton code.

Dynamic proxies were introduced into Java in version
1.3. Given a list of interfaces, it is now possible to construct
a proxy at runtime, without the use of extra stub compilers
or other tools. This proxy dispatches any methods to an
object acting as the invocation handler, which processes the
method invocations and adds its own functionality.

An example use of a dynamic proxy is shown in Figure 1.
The proxy is created using the newProxy() method. It
creates a new dynamic proxy that implements all of the
interfaces for the argument object, and dispatches them
against a new instance of the MyProxy class. The resulting
proxy can be downcast to any of the interface types imple-
mented by the original object. All method calls on the proxy
object are forwarded to the invoke() method, where the
invocation is represented as a Method object indicating the
called method and an array of Objects for the arguments.
This proxy simply prints out information before and after
the method is called on the original object.

3 Remote Object Creation

Creation without Dynamic Proxies Without dynamic
proxies, creating remote objects must be done in one of two
ways. First, an object already running at a server can export
factory methods [5] that create new remote objects. This
is the most common approach, with the advantage being
that is is simple to implement. The disadvantages of this
approach are two-fold. First, all potentially remote objects

1 public class MyProxy implements
2 java.lang.reflect.InvocationHandler {
3 private Object receiver;
4

5 public static Object newProxy(Object obj) {
6 Class c = obj.getClass();
7 return java.lang.reflect.Proxy.
8 newProxyInstance(c.getClassLoader(),
9 c.getInterfaces(),

10 new MyProxy(obj));
11 }
12

13 private MyProxy(Object obj) {
14 this.receiver = obj;
15 }
16

17 public Object invoke(Object proxy, Method m,
18 Object[] args) throws Throwable {
19 Object result;
20 try {
21 System.out.println("Before "+m.getName());
22 result = m.invoke(receiver, args);
23 } catch (InvocationTargetException ite) {
24 // If method threw exception, rethrow.
25 throw e.getTargetException();
26 } catch (Exception e) {
27 // Handle other invocation problems
28 } finally {
29 System.out.println("After "+m.getName());
30 }
31 return(result);
32 }
33 }

Figure 1. Example dynamic proxy from [16].

must have RMI stubs generated using rmic, meaning the
object must be implemented as a remote object. This pro-
cess is described in Section 4.1. Among the requirements is
that the object must support an interface to its public meth-
ods which must extend the java.rmi.remote interface.
Second, this solution requires that object servers start run-
ning with factory objects already available.

A second method for creating remote objects is to use
activatable objects that are instantiated when invoked. This
removes the need to start a Java RMI program with factory
objects already running. However, creating an activatable
object adds more steps to the creation of a program. In ad-
dition to the above problems, the activatable object must
extend the class java.rmi.activation.Activat-
able. Further, an extra setup program is required to regis-
ter the implementation of this object with the RMI registry
and RMI daemon processes so instances can be created at
runtime.

One problem neither approach handles is converting a
local object to a remote one. This could be done by explic-
itly creating a new remote object using the local one as an
argument. This is only possible if the class has been written
as a remote object but instantiated as a local one.

Creation with Dynamic Proxies Babylon v2.0 provides
two methods for creating remote worker objects which can
be used by clients to perform distributed operations. The
Babylon.remoteNew() method takes a class name as
one of its arguments and creates a new instance of the
given class on a remote Babylon server. Alternatively, the
Babylon.export()method can be used to distribute an
existing local instance of a serializable object to a remote
Babylon server. This technique preserves the state of the
local object. However, since the local object is copied to
the Babylon v2.0 server, only serializable objects can be
turned into worker objects using this technique. Line 27 in
Figure 2 shows how an object is exported in Babylon v2.0.

Both methods return a proxy that can be used to trans-
parently invoke methods on the newly created worker ob-
ject. These proxies provide transparent access to distributed
objects by implementing the same interfaces as their dis-
tributed counterparts. Providing transparent access is a sig-
nificant enhancement over Babylon v1.0, as shown later.

