
A Portable Real-time Emulator for Testing Multi-Radio MANETs 

Weirong Jiang
1
, Chao Zhang

2

1
Tsinghua University 

Research Institute of Information Technology 

Beijing 100084, China 

jwr2000@mails.tsinghua.edu.cn 

2
Tsinghua-TCB Institute of  

Applied Communication Systems 

Beijing 100084, China 

chao.zhch@gmail.com 

Abstract 

In building a real-life mobile ad-hoc network 

(MANET), network emulation has been appraised as 

an efficient approach for testing the real implementa-

tions of routing algorithms and protocol stacks. Most 

existing MANET emulators can hardly support both 

real-time scene construction for proof-of-concept test 

and real-time traffic recording for performance 

evaluation simultaneously. They also lack the ability to 

emulate the multi-radio environment. This paper 

presents a flexible TCP/IP-based real-time MANET 

emulator that can be portably deployed to facilitate the 

development of real multi-radio MANET routing 

protocols. It friendly provides visual interaction of 

topology control and rich configuration of emulation 

conditions to enable a real-time and comprehensive 

examination of protocol implementations.  

1. Introduction 

With a plethora of novel techniques such as multi-

radio introduced into developing real-life mobile ad-

hoc network (MANET) systems, comprehensive test 

and evaluation of MANET protocols are necessary for 

their success in real world use. Existing approaches 

include field testbed, network simulation and emu-

lation. They are compared from the view of TCP/IP 

protocol stack as shown in Figure 1. 

1) Field Testbed. Tightly coupled to the physical 

circumstances, field testbed is neither scalable nor 

reproducible, though it is theoretically the best test 

environment for its realism. The deployment is also 

cumbersome and expensive.  

2) Network Simulation. Widely used in MANET 

research, network simulators [1,2,4] can easily produce 

a controllable and repeatable simulation environment. 

But protocol and algorithm modules in these simu-

lators are computer-modeled rather than real imple-

mentations. Designers have to implement the protocols 

twice, once for simulation, and again for deployment. 

3) Network Emulation. As a combination of net-

work simulation and testbed, network emulation can 

offer a fully controlled and reproducible network 

environment while retaining some realism. The key 

advantage of emulation is that the implementations of 

protocols and services will be tested and evaluated 

without any conversion and modification. Its cost-

effectiveness and scalability also bring itself much 

praise.  

During our efforts to develop a routing protocol for 

multi-radio MANETs, the test and evaluation process 

is divided into two main phases:  

Phase 1: Proof-of-concept test for debugging;  

Phase 2: Performance evaluation for optimization. 

The two phases pose different real-time require-

ments for MANET emulators, i.e. real-time scene con-

struction for proof-of-concept test and real-time traffic 

recording for performance evaluation. According to 

the discussions in the following section, how to simul-

taneously satisfy the both requirements comes to be a 

challenge for designing a MANET emulator, especially 

to emulate a highly dynamic multi-radio environment. 

The multi-radio multi-channel technique [12] has 

recently been considered as a promising avenue for 

improving the capacity of MANETs. When applying it 

to the MANET routing protocol design, there is a need 

Figure 1. MANET Protocol Test Approaches. 

1-4244-0054-6/06/$20.00  ©2006 IEEE



to develop an emulator able to emulate the multi-radio 

environment. 

Furthermore, to gain a quick and straightforward 

insight in the behavior of a developed routing protocol, 

a GUI-based emulator that can replay the scenario after 

emulation and can be portably deployed without 

excessive efforts to modify the operating system kernel 

or the hardware driver code will be preferred. 

In this paper, such a visual and flexible TCP/IP-

based real-time emulator for testing multi-radio 

MANETs is proposed, named PoEm. It supports:

Real-time scene construction by friendly visual 

interaction of topology control and circumstance 

configuration in the central server; 

Real-time traffic recording by parallel time-

stamping in the peripheral clients; 

Multi-radio environment emulation by channel-

ID indexed neighbor tables. 

