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Abstract
In this paper we explore active replication based on soft-

ware diversity for improving the responsiveness of simula-
tion systems. Our proposal is framed by the High-Level-
Architecture (HLA), namely the emerging standard for in-
teroperability of simulation packages, and results in the de-
sign and implementation of an Active Replication Manage-
ment Layer (ARML), which supports the execution of multi-
ple software diversity-based replicas of a same simulator in
a totally transparent manner. Beyond presenting the repli-
cation framework and the design/implementation of ARML,
we also report the results of an experimental evaluation on
a case study, quantifying the benefits from our proposal in
terms of execution speed.

1 Introduction
In this paper we explore software diversity and active

replication in the context of advanced simulation systems
with the aim at improving the timeliness in the production
of simulation results. This is done by exploiting the best
instant responsiveness among the different replicas during
different phases of the simulation run.

The replication approach we propose is framed by the
High Level Architecture (HLA) [10, 11], namely the emerg-
ing standard for interoperability of simulation systems and
applications. This standard defines a set of middleware ser-
vices to be offered by a so called Run-Time-Infrastructure
(RTI), aimed at supporting complex simulation applications
resulting from the integration of (pre-)existing simulation
packages. Hence, HLA appears as a natural candidate con-
text for the development of middleware facilities able to
transparently handle the replication of application level sim-
ulation components in an advanced simulation scenario.

An important aspect related to our proposal is that soft-
ware diversity does not necessarily mean having different
implementations of a same simulation entity based on, e.g.,
different types of data structures and algorithms. It might
simply mean employing different (or differently parameter-
ized) third party libraries in support of simulation related,
general purpose, application level tasks in order to origi-
nate diversity-based replicas exhibiting different instant re-

sponsiveness. Hence, our replication approach can provide
real run-time advantages with no (or minimal) effort from
teams of application programmers, who are not necessar-
ily required to provide diversity-based implementations of
a same application level simulation component. This means
in practice following a kind of “Opportunistic N-Version
Programming” such as the one followed by [17] in the con-
text of replication in support of fault tolerance.

Typically, an active replication scheme requires a higher
amount of computing resources to achieve its objective.
This also occurs for our approach, where the execution of
the same simulation path needs to be carried out in a really
parallel manner by the different software diversity-based
replicas. However, such a higher resource consumption can
be justified by scenarios for which the timeliness in the pro-
duction of simulation outputs (e.g. real-time response from
the simulation system) is the dominating factor.

The implementation of an Active Replication Manage-
ment Layer (ARML), which transparently supports soft-
ware diversity-based replicas by showing them as a sin-
gle logical entity, is also presented. It has been based on
C technology and standard UNIX APIs, therefore resulting
portable across any king of UNIX system. Also, such an
implementation has been tailored for integration with the
Georgia Tech B-RTI package [7], even though the under-
lying design principles remain valid independently of the
specific RTI to which replication handling facilities should
be added.

Beyond providing the framework for software diversity-
based replication, and describing the design and implemen-
tation of ARML, we also report experimental results in the
context of HLA based simulation of a GSM system outlin-
ing the performance benefits from our proposal.

The remainder of this paper is structured as follows. In
Section 2 the replication framework is described. The de-
sign and implementation of the replication layer to be inte-
grated with the RTI are proposed in Section 3. Related work
is discussed in Section 4. Experimental results are reported
in Section 5.
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2 The Replication Framework

As pointed out, we are interested in an advanced, HLA-
based simulation scenario, where instances of different sim-
ulators, namely federates in the HLA terminology, cooper-
ate with each other through the services provided by the un-
derlying RTI. Actually, a federate is typically composed of
(i) application speci c simulation software, which includes
all the modules and data structures implementing the simu-
lation model, and (ii) general purpose simulation software,
which instead includes all the modules and data structures
used for typical, general purpose tasks in support of simu-
lation applications. Examples of general purpose tasks in-
clude the maintenance of calendar queues and also check-
pointing/recovery of the federate simulator state in support
of optimistic synchronization. In such a context, our view
of software diversity can be expressed according to the fol-
lowing two diversity criteria:

Application-Specific-Software-Diversity (ASSD). This
type of diversity is achieved in case the simulation model is
implemented multiple times according to (i) different data
structure organizations (e.g. static pre-allocated memory vs
dynamically allocated one) and/or (ii) different algorithms.
It is also achieved in case a given implementation can be
parameterized so to impact the run-time behavior of the in-
volved modules under the same input conditions. As an
example, the software might make use of a mixture of pre-
allocated memory and dynamically allocated memory, used
in case the pre-allocated one gets exhausted at a given point
of the execution. In such a case, the size of the pre-allocated
memory chunks might impact the run-time overhead for
possible allocation/release of dynamic memory (e.g. by de-
termining the amount of allocation/release operations per
time unit).

General-Purpose-Software-Diversity (GPSD). This
type of software diversity deals with the case of multi-
ple libraries with the same interface (1), but with differ-
ent internals, available for general purpose tasks in sup-
port of simulation systems, so that application speci c soft-
ware can interface whichever of those libraries to achieve
different instances of a same federate possibly exhibiting
different run-time behaviors under the same input con-
ditions (see, e.g., [4, 18] for comparisons between dif-
ferent algorithms/implementations of calendar queues and
[5, 14, 16, 19] for comparisons between different algo-
rithms/implementations of checkpointing). As for ASSD,
GPSD can be also achieved in case a given library for gen-
eral purpose tasks can be parameterized so to impact its run-
time behavior under the same input conditions (e.g. the size
of a hash-with-bucket table implementing an event list can

1We recall that in most cases the same interface for a set of different
libraries can be achieved by a simple wrapping approach.
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Figure 1. Software Architecture with the Ac-
tive Replication Management Layer.

determine the level of collision, and so the information ac-
cess time).

Once de ned ASSD and GPSD, the active replication ap-
proach we propose can be schematized as in Figure 1. Each
federate is present within the whole federation as multi-
ple diversity-based replicas. These replicas interact with a
so called Active Replication Management Layer (ARML)
which exposes the same call/callback interface exposed by
the RTI. At the same time, ARML interacts with the under-
lying RTI via that same interface. ARML has the following
tasks to perform:

A. It intercepts all the instances of calls to a given RTI ser-
vice performed by the different federate replicas, and
forwards a single one of these calls to the underlying
RTI. The forwarded call is the fastest one issued by the
overlying replicas.

B. As soon as the RTI returns to ARML for a previously
issued call, ARML delivers the return statement (and
the return value, if any) to all the overlying replicas.
If some federate replica has not yet executed the call
to the corresponding RTI service, ARML keeps the re-
turn value buffered until that call is issued, and then
immediately returns with the established return value
to that federate replica.

In other words, ARML takes all the streams of calls to
RTI services, each from a different replica, and builds a
single stream including, for each service call, the corre-
sponding instance coming for rst among all the streams.
A scheme similar to the one described in points A and B is
adopted by ARML for handling the callbacks speci ed by
the HLA standard [10, 11]. In particular, ARML intercepts
each callback from the RTI and delivers it to all the over-
lying replicas. In case some of these replicas cannot yet
accept the callback (since, acting asynchronously, it has not
yet executed all the RTI calls preceding the delivery of that



callback), ARML simply delays the callback execution on
that replica until it is ready to accept it.

Given overlying replicas exhibiting different instant
responsiveness due to software diversity (ASSD and/or
GPSD), the calls/callbacks to/from RTI associated with the
stream provided by ARML are expected to follow a tim-
ing faster than what would be obtained in case of a single
federate instance. This can provide benefits for the whole
federation of simulators, whose run-time behavior depends
on the timely invocation of RTI services (e.g. requests to
advance in simulation time) of each involved federate.