Worker object look up functionality is also provided with
the help of a worker object registry implemented in the
Babylon scheduler. The registry maintains a record of all
the worker objects in the Babylon v2.0 system. Clients
can look up references to worker objects based on the
worker object’s instance name and the interface it imple-
ments. The static method Babylon.lookup(String
instanceName, Class workerInterface) pro-
vides this feature. After locating the worker object with
the specified instance name and interface from the worker

1 // Matrix interface
2 public interface Matrix {
3 public Matrix computeInverse();
4 }
5

6 // MatrixImpl class
7 public class MatrixImpl
8 implements Matrix, Serializable {
9 public Matrix computeInverse() {

10 . . .
11 }
12 }
13

14 // Babylon v2.0 code using above Matrix.
15 try {
16 // Initialize Babylon.
17 Babylon.initApplication("schedulerhost");
18 } catch(Exception e) {
19 // Initialization failed.
20 }
21

22 // Create local instance of a matrix object.
23 Matrix matrix = new MatrixImpl();
24

25 // Export matrix to remote Babylon server.
26 try {
27 matrix = (Matrix) Babylon.export(matrix,
28 "MyMatrix", Matrix.class, "matrix.jar");
29 } catch(Exception e) {
30 // export failed
31 }
32

33 // Call computeInverse() on remote worker.
34 Matrix matrixInverse = matrix.computeInverse();
35

36 // Lookup reference to different matrix worker.
37 try {
38 matrix = (Matrix)Babylon.lookup("DiffMatrix",
39 Matrix.class);
40 } catch(Babylon.InstanceNotBoundException e) {
41 // Unable to locate the given matrix object.
42 }
43

44 // Move the object to a new host
45 Babylon.migrate(matrix, targethost);
46

47 // Get asynchronous ticket for Matrix worker.
48 Matrix asynch_matrix =
49 (Matrix) AsynchTicket.newTicket(matrix);
50

51 // Call method computeInverse() asynchronously.
52 asynch_matrix.computeInverse();
53

54 // Other code that executed concurrently with
55 // computeInverse() can go here.
56

57 // Retrieve the invocation result (blocks if
58 // result is not yet available).
59 try {
60 matrixInverse = (Matrix)
61 AsynchTicket.getResult(asynch_matrix);
62 } catch(RemoteExecException ex) {
63 // The target method threw an exception.
64 }

Figure 2. Babylon v2.0 Code Example

object registry, the Babylon.lookup() method returns
a dynamic proxy that can be used to invoke methods on the
given worker object. Line 38 in Figure 2 demonstrates how
to use the Babylon.lookup() method.

Perhaps the biggest benefit to using dynamic interfaces
with respect to remote object creation is it reduces the num-
ber of requirements that an object must fulfill in order to
interact with that object as a remote object. In Babylon
v2.0, an object can be made remote if the following two
criteria are met. The first requirement is that the class must
implement an interface that exports methods to be accessed
by clients. In fact, the method can implement several inter-
faces, and the generated proxy will implement all of them.
(This introduces a problem if different interfaces contain
the same method signature but expect different implemen-
tations.) Unlike Java RMI, these interfaces do not have
to extend any other interface. The second requirement is
that the class must implement the Serializable inter-
face (as must all of its instance variables) so that it can be
marshaled and sent to a remote machine. All of this is ac-
complished completely within Java and does not require any
external tools, preprocessors, or compilers. This improve-
ment is shown in Figure 2. The interface Matrix is given
on lines 1 to 4, a normal Java interface that does not ex-
tend any special Babylon-specific or remote interfaces. An
implementation class that implements this interface appears
at lines 6 through 12. It only implements the Matrix and
Serializable interfaces.

Outside of the Serializable interface, this class has
no artifacts that suggest it will be run in a distributed en-
vironment. However, Babylon v2.0 can use this class to
create remote objects. Furthermore, it should be possible
to create remote versions of objects for which source code
is unavailable, such as the Java standard class library, pro-
vided they meet the simpler requirements for distribution.
This is not possible with Java RMI because of the require-
ments for creating remote objects. Further, these remote
objects contain other artifacts of their distributed execution,
such as requiring methods to throw RemoteException.
These requirements are described in detail in the following
section.

4 Remote Method Invocations

4.1 Synchronous RMI

Synchronous RMI without Dynamic Proxies Without
dynamic proxies, synchronous remote method invocation
can be performed with Java RMI. The benefits are that re-
mote method calls look like local calls and that RMI prox-
ies permit compile-time checking of method calls. The
main problem with RMI is that the class must meet a
set of conditions before it can be used with Java RMI.

First, the class needs to implement an interface to ex-
port methods to clients, which must extend the java.-
rmi.remote interface. Second, any class initialization
must call the exportObject() method in the java.-
rmi.server.UnicastRemoteObject class, which
may throw the checked exception RemoteException.
This requires all constructors and initialization methods to
indicate the exception may be thrown. This condition is nor-
mally met by making the class a subclass of java.rmi.-
server.UnicastRemoteObject. Third, all meth-
ods in the interface and implementation must also throw
RemoteException. Only if all of these conditions are
met can we use the rmic stub compiler to generate static
proxies and use the class in an RMI program.