The rest of this paper is organized as follows. 

Section 2 reviews the existing MANET emulators and 

their real-time performance. Section 3 introduces the 

overall architecture of PoEm. Then some key issues 

are discussed in Section 4. Section 5 presents the 

preliminary implementation of PoEm and Section 6 

conducts two sample experiments to simply validate 

the emulator. In the end we conclude the paper and 

outline the future work in Section 7. 

2. MANET Emulator 

According to their architectures, existing MANET 

emulators can be roughly classified into two categories: 

centralized and distributed emulators. 

2.1. Centralized Emulator 

In the centralized emulators such as JEmu [7] and 

Seawind [9], all workstations acting as mobile nodes 

connect to a central emulation server. All traffic is 

directed via that server, which forwards the traffic to 

the destinations following the current network scene 

being emulated, i.e. topology, link quality, collisions 

etc.

Centralized emulators provide high degree of detail 

in the emulation of irregular mobility and volatile 

circumstance since the central server offers plentiful 

convenience to set arbitrary scenes in real time during 

the test period. But processing all traffic by a central 

server without any assistance from clients represents a 

bottleneck so that recording the traffic by one server in 

real time will be bounded by the server processing 

power (e.g. NIC capacity, CPU speed, etc.). On the 

other hand, the performance statistics is based on the 

time-stamping on each packet and the non-real-time 

traffic recording may result in an inaccurate evaluation. 

The fundamental reason for centralized emulators 

failing to obtain real-time traffic recording is the 

contention for the unique source of the incoming 

interface in the central server, as Figure 2 shows. 

Several emulation clients generate packets simul-

taneously but in the view of the server these packets 

are sent at different time due to the serial reception and 

subsequent processing. The error may be prevented by 

utilizing multiple interfaces to time-stamp the packets 

in parallel, which however will bring a negative effect 

on the system scalability and implementation cost. 

2.2. Distributed Emulator 

As for the distributed emulation systems such as 

MobiEmu [8], EMWIN[10] and MASSIVE [3], each 

station acting as a mobile node is responsible for 

directing and forwarding traffic in a peer-to-peer 

manner or via a fast switch. A central control instance 

governs the overall network topology and regulates the 

configuration of each mobile node by broadcasting 

scene messages, e.g. setting some node’s current 

neighbors, lowering some link’s bandwidth, etc. 

Nevertheless, for keeping a consistent view of the 

global scene which is constructed in real time, these 

emulators need a presumption that, either each station 

has comparable processing power to receive the 

broadcasted scene messages and update its local 

information in the same step, or the emulated scene 

varies little to produce few broadcasting messages to 

relieve the strict requirement for homogeneity of 

stations’ performance. But this presumption tends to be 

unreal for a scalable emulator consisting of diverse 

ends to emulate a large-scale multi-radio MANET with 

irregular high mobility and volatile circumstance, e.g. 

switching the channel, changing the radio range, 

moving out some nodes and lowering link bandwidth 

(to emulate a military attack), etc. at any time, which 

probably arouse a broadcast storm of scene messages. 

Figure 2. Centralized Emulator. 



In fact, the conflict between numerous update 

messages and capacity heterogeneity of distributed 

stations will result in the asynchronism of the scene 

update when the distributed emulator attempts to 

emulate a highly dynamic multi-radio MANET under 

real-time scene construction. As Figure 3 shows, if the 

global scene updates inconsistently, real-time scene 

construction may confuse some emulation nodes to 

direct their traffic following the expired scene. 

2.3. Summary and Motivation 

Real-time scene construction prefers a centralized 

architecture to guarantee a consistent scene anytime for 

each emulation node while real-time traffic recording 

favors a distributed architecture to time-stamp each 

packet in parallel. Existing MANET emulators do not 

satisfy the both two requirements due to their rigid 

architecture. 