Actually, there are some requirements which must be sat-
isfied for both the effectiveness and the correctness of the
whole approach. Concerning the effectiveness, we need
to execute each replica and the RTI in real concurrency
(e.g. as different threads or processes on an SMP com-
puting system). This is because the RTI must be able to
process requests according to an interleaved stream deter-
mined by ARML via the selection of requests from one
or another replica, depending on instant responsiveness of
each of those replicas. Hence it must be able to proceed
in parallel with all of the involved replicas. At the same
time, each replica must not affect the execution speed of the
other replicas and of the RTI due to resource (e.g. CPU)
contention.

Concerning the correctness of the approach, we require
all the federate replicas to be Piece-Wise-Deterministic
(PWD), with the meaning that they must exhibit the same
trajectory for what concerns the state of the simulated ob-
ject, and the same external interactions, under the same in-
put conditions (e.g. the same callbacks from the RTI). In
general, this is not a relevant limitation, especially when
considering that simulation software mostly rely on (i)
pseudo-randomization, which, once fixed the correspond-
ing seeds, determines well established computation paths,
or (ii) pre-sampling, according to which random number
generators are sampled in advance (see, e.g., [13]), hence
all the replicas can use a same pre-sampled sequence along
a computation path, or even (iii) traces collected from, e.g.,
logs, which can be made available to all the replicas. Ad-
ditionally, it is usual that simulation software implements
the representation of the state of the simulated object in a
way semantically independent of any non-deterministic be-
havior of the underlying computing platform, i.e. the un-
derlying Hardware and Operating System. In particular, the
state representation is, in general, semantically independent
of, e.g., specific memory addresses reserved for the corre-
sponding data structures.

3 Replication Layer Implementation
Although most of the design concepts we have used for

engineering and developing an instance of ARML are in-
dependent of the specific underlying RTI package, the im-
plementation is tailored for the Georgia Tech B-RTI pack-

age [7]. For this reason, we propose in this section a brief
overview of B-RTI, which will also form the basis for un-
derstanding specific implementation choices.

3.1 Overview of B-RTI
B-RTI offers the following three classes of basic services

in support of federated simulations:

Declaration Management Services. This class entails
the services listed in Table 1, which can be used for
creating classes of objects within the federation, and for
publishing/subscribing classes of objects in order to al-
low interaction among different federates according to the
publish/subscribe model adopted by HLA. For our pur-
poses, it is important to note that the parameters used
by these services are mostly integer values (as an ex-
ample, RTI ObjInstanceDesignator is a redefini-
tion of long) or memory addresses of either strings (ob-
ject class names) or other data structures. Specifically,
RTI ObjClassDesignator is a pointer to a data struc-
ture maintained by B-RTI which records information related
to a specific object class. Also, MCAST WhereProc is a
pointer to an application level (i.e. federate level) function
which must be used by B-RTI for reserving memory space
for buffering the incoming messages associated with the up-
dates of objects of a class subscribed by the federate (these
messages are multi-casted to all the federates subscribing
that class).

Object Management Services. This class entails the ser-
vices listed in Table 2, which can be used for updat-
ing attributes of an object instance. The service named
RTI UpdateAttributeValues() can be invoked by
the owner of the object instance, i.e. the federate that
published the corresponding object class and created that
object instance. ReflectAttributeValues() is a
callback which can be issued by B-RTI to the federates
which subscribed that class in order to make them reflect
changes in the object state. RTI Retract() is a service
for undoing the delivery of an already issued object up-
date, and RequestRetraction() is the corresponding
callback for finalizing the undoing at the application level.
For our purposes, it is important to note that the param-
eters used by these services are of type int or double
(EventRetractionHandle is a numerical code asso-
ciated with the message used for communicating the ob-
ject update at the destination federate, and TM Time is
a redefinition of double) or memory addresses of ei-
ther object related data structures maintained by B-RTI
(i.e. RTI ObjInstanceDesignator) or B-RTI man-
aged messages (i.e. struct MsgS *).