Unless the designer of a class created it with RMI in
mind, converting the class to create remote object requires
access to the source code. We cannot subclass the origi-
nal class because the new class must also be a subclass of
UnicastRemoteObject, and Java lacks multiple inher-
itance. Inserting the call to exportObject() requires
the source code. We could instead try delegation, creating
a new remote object that holds an instance of the class we
wish to make remote. However, the delegate object will
not be substitutable for the original object; it will not be a
subclass of the original (the delegate must be derived from
UnicastRemoteObject) and it cannot use any of the
interfaces defined for the original (since they will not be
remote interfaces, provided the original class defines any
interfaces). As a result, application code written to use the
original object will need to be rewritten to use the delegate.

In contrast to RMI, the syntax used by Babylon v1.0,
shown in Figure 3, resembles Java Reflection [7]. The syn-
tax is clumsy and completely different than standard Java
method invocation, making it awkward to use. Worse, this
syntax prevents compile-time detection of errors such as in-
voking a non-existent method, passing an incorrect num-
ber of arguments, or passing incorrect argument types to a
method. Also, this syntax cannot accept primitive values;
wrapper classes must be used.

Synchronous RMI with Dynamic Proxies The remote
object creation methods in Babylon v2.0 return dynamic
proxies for newly created worker objects. Clients can use
these dynamic proxies to invoke methods on worker ob-
jects using standard Java method invocation syntax. Re-
mote method invocation in Babylon v2.0 permits the use of
primitive type method arguments and ensures type check-
ing of the target method and the arguments at compile time.
A dynamic proxy to a worker object can safely be passed
as an argument or returned as a result in any local or re-
mote method invocation. Line 34 in Figure 2 provides an
example of method invocation on a worker object.

Dynamic proxies are similar to Java RMI stubs in that

1 // Invoke method obj.ask(question)
2 try {
3 answer = (String) Babylon.rmi(
4 obj, // remote obj
5 "ask", // the method
6 question // argument to method
7);
8 } catch(// exception) {
9 // Exception handling code

10 }

Figure 3. Babylon v1.0 RMI

they make remote objects available via the Java interfaces
they implement but differ from RMI stubs in two impor-
tant ways: (i) dynamic proxies are generated dynamically
at run-time instead of using a special stub compiler and (ii)
the interfaces used by Babylon v2.0 for worker objects don’t
need to extend the java.rmi.Remote interface. How-
ever, it is important to remember that like RMI, Babylon
v2.0 worker objects need to implement a client-defined in-
terface that will be accessible to clients only via the meth-
ods defined in this interface and the worker objects must be
serializable.

Since Babylon uses Java RMI as the underlying com-
munication mechanism, parameters and return values are
passed to and from worker objects using standard RMI se-
mantics. In other words, primitive type and object param-
eters are passed by value using object serialization but re-
mote object parameters (including Babylon dynamic prox-
ies) are passed by reference. Another side-effect of using
RMI as the underlying communication mechanism is that
a new thread is started at the server by the RMI runtime
for each method invocation on a worker object. Program-
mers should be mindful of this fact, especially when creat-
ing public worker objects, because several clients may be
invoking methods on the worker object concurrently. The
methods of such worker objects should be thread-safe.

Another Babylon v2.0 feature is stateful remote method
invocations. Each remote method invocation in Babylon
v2.0 includes context information that identifies the cal-
ling client. This context information is used by servers to
authenticate the caller and to restrict invocation access to
private worker objects. This is crucial in an environment
where clients are permitted to obtain references to worker
objects belonging to other clients. In other cases, clients
may not want others to invoke methods on their worker ob-
jects. Stateful remote method invocation is used to ensure
that when a client creates a private remote object, it is the
only client that can invoke methods on that object.

4.2 Asynchronous RMI

Network latency in a distributed application environment
can incur significant overhead and reduce overall applica-
tion performance. One way to reduce the impact of network
latency is to overlap communication and computation [15].
Asynchronous remote method invocations allow an applica-
tion to continue working while a remote method invocation
completes. Overlapping computation and communication
in this way can improve application response time and in-
crease overall performance.

Asynchronous RMI without Dynamic Proxies Asyn-
chronous RMI without dynamic proxies is usually done by
adding threads to Java RMI. The programmer can create a
new thread for each method invocation. Obtaining results
requires that the program join with this thread before gath-
ering results. The developer will have to decide how to han-
dle any exceptions (whether to deal with them in the new
thread or rethrow them in another thread).