Towards addressing the problem, we are developing 

a Portable real-time Emulator for testing multi-radio 

MANETs, called PoEm, which combines the parallel 

time-stamping into the centralized architecture.  

Moreover, to our best knowledge, few emulators 

support the multi-radio emulation and post-emulation 

replay. PoEm is among them. 

Table 1 compares PoEm with JEmu as a typical 

centralized emulator and with MobiEmu as a distri-

buted one. 

Following sections are to give a further discussion 

over PoEm. 

Emulator Real-time 

scene 

construction 

Real-time 

traffic 

recording 

Multi-radio

environment 

Post-emulation 

Replay 

PoEm 

JEmu    

MobiEmu 

3. PoEm Architecture 

PoEm adopts centralized architecture as the main 

frame for its real-time scene construction and portable 

deployment. It covers following features: 

To test and evaluate real implemented protocols 

without any modification. 

Real-time scene construction. 

Real-time traffic recording. 

Emulating multi-radio environment. 

Post-emulation replay. 

Running independent of system platforms. 

Scalable in the number of emulated nodes. 

User-friendly for visualization and interaction. 

3.1. Overview 

PoEm is a software environment for testing and 

evaluating real MANET routing protocols. It operates 

in a client/server structure and runs on several work-

stations. Both the server software and the client soft-

ware can run on any hardware platform since they are 

connected through TCP/IP connections independent of 

low layers. Clients connect to the server and each 

client is mapped into a Virtual MANET Node (VMN) 

in the server to build an emulated MANET. It is 

scalable that several clients can run in one workstation 

to emulate multiple MANET nodes. Figure 4 illustrates 

the overall structure of PoEm and following sections 

will discuss the emulation server and client separately. 

3.2. Emulation Server 

To mimic a real-life MANET environment, PoEm 

emulation server accepts connections from emulation 

clients and forwards the packets to their corresponding 

clients according to the emulated network scene. The 

emulation server creates the desired network scene by 

controlling the topology and configuring the wireless 

circumstance parameters based on a variety of models. 

Figure 3. Distributed Emulator. 

Table 1. Feature Comparison. 

Figure 4. Overall Structure of PoEm. 



Users can do those operations on the GUI in real time 

to set an arbitrary scene for tests, e.g. dragging and 

dropping VMNs anywhere, double-clicking the VMN 

to activate configuration dialogue-boxes anytime, etc. 

For each incoming packet, PoEm server operates in 

parallel multiple threads through following steps. 

Step1. Receives the packet from an emulation client. 

Step2. One scheduling thread searches the channel-

ID indexed neighbor table to find the destinations 

where the packet should be forwarded.  

Step3. After judging whether to drop the packet or 

not, from the receipt time that is stamped by clients,

the scheduling thread calculates when to forward the 

packet according to the link model which will be 

discussed further in Section 4.  

_
forward receipt

packet size
t t delay

bandwidth
.

Step4. The thread lists the packet into the schedule. 

Step5. One scanning thread keeps watching the 

schedule and initiates a sending thread once the 

emulation clock meets the time to forward.  

Step6. The sending thread sends out the packet via 

the corresponding connection. 

Step7. One recording thread collects the complete 

information of every incoming/outgoing packet to the 

database for later statistics and replay. 

Another recording thread gathers the detailed 

information of the varying scene for post-emulation 

replay. 

3.3. Emulation Client 

Developed routing protocols are embedded in the 

clients. All traffic originated from protocol imple-

mentations will be packed, time-stamped and then 

directed to the server via TCP/IP connections. 

During emulation, all clients connect to the PoEm 

server and synchronize the local emulation clock with 

the server clock. The lightweight synchronization 

process is to be discussed in Section 4.1. Each client 

sends to the server the traffic generated by user 

interaction for test; and receives from its neighboring 

VMNs the traffic forwarded by the server. 

On the GUI of emulation clients, users input the test 

set and configuration commands, observe the output 

results and information, and make judgments whether 

the developed protocol works correctly.  