Time Management Services. This class entails the ser-
vices listed in Table 3, which can be used by the federate for
synchronization purposes. Among them, the unique call-
back is TimeAdvanceGrant(), which is used by B-RTI



Table 1. Declaration Management Services.
RTI ObjClassDesignator RTI GetObjClassHandle (char *)
RTI ObjInstanceDesignator RTI RegisterObjInstance (RTI ObjClassDesignator)
void RTI PublishObjClass (RTI ObjClassDesignator)
void RTI InitObjClassSubscription (RTI ObjClassDesignator, MCAST WhereProc, void *)
BOOLEAN RTI IsClassSubscriptionInitialized (RTI ObjClassDesignator)
void RTI SubscribeObjClassAttributes (RTI ObjClassDesignator)
RTI ObjClassDesignator RTI CreateClass(char *)

Table 2. Object Management Services.
EventRetractionHandle RTI UpdateAttributeValues(RTI ObjInstanceDesignator, struct MsgS *, long, long)
void ReflectAttributeValues(TM Time, struct MsgS *,long, long)
void RTI Retract(EventRetractionHandle)
void RequestRetraction(EventRetractionHandle)

Table 3. Time Management Services.
void TimeAdvanceGrant (TM Time)
void RTI NextEventRequest (TM Time)
void RTI TimeAdvanceRequest (TM Time)
void RTI FlushQueueRequest(TM Time)
void RTI SetLookAhead(TM Time)
TM Time RTI GetLookAhead(void)

to notify a safe simulation time for the federate. All the
other services are used by the federate for setting/getting
the current lookahead value and for asking both the deliv-
ery of incoming messages up to a given simulation time
and the possibility to advance the local simulation clock to
that time. For our purposes it is important to note that the
parameters/return-values used by these services are all of
type double (i.e. of type TM Time).

There is a nal observation, the tick service triggering
the delivery of all the pending callbacks is supported via
the function void BRTI Tick(void), which takes no
parameter and returns no value. Also, the function void
RTI Init(int, char **), with classical argument
number and argument vector parameters, is used to set up
the B-RTI for federated execution.

3.2 ARML Design Concepts

Our ARML design and implementation are oriented
to portability on whichever UNIX system. Also, since
one basic requirement for the effectiveness of our ac-
tive replication strategy is the possibility to support real
concurrency for the execution of the underlying RTI
and the overlying federate replicas, we have decided
to allow such a concurrency scenario independently of
the nature of the underlying computing platform (e.g.
SMP vs cluster based platforms). To this aim, we
have organized ARML into two independent C soft-
ware modules, namely federate replication manager
and RTI replication manager. The rst module must
be linked to the federate code. It provides to the federate
the same service interface as the one offered by B-RTI , and
requires from the federate the corresponding callback inter-
face (see Section 3.1). The second module must be linked to
the B-RTI code. It uses that same B-RTI service interface

and offers to the B-RTI the corresponding callback inter-
face.

The interaction between these two independent modules
takes place through standard socket API, with the meaning
that a service call issued by the federate is intercepted by
federate replication manager and is then translated into
a message sent to RTI replication manager via sockets.
Once received the message, RTI replication manager
issues that service call to the underlying B-RTI. When the
service call returns, RTI replication manager provides
the output via socket to federate replication manager,
which then provides it back to the federate.

Similarly, each callback issued by B-RTI is intercepted
by RTI replication manager and results in a message
sent via socket to federate replication manager, which
then really invokes the corresponding callback and re-
turns the callback output to RTI replication manager,
again via socket. This output is nally returned by
RTI replication manager to B-RTI.