In Babylon v1.0, the syntax for asynchronous calls is
similar to that in Figure 3, with three differences. First, the
static method Babylon.armi() is used. Second, the re-
turn value of this method is an object of type Future that
represents the results [8]. The results are obtained using the
get() method on the Future object, which returns an
object that can be downcast to the correct type. Any excep-
tions during the asynchronous invocation are thrown when
the get() method in called. As with synchronous calls,
this syntax is clumsy and prevents compile-time checks.

Asynchronous RMI with Dynamic Proxies Babylon
v2.0 uses a technique based on special proxy objects
called asynchronous tickets to support asynchronous remote
method invocation. An asynchronous ticket can be used to
make the next method invocation on a worker object asyn-
chronous. The method is invoked on the ticket using stan-
dard Java invocation syntax but the invocation completes
asynchronously. Applications can continue running nor-
mally while the invocation completes.

When a client invokes a method on an asynchronous
ticket, the underlying Babylon v2.0 runtime starts a ser-
vice thread on the client which handles the remainder of
the invocation. The client thread returns immediately while
the service thread performs a normal synchronous remote
method invocation for the requested method. Parameters
and return values passed to the worker object using asyn-
chronous remote method invocation follow standard RMI
parameter passing semantics. The ticket permits synchro-
nization with the method invocation whether or not that
method returns a value. If the method does return a value,
that value can can also be obtained using the ticket. There-
fore, the ticket acts as both a means for synchronization and

for obtaining results using a future (in cases where there is
a return value).

Babylon v2.0 asynchronous remote method invocation
resolves on the return value of the target method. Resolv-
ing on the return value ensures that any other side-effects
have completed. This approach is 100% Java compatible
and uses Java’s standard method invocation syntax which
can be checked at compile-time.

On line 48 of Figure 2, a new asynchronous ticket is ob-
tained for the Matrix worker object used in the example.
This ticket is used on line 52 to make an asynchronous invo-
cation of the computeInverse() method. The method
invocation is allowed to complete asynchronously and the
result of the invocation is retrieved from the ticket using the
static getResult() method on line 60.

Previous work has considered mechanisms for imple-
menting asynchronous remote method invocations [14, 4,
20]. These approaches either introduce new keywords and
then utilize a preprocessor or require the use of a modified
stub compiler. In contrast, our asynchronous tickets are
completely compatible with standard Java, compilers, and
run-time systems and does not require any preprocessing or
a modified stub compiler.

Babylon v2.0 explicitly distinguishes between syn-
chronous and asynchronous method calls using asyn-
chronous tickets. This feature provides the user with con-
trol over how methods are invoked, rather than using im-
plicit rules like ProActive. Further, it provides control over
synchronization with asynchronous methods. Specifically,
ProActive asynchronously executes methods with a return
type of void (unless they throw a checked exception), but
these methods produce no future and so synchronization is
not possible. For methods with side effects on the state of
a remote object, these semantics may not be desired. Al-
though additional code is needed, Babylon v2.0 allows this
synchronization.

5 Other Babylon Features and Performance

Babylon v2.0 also includes many other features to sim-
plify the process of developing distributed, parallel, and mo-
bile Java programs. These features are detailed in [22].

First, Babylon v2.0 supports remote class loading so
clients do not need login access to the machines that host
their remote objects. Furthermore, each application has a
separate class loader with its own namespace, so different
users can have classes with the same name without conflict.
Second, Babylon v2.0 supports the migration of objects be-
tween servers using several different methods. One of these
methods is safe-point migration, a novel technique that uses
a combination of checkpointing and rollback. This migra-
tion can be done by the user or by a system administrator.

Third, Babylon v2.0 includes remote I/O to access I/O re-
sources on remote machines.

We have conducted an extensive performance evaluation
of Babylon v2.0 and have compared the performance with
Babylon v1.0. We have found the performance of Babylon
v2.0 is on par or better than that of v1.0 and that the exten-
sive use of dynamic proxy objects in Babylon v2.0 does not
degrade its performance [22].

6 Conclusions

This paper highlights the use of dynamic proxies in a
middleware system for building distributed, parallel, and
mobile Java applications. Dynamic proxies help in the im-
plementation of remote object creation (specifically export-
ing an existing local object to a remote server) and remote
method invocation (both synchronous and asynchronous).

One of the biggest benefits of using dynamic proxies is
the reduction in the requirements needed to create remote
objects. Classes need only implement any interface that ex-
ports methods and implement the Serializable inter-
face. This opens the possibility of creating remote objects
from classes we do not have source code, such as those in
the Java class library, which is not possible with Java RMI.