4. Key Issues 

To implement the full function of PoEm as a GUI-

based real-time emulator for testing multi-radio 

MANETs, several key issues should be figured out. 

4.1 Emulation Clock Synchronization 

Parallel time-stamping makes real-time traffic 

recording feasible. But its final success relies on the 

emulation clock synchronization between clients and 

the central server. 

To accomplish it, we adopts the server clock as the 

unique reference for emulation clock and designs a 

lightweight synchronization scheme as following steps, 

also shown in Figure 5.  

Step1. The client connects to the server and sends a 

message recording its local clock time tc1.

Step2. The server accepts the connection and 

receives the synchronization message at its time ts2.

Step3. At the server time ts3, the server sends back 

to the client a message recording the time ts3 and the 

time (tc1+ts3-ts2).

Step4. The client receives the reply from the server 

at its local time tc4.

Step5. Assuming that the transport delay td from the 

client to the server is equal to that in reverse, the client 

calculates td = 0.5 tc4-(tc1+ts3-ts2) and estimates the 

current server clock as ts4 = ts3 + td.

Step6. The client uses ts4 as the current emulation 

time and pushes the emulation clock forward. 

Each client synchronizes its emulation clock with 

the server clock when initializing the connection. How 

to set the synchronization frequency is determined by 

the user in consideration of the emulation duration, 

client homogeneity and real-time requirements.  

4.2 Multi-Radio Emulation 

In multi-radio environment, each MANET node has 

multiple radios to assign multiple channels to adjust 

neighbor connectivity with other nodes. That is, the 

neighborhood lies on not only the radio range but also 

the channel assignment. It increases the topology 

complexity and affects the efficiency to update the 

neighbor tables. 

Figure 5. Emulation Clock Synchronization. 



 PoEm server maintains multiple neighbor tables 

which are indexed by the channel-IDs to emulate the 

multi-radio environment. Following expressions are 

defined to give a neighborhood model in multi-radio 

environment. 

NS(n): Node set indexed by channel n.

CS(A): Channel set of node A.

NT(A,n): Neighbor table of node A via channel n.

R(A,n): The radio range of A on channel n.

D(A,B): The distance between A and B.

Then, for channel k

( ) ( ) , ( )
( , )

( , ) ( , )

k CS A k CS B A B NS k
B NT A k

D A B R A k

In contrast to the scheme that keeps one unique 

neighbor table with multiple channel-ID marked units, 

our scheme reduces the cost to update the neighbor 

table when the emulation scene has changed. As 

Figure 6 shows, taking node a as an example, unless it 

switches one of its radios to channel 1, any change of 

node a won’t cause the update between it and the 

nodes in the neighbor table indexed by channel 1 since 

its radio is on channel 2. This scheme improves the 

update efficiency and relieves the server processor of 

heavy load especially when emulating dynamic large-

scale multi-radio MANETs. 

4.3 Configurable Models 

As a user-friendly and interactive emulator, PoEm 

makes some revisions to the underlying models to ease 

the parameter configuration on the GUI. 

4.3.1. Mobility Model. The VMN mobility model is 

generalized as a 4-tuple:  

<pause_time, direction, move_speed, move_time>, 

which is easy to be configured on the GUI. By setting 

their types {constant or random} and values {constant 

or variation range}, this mobility model can practically 

diverge to different 2-D entity mobility models [11]. 

For instance, this model turns to the Random Walk 

Mobility Model when: 

_ 0

[0,360 ]

_ [ , ]

_ _

pause time

direction rand

move speed rand minspeed maxspeed

move time time step

The formulas of the mobility model in PoEm can be 

presented as follows: 

{ , }

{ , }

( ) ( ) ( ) cos ( )

( ) ( ) ( ) sin ( )

pause move move

pause move move

x t t x t v t t t

y t t y t v t t t

4.3.2. Link Model. A link can be normally modeled as 

three parameters: packet loss, bandwidth, and delay [5]. 