Compared to a classical federate/RTI interaction based
on calls/callbacks exploiting the application stack or even
CPU registers for handling parameters and return val-
ues, the additional operations associated with the in-
teraction between federate replication manager and
RTI replication manager via sockets cause some over-
head. However, in case the federate and the underlying
RTI are hosted by the same SMP machine, the approach
of using sockets boils down to a few additional copies of
parameters/return-values into kernel level memory, possibly
plus process dispatching operations (e.g. in case of an event
of block on incoming data on a socket). Both previous tasks
are typically executed in a very effective manner by the ker-
nel, hence the expected overhead is likely to be affordable
unless for (very) ne grain applications. Limited overhead
for a coarse grain application is actually con rmed by the
experimental results we report in Section 5.

3.3 Main Data Structures and Flow Control
The call/callback B-RTI interface in Section 3.1 treats

two types of pointer parameters. One type (e.g.
RTI ObjClassDesignator) includes pointers that are
maintained by the federate, but not directly de-referenced



typedef struct _instance_descriptor{ /* descriptor of a call or callback */
int callback; /* is this the description of a callback? */
long sequence_number; /* for the construction of ARML stream of calls/callbacks to/from the BRTI */
int code; /* call/callback numerical code */
char arguments[MAX_ARGUMENTS_SIZE]; /* call/callback arguments marshalled in a contiguous buffer */

} instance_descriptor;

Figure 2. Call/Callback Descriptors.

by the federate. They represent memory addresses of data
structures maintained and accessed by B-RTI code. The
other type (e.g. struct MsgS * and char *) includes
instead pointers to memory areas that contain data acces-
sible by both the B-RTI and the federate. For instance,
when the ReflectAttributeValues() callback is
issued, the struct MsgS * parameter points to a mem-
ory buffer where the message to be delivered to the fed-
erate has been placed by B-RTI. Hence both the feder-
ate and the underlying B-RTI access in practice the same
memory area via that parameter. Such a sharing of mem-
ory buffers cannot be supported within ARML since the
federate and B-RTI run as separate processes interacting
via sockets. To tackle this problem, we have adopted
a classical RPC like marshalling/unmarshalling technique,
based on linearizing all the call/callback parameters, in-
cluding the pointed objects (i.e. pointed messages and
strings), and packing them into the message to be sent
over the socket connection. However, compared to clas-
sical RPC, ARML is faced with the additional issues of
creating a single stream of calls to B-RTI services from
multiple streams associated with different replicas, and also
of creating multiple callback streams towards all the repli-
cas starting from a single callback stream coming from
the underlying B-RTI. To tackle these additional issues, as
well as classical marshalling/unmarshaling, each message
sent via socket between federate replication manager
and RTI replication manager is packed into the
instance descriptor data structure shown in Fig-
ure 2. The callback eld indicates whether the mes-
sage is associated with a call to B-RTI services or a call-
back from B-RTI. The sequence number eld indicates
the ordering position of a service call within the stream
of calls from each federate replica. The code eld iden-
ti es the numerical code of the call or callback (this is
used to perform correct binding of calls and callbacks in
the different address spaces). Finally, the arguments

eld stores the linearized parameters associated with the
call or callback. The same instance descriptor
data structure is used also for packing the reply to
a service call, sent from RTI replication manager
to federate replication manager and the reply to
a callback sent from federate replication manager
to RTI replication manager. Is such a case, the

arguments eld is used to pack the call/callback return
value.

Looking back at the call/callback interface presented in
Section 3.1, there is a single parameter type whose passage
cannot be straightforwardly solved by using the RPC like
marshalling/unmarshalling approach previously described.
This parameter type is MCAST WhereProc, namely the
function pointer indicating to the B-RTI which is the fed-
erate level procedure for reserving memory buffers for in-
coming messages associated with the updates of subscribed
objects. Speci cally, according to the B-RTI interface, the
federate must specify the value of this function pointer in
order to identify the function address in the address space
of the whole application (federate plus B-RTI). However,
when ARML is used, the corresponding function should be
executed by B-RTI in a separate address space. To cope
with this issue without the need for managing linker sym-
bols (and binding them on B-RTI service parameters), we
have decided to let RTI replication manager overrule
the MCAST WhereProc parameter with a function pointer
value de ned by RTI replication manager, which iden-
ti es a memory reserving procedure valid in the address
space of B-RTI (recall that RTI replication manager
and the B-RTI are linked together to generate a same ex-
ecutable).