Acknowledgments

We gratefully acknowledge Morgan Stanley Dean Wit-
ter, the Ontario Research and Development Challenge Fund,
and the National Sciences and Engineering Research Coun-
cil of Canada for financial support for portions of this
project. This paper has also benefited from the comments
and suggestions of the anonymous reviewers.

References

[1] I. Attali, D. Caromel, and R. Guider. A step toward auto-
matic distribution of Java programs. In Fourth International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems, pages 141–161, 2000.

[2] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the Web. Future Generation
Computer Systems, 15(5):559–570, October 1999.

[3] T. Brecht, H. Sandhu, J. Talbot, and M. Shan. ParaWeb: To-
wards world-wide supercomputing. In Proc. of the Seventh
ACM SIGOPS European Workshop, pages 181–188, 1996.

[4] K.E. Falkner, P.D. Coddington, and M.J. Oudshoorn. Imple-
menting asynchronous remote method invocation in java. In
Proc. the Parallel and Real-Time Systems Conference, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object–Oriented Software.
Addison-Wesley, 1994.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification, 2nd Edition. Addison Wesley, 2000.

[7] D. Green. The reflection API, 2005. Available at
http://java.sun.com/docs/books/tutorial/reflect.

[8] R. Halstead. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming
Languages and Systems, 7(4):501-538, 1985.

[9] B. Haumacher and M. Philippsen. Exploiting object locality
in JavaParty, a distributed computing environment for work-
station clusters. In The Ninth Workshop on Compilers for
Parallel Computers, pages 83–94, June 2001.

[10] F. Huet, D. Caromel, and H. Bal. A high performance java
middleware with a real application. In Proc. Supercomput-
ing Conference, 2004.

[11] M. Izatt. Babylon: A Java-based distributed object environ-
ment. Master’s thesis, York University, Toronto, July 2000.

[12] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an en-
vironment for parallel, distributed and mobile Java applica-
tions. Concurrency: Practice and Experience, 12(8):667–
685, July 2000.

[13] M. O. Neary, A. Phipps, S. Richman, and P. R. Cappello.
Javelin 2.0: Java-based parallel computing on the Internet.
In The Sixth International European Parallel Computing
Conference, volume 1900 of LNCS, pgs 1231-1238, 2000.

[14] R. Raje, J. I. William, and M. Boyles. An asynchronous
remote method invocation (ARMI) mechanism for Java. In
ACM 1997 Workshop on Java for Science and Engineering
Computation, June 1997.

[15] V. Strumpen and T. L. Casavant. Exploiting communication
latency hiding for parallel network computing: Model and
analysis. In International IEEE Conference on Parallel and
Distributed Systems, pages 622–627, December 1994.

[16] Sun Microsystems, Inc. Dynamic proxy classes,
1999. At http://java.sun.com/j2se/1.3/docs/guide/reflection-
/proxy.html.

[17] Sun Microsystems, Inc. Java2 platform, standard edition,
v1.4.0 API specification, 2002. At http://java.sun.com/.

[18] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh,
and U. Nagashima. Ninflet: a migratable parallel objects
framework using Java. In 1998 Workshop on Java for High-
Performance Network Computing, pages 151–159, 1998.

[19] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDon-
ald. Using generative design patterns to generate parallel
code for a distributed memory environment. In Proc. ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 202-214, 2003.

[20] W.F. Taveira, M.T. de Oliveira Valente, M.A da Silva
Bigonha, and R. da Silva Bigonha. Asynchronous remote
method invocation in java. Journal of Universal Computer
Science, 9(8):761–775, 2003.

[21] G. Thiruvathukal, L. Thomas, and T. Korczynski. Reflec-
tive remote method invocation. Concurrency: Practice and
Experience, 10(11-13):911-925, 1998.

[22] W. van Heiningen. Babylon v2.0: Support for distributed
parallel and mobile Java applications. Master’s thesis,
School of Computer Science, University of Waterloo, 2003.

[23] W. van Heiningen, T. Brecht, and S. MacDonald. Baby-
lon v2.0: Middleware for distributed, parallel, and mobile
Java applications. In Proc. 11th International Workshop on
High-Level Parallel Programming Models and Supportive
Environments, 2006.

[24] R. van Nieuwpoort, J. Maassen, T. Kielmann, and H. Bal.
Satin: Simple and efficient Java-based grid programming.
Scalable Computing: Practice and Experience, 6(3):19-32,
2005.

[25] W. M. Yu and A. Cox. Java/DSM: A platform for heteroge-
neous computing. Concurrency: Practice and Experience,
9(11):1213–1224, November 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