PoEm adopts the packet loss model derived from [6]: 

0 0

_

0 0 0

,

( ) ,packet loss

p

P r D
P

K r D P r D

where
)( 0

01

DR

PP
K p

and r indicates the distance 

away from the source VMN. This model turns to the 

constant model once P1 = P0.

Distinct from the discrete expression in [5], the 

bandwidth is modeled as a Gaussian distribution: 

2exp( )bBandwidth M K r where
2

lnln

R

mM
Kb

.

It turns to the constant model when m = M.

The model parameters 
1 0 0, , , , , ,P P D R M m are all 

configurable on the GUI.  

5. Preliminary Implementation 

We’ve implemented the preliminary version of 

PoEm on Windows OS with Microsoft Visual C++ 6.0. 

The central server and several client processes run as 

general applications on several workstations wired 

with a fast Ethernet LAN in a lab setting, as shown in 

Figure 7. They are connected via TCP sockets. All the 

records about packets and topology are logged into a 

SQL database on server through ODBC. Underlying 

data structures for server functioning are crosslinks for 

neighbor tables and queues for schedules.  

Figure 7. Hardware Platform of PoEm. Figure 6. Channel-ID Indexed Neighbor Table.

2



6. Sample Experiments 

To validate the preliminary implementation of 

PoEm, we conducted two simple experiments to verify 

its ability for real-time scene construction and real-

time traffic recording.  

6.1 Proof-of-Concept Test 

The emulated network is constructed as Figure 8 

shows to test a hybrid MANET routing protocol 

developed by our group, which is combining the 

periodic-broadcasting and on-demand mechanisms to 

achieve high robustness for military applications.  

Doing following operations, we inspect the routing 

table in VMN1 in real time as a part of the test. The 

results are listed in Table 2. 

The results in the accordance with the expected 

definitely demonstrate the effectiveness of PoEm as a 

MANET emulator for proof-of-concept tests under 

real-time scene construction. 

Operation Routing Table in VMN1 

Step1. Construct the 

network scene shown 

in Figure 8. 

# of Routing Entries: 2 

254.0.0.1-->254.0.0.2 

254.0.0.1-->254.0.0.3 

Step2. Shrink the radio 

range of VMN1 to 

exclude VMN3. 

# of Routing Entries: 2 

254.0.0.1-->254.0.0.2 

254.0.0.1-->254.0.0.2--

>254.0.0.3 

Step3. Set different 

channels for the radios 

on VMN1 and VMN2. 

# of Routing Entries: 0 

6.2 Performance Evaluation 

The experiment scenario is defined as Figure 9 and 

Table 3 describe. VMN1 with a radio on channel 1 

sends CBR traffic of 4Mbps to VMN3 with a radio on 

channel 2 while VMN2 with two radios on channel 1 

and 2 moves at the speed of 10 (unit)/s downwards. 

The receiver VMN3 is outside the radio range of the 

sender VMN1 and hence VMN2 plays a role of relayer 

inside. The traffic load of 4 Mbps is actually heavy in 

real-life large-scope MANETs, especially for most 

military use. 

To compare the experimental performance with the 

expected, the packet loss rate is adopted as the metric 

for comparison due to its easy computation in theory. 

The packet loss in the test is purely caused by the link 

model settings since the two channels are assigned 

diverse channel IDs to avoid any collision. 

According to the theoretical models, we drew both 

the expected real-time and non-real-time performance 

curves in advance. 

The result shown in Figure 10 proves that PoEm is 

an effective real-time MANET emulator for the 

performance evaluation with sufficient-granularity. 

The minor error between the experimental and the 

expected real-time performance is analyzed as the 

result of the drift of random number generator and the 

overload of server computation.  

Parameter Value 

hop distance  d 120 (unit) 

radio range  R 200 (unit) 

CBR 4Mbps 

moving speed  v 10 (unit)/s 

moving direction 90

VMN 1-2 1 channel 

IDs VMN 2-3 2 

0P 0.1 

1P 0.9 

0D 50 (unit) 

packet 

loss model

2

Table 3. Experiment Parameters 

Table 2. Test Results 

Figure 9. Experiment Scenario. 