For each managed federate replica, two socket con-
nections between federate replication manager and
RTI replication manager are installed. One connec-
tion, which we refer to as Primary Connection (P-Con)
is used by federate replication manager to send the
instance descriptor associated with a call to B-
RTI services, and for receiving both (i) the return value
of the call and (ii) the instance descriptor as-
sociated with a callback. Speci cally, when the fed-
erate issues a call to a service that does not trig-
ger any callback, federate replication manager lls
in the corresponding instance descriptor, sends it
over P-Con and then waits for the reply, i.e. for the
instance descriptor associated with the service re-
turn. Upon its arrival, federate replication manager
simply returns to the overlying federate with the es-
tablished return value. Instead, when the federate is-
sues a call to a service that triggers pending callbacks,
i.e. BRTI Tick(), federate replication manager be-



haves differently. It lls in and sends the correspond-
ing instance descriptor, and then waits on P-
Con for either (i) the reply to BRTI Tick() or (ii)
the instance descriptor associated with a call-
back. If the latter descriptor arrives, then the callback
is invoked and the callback return value is sent back
to RTI replication manager via the additional socket
channel, which we refer to as Secondary Connection (S-
Con). Then federate replication manager waits again
on P-Con for either the reply to BRTI Tick() or an addi-
tional callback descriptor.

RTI replication manager uses a different thread for
each managed federate replica. Each thread controls the P-
Con associated with the corresponding replica according to
the following scheme:

1. When an instance descriptor arrives along P-
Con, the thread checks whether the sequence number
carried by the descriptor is greater than the maximum
sequence number of service calls already issued to the
underlying B-RTI.

2. In the positive instance, the incoming descriptor is as-
sociated with a service call which must be inserted in
the stream of calls to the underlying B-RTI. Hence, the
thread updates the maximum sequence number of is-
sued calls and really executes the call to the underlying
B-RTI service.

3. In the negative instance, the thread simply skips per-
forming the service call and goes waiting again for an
incoming instance descriptor on P-Con.

If the steps in point 2 are executed, i.e. the service
call is really performed by that thread instance, the return
value must be communicated to all the replicas. Hence,
the thread sends the instance descriptor carrying
the return value along all the P-Con channels towards the
different federate instances. Actually, this means that the
return value is implicitly kept buffered within socket level
memory buffers until the corresponding federate replica re-
quests it. According to this communication scheme for the
return value, it is possible that, upon the issue of a call to
a service which has been already executed by the B-RTI
thanks to a faster request instance from a different replica,
federate replication manager might nd the reply im-
mediately available on its P-Con channel. Hence, it can
immediately return control to the federate.

As a nal observation, in case the service requested
by the thread to the underlying B-RTI in point 2 is
BRTI Tick(), all the callbacks from the B-RTI will result
in callback descriptors sent by that thread along all the P-
Con channels towards the different federate instances. For
each callback from B-RTI, the thread waits for the fastest
callback reply across all the S-Con channels (recall that

federate replication manager sends the reply to a call-
back request on S-Con), and then returns control back to the
B-RTI. All the slower callback replies from the other repli-
cas are discarded according to the sequence number based
mechanism already discussed.

4 Related Work
Among the solutions oriented to enhancing the perfor-

mance of simulation systems, a kind of replication approach
known as cloning has been proposed in [3, 8, 9]. The aim
of this approach is to allow fast exploration of multiple ex-
ecution paths due to sharing of portions of the computation
on different paths. Our proposal differs in nature from this
approach since we aim at increasing the execution speed on
a single execution path just thanks to the presence of sev-
eral software diversity-based replicas of a same simulation
entity executing that same path in parallel, according to an
active replication scheme.