Figure 8. Emulated MANET. 

VMN1 

254.0.0.1 

VMN2

254.0.0.2 

VMN3 

254.0.0.3 



0 2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1
Packet Loss Rate

Time(sec)

R
at

e(
%

)

Real-Time
Non-Real-Time
Experiment

7. Conclusions and Future Work 

This paper has presented a visual and flexible 

TCP/IP-based real-time emulator for testing multi-

radio MANETs, named PoEm, which supports both 

real-time scene construction and real-time traffic 

recording by combining the parallel time-stamping into 

the central architecture. PoEm can facilitate the deve-

lopment of real multi-radio MANET routing protocols 

through portable deployment. It provides user-friendly 

interaction of topology control and rich configuration 

of emulation conditions to enable a real-time and 

comprehensive examination of protocol implementa-

tions.

Our future work is to expand the one server to a 

parallelized cluster to conquer the performance bottle-

neck so as to support fine-granularity performance 

evaluations driven by scenario scripts. Sophisticated 

underlying models such as power consumption, MAC 

algorithms and group mobility also need be added into 

our system to provide more precise examinations. 

8. Acknowledgements 

We would like to thank the colleagues in TCB for 

their inspirational discussions.  We would also like to 

thank Prof. Jun Li for his helpful comments to improve 

the presentation of this paper.  

References 

[1] ns-2, http://www.isi.edu/nsnam/ns/ 

[2] QualNet, http://www.qualnet.com 

[3] M. Matthes, H. Biehl, M. Lauer, and O. Drobnik, 

“MASSIVE: An Emulation Environment for Mobile Ad-hoc 

Networks,” Proc. of the 2nd Annual Conference on Wireless 

On-demand Network Systems and Services, 2005. 

[4] OPNET, http://www.opnet.com 

[5] D. Herrscher, A. Leonhardi, and K. Rothermel, 

“Modeling Computer Networks for Emulation,” Proc. of the 

2002 International Conference on Parallel and Distributed 

Processing Techniques and Applications, 2002. 

[6] W. Liu and H. Song, “Research and Implementation of 

Mobile Ad Hoc Emulation System,” Proc. of the 22nd 

International Conference on Distributed Computing Systems 

Workshops, 2002. 

[7] J. Flynn, H. Tewari, and D. O'Mahony, "JEmu: A Real 

Time Emulation System for Mobile Ad Hoc Networks," Proc. 

of the 1st Joint IEI/IEE Symposium on Telecommunications 

Systems Research, 2001. 

[8] Y. Zhang and W. Li, “An Integrated Environment for 

Testing Mobile Ad-Hoc Networks,” Proc. of the 3rd ACM 

International Symposium on Mobile Ad Hoc Networking and 

Computing, 2002. 

[9] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, 

and K. Raatikainen, "Seawind: a Wireless Network 

Emulator," Proc. of 11th GI/ITG Conference on Measuring, 

Modeling and Evaluation of Computer and Communication 

Systems, 2001. 

[10] P. Zheng and L. M. Ni, “EMWIN: Emulating a Mobile 

Wireless Network using a Wired Network,” Proc. of the Fifth 

International Workshop on Wireless Mobile Multimedia, 

2002. 

[11] T. Camp, J. Boleng, and V. Davies, “A Survey of 

Mobility Models for Ad Hoc Network Research,” Wireless 

Communications & Mobile Computing (WCMC): Special 

Issue on Mobile Ad Hoc Networking: Research, Trends and 

Applications, 2(5):483–502, 2002. 

[12] A. Raniwala and T. Chiueh, “Architecture and 

Algorithms for an IEEE 802.11-Based Multi-Channel 

Wireless Mesh Network,” Proc. IEEE Infocom 2005. 

Figure 10. Experiment Result. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