Replication has been also exploited by running multi-
ple copies of a same simulation program with different in-
put parameters (see, e.g., [1, 12]), sometimes even in inter-
leaved mode on the same hardware [2] so to further improve
resource usage in the presence of interleaving between com-
puting and communication phases. Differently from our ap-
proach, this type of replication is not aimed at accelerating
the execution speed on each single run, but is aimed at ef-

ciently providing a set of output samples (from differently
parameterized runs) for statistical inference.

Finally, our proposal is also related to classical Parallel
Discrete Event Simulation (PDES) techniques [6] in that,
like in our approach, PDES attempts to exploit an increased
amount of computing resources to speedup the simulation
execution. The main difference with PDES techniques is
that they require explicit ad-hoc (re-)programming of the
simulation package in order to embed within it either space
or time partitioning of the simulation tasks across multiple
CPUs. Instead, our approach is oriented to transparency in
the context of integration of (existing) simulation packages
via a middleware approach.

5 Experimental Results
In this section we report experimental data for an eval-

uation of the effects of ARML. The application level code
we have used in the experimental study is a parameteriz-
able simulation software for GSM mobile systems. It can
simulate GSM systems at a high level of detail by explic-
itly modeling large-scale fading (i.e. path loss), small-scale
fading (i.e. Rayleigh fading) and channel interference so
to perform statistical inferences on the signal strength (or
signal quality) based on the Signal-to-Interference Ratio
(SIR). The supported mobility model is random way-point.
This model has the ability to capture different classes of
mobile behaviors, ranging from pedestrian to vehicular be-
havior, by simply parameterizing the pause duration and
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Figure 3. Simulation Execution Speed.

maximum movement speed according to a set of different
values. Large scale-fading is simulated at non- xed time
steps. Speci cally, path loss is (re-)evaluated on the basis
of relevant events associated with the effects of the mobility
model, namely the arrival of a mobile in a way-point. Small
scale fading can be simulated at either xed time-steps or
at non- xed ones. In the latter case, Rayleigh fading is
evaluated at simulation time points associated with relevant
events for both mobility (e.g. the arrival of a mobile in a
way-point) and the call arrival pattern (e.g. the start/end of
a call). The simulator includes modules for pseudo-random
generation of call start/end patterns, and can also be fed-
erated with an external workload generator. For what con-
cerns time management, the simulator uses the optimistic
interface offered by the underlying RTI, and adopts a peri-
odic approach for logging state information required to per-
form correct state recovery in case of violations on TimeS-
tamp Ordered (TSO) interactions with external federates. In
the experiments, we have federated this simulator with an
external workload generator based on traces, which simply
accesses a log of information to originate TSO interactions
to be delivered at the GSM simulator side. Each interaction
schedules the arrival of a call, and the interaction message
includes any information required by the GSM simulator to
simulate the call itself (e.g. the call duration). This work-
load generator interacts with the underlying RTI via the con-
servative time management interface.

To evaluate the effects of ARML we have adopted the
following GPSD approach at the level of the GSM simula-
tor. This simulator is run as two replicas and the underlying
state log/recovery modules are parameterized so to perform
the log of the application level simulation state in an out-
of-phase manner. Speci cally, the two replicas take state
log each K simulation events, with an out-of-phase of K/2

events. In other words, if K = 1, the two replicas exhibit
the same behavior by taking state log at each event. In-
stead, for any value of K greater than one, they behave dif-
ferently by logging the state at different points in simulation

time. This allows different instant responsiveness of the two
replicas during both forward computation and also in a roll-
back phase (due to different coasting forward lengths when
a TSO violation occurs at a given simulation time point).
Such con guration has been compared with a standard con-

guration employing no replication, formed by a single in-
stance of the GSM simulator and by the workload generator,
both directly interacting with the underlying B-RTI.

In the experiments we have simulated a large urban GSM
coverage area with 1024 micro cells, each managing 200
channels. Also, the mobile devices involved in on-going
calls belong to three different classes simulating, respec-
tively, users residing in some buildings, users walking along
the streets and users travelling by some vehicle. Small-
scale fading is simulated at non- xed time steps (i.e. with
fading recalculation triggered by relevant events associated
with mobility and with the call arrival pattern). All the runs
have been carried-out on an SMP machine equipped with 4
Xeon CPUs (2.0 GHz) and 4 GB of RAM memory, running
LINUX (kernel 2.6). We note that 4 CPUs suf ce to orig-
inate a situation of no CPU contention among the involved
components, i.e. the two replicas of the GSM federate, their
underlying B-RTI instance and the external workload gen-
erator (recall that, while the two replicas of the GSM fed-
erate and their underlying B-RTI instance run as separate
processes due to the presence of ARML, the workload gen-
erator and its underlying B-RTI instance run within a same
process). Additionally, we have veri ed that the sizes of
the involved processes do not cause RAM contention and
swapping phenomena, which, as well as CPU contention,
would prevent a signi cative evaluation of the potential of
the proposed replication approach. In Figure 3 we report
the execution speed of the federation, evaluated in terms of
simulated time units per wall-clock time unit, for the two
different investigated con gurations (i.e. with and without
replication), while varying the checkpoint interval K up to
the value 32. Each value reported in the plots is the average
over a number of samples that ensure a con dence interval
of 10% around the mean at the 95% con dence level.

When the checkpoint interval K is set to 1, we have
in practice no diversity since the two replicas of the GSM
application exhibit the same identical run-time behavior
(therefore the same identical instant responsiveness). Hence
replication is expected to provide no bene ts. This is con-

rmed by the experimental results which show that for such
a value of K, the con guration with no replication runs
about 6% faster than the con guration with the two replicas.
Actually, the two con gurations do not exhibit the same
identical performance just because of the overhead imposed
by ARML when replication is employed.

When the checkpoint interval K tends to be increased,
both the con gurations tend to show better performance.
However, the con guration with no replication tends to



achieve the classical “optimal tradeoff” between check-
pointing and recovery costs (see, e.g., [5, 15]) for relatively
reduced values of the checkpoint interval, i.e. values of K
up to 8. Instead, for large values of K, this configuration ex-
hibits a clear degradation of the execution speed due to ex-
cessive penalties associated with time requirements while
handling coasting forward during a rollback phase. On
the other hand, the configuration with replication is able to
achieve a better balance of the checkpointing/recovery costs
thanks to the out-of-phase placement of checkpoints, which
also allows reducing the impact of rollback costs (i.e. coast-
ing forward latencies) on the responsiveness of the GSM
application, externally seen by the B-RTI. This allows the
configuration with replication to exhibit execution speed up
to 12% better than the top speed achieved with no replica-
tion vs K. We also observe that, unless for very reduced
values of K (i.e. up to 2), the configuration with replica-
tion exhibits execution speed that is much more flat than the
other configuration vs variations of the checkpoint interval.
This provides indications of higher guarantees of accept-
able run-time performance from the configuration employ-
ing GPSD at the level of the checkpointing/recovery mech-
anism and replication, even in case of sub-optimal selection
of the value of the checkpoint interval. To further support
the validity of the results, we have also performed an execu-
tion in which the GSM simulator is run with no replication
and interfacing the underlying B-RTI via the conservative
Time Management Services. The observed execution speed
was on the order of 0.09 simulation time units per wall-
clock time unit. This denotes that the reported data refer to
a situation in which optimistic synchronization is effective.
As a final observation, the overhead by ARML could be
further reduced (possibly at the expense of reduced porta-
bility on different computing platforms), in case commu-
nication between the federate replication manager and
the RTI replication manager were implemented via ad-
hoc solution tailored for the SMP architecture, instead of
using sockets. This could even increase the performance
benefits from replication, which additionally stands the po-
tential of the proposed approach in a wide range of settings,
also including finer grain simulation applications compared
to the one considered in this case study.
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