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Abstract

Heterogeneous distributed environments or grid en-
vironments provide large computing resources for the
execution of large scientific applications. The effective
use of those platforms requires a suitable representa-
tion of the application algorithm which makes a distri-
bution of parts of the application across the distributed
environment possible. A representation of an applica-
tion algorithm in form of interacting tasks has been
shown to be a suitable programming model for those
distributed environments, where tasks can be shipped
to remote computing resources for execution. The ef-
ficient execution of an application also depends on the
time for sending tasks and data to remote resoures,
which adds an additional overhead to the distributed
execution time. In this paper, we propose a method to
overlap the execution of current tasks with the ship-
ping time for tasks to be executed later. The efficient
overlapping is achieved by an anticipated scheduling al-
gorithm for the placement of future task executions.

1 Introduction

Scientific applications or numerical algorithms often
provide an inherent structure of interacting modules
which can be exploited naturally for a parallel or dis-
tributed implementation. A suitable parallel program-
ming model for expressing algorithms with a modular
structure uses tasks to represent the modules of an ap-
plication algorithm. Data or control dependencies be-
tween tasks of the application form a task graph where
nodes represent tasks and arrows between tasks denote
dependencies. Tasks may be single-processor tasks or
multiprocessor tasks (M-tasks), which can be executed
on an arbitrary number of processors, but also on a

single processor. M-tasks graphs have two levels of po-
tential parallelism: each M-task can be executed on a
set of processors of a parallel platform and different M-
tasks can be executed concurrently on different disjoint
sets of processors of one platform or on different parallel
platforms in a distributed environment. This makes M-
task programming ideally suited for distributed or Grid
environments combining different parallel platforms.

The execution of M-task programs in distributed
heterogeneous environments requires a scheduling of
M-tasks of the application program. For an efficient
execution, the current structure of a distributed envi-
ronment as well as the expected (parallel) execution
time of M-tasks on different parallel components of the
platform is important. The current structure of the
distributed computing environment can be described
as a varying set of computing components and the
dynamic computing load on each of the components.
A migration of M-tasks and their corresponding data
to other components during runtime of the applica-
tion program may be required for load balance. Thus,
the time for migrating M-tasks and their corresponding
data to other platform components has to be taken into
account. An approach to efficiently schedule M-tasks
in a dynamic distributed client-server environments has
been presented in [16]. The appoach considers execu-
tion times of M-tasks as well as migration times for
M-tasks to remote computing resources. In this pa-
per, we extend this approach to take an overlapping of
execution times and migration costs into account.

For M-task scheduling with dynamically changing
computation load and/or dynamically changing dis-
tributed environments, the scheduling decision has to
be done at runtime. Thus, also the migration of tasks
has to be done at runtime which may induce a high
communication overhead. To reduce the communica-
tion overhead we propose an overlapping of computa-
tion time and migration time, such that the schedul-
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ing decision and the migration of tasks is done during
the execution of other tasks. An anticipated migra-
tion of tasks is useful if the tasks to be executed next
are known and are mainly based on data already avail-
able, which holds for many applications from scientific
computing with modular structure. Those data might
be stored on a different platform component and need
to be sent to the same location as the task. The effi-
cient realization of an anticipated task placement, how-
ever, requires modified scheduling algorithms since the
scheduling decision has to be based on previous deci-
sions and has to be able to react to different situations
of given task distributions. We propose a scheduling al-
gorithm which starts with a given distribution of cur-
rent tasks across the computing resources and which
decides about the future placement in a distributed
way. The distributed decisions cause a small num-
ber of migrations since each distributed resource de-
cides on its own computation load and communication
requirements. We present the distributed scheduling
algorithm based on a layered approach and show sub-
optimality results.

The rest of the paper is structured as follows. Sec-
tion 2 introduces the model for programming with mul-
tiprocessor tasks and the execution environment. Sec-
tion 3 presents the scheduling algorithm with antici-
pated task placement and shows suboptimality bounds.
Section 4 discusses related work, and Section 5 con-
cludes the paper.

2 Multiprocessor task programming

In this section, we describe the M-task programming
model and the model for the distributed execution en-
vironment used for the scheduling.

2.1 Programming model

Multiprocessor task programming is based on a de-
composition of an application algorithm into a set of
modules which can be realized as M-tasks. Each mod-
ule realizes a well-defined independent part of the en-
tire application algorithm with input data from other
modules and producing output data required by other
modules. The input and output data induce depen-
dencies between modules such that output data from
a module A are regarded as input data by a module
B. Data and control dependencies give rise to a task
graph G = (V,E) with the module activations as nodes
and edges between nodes representing dependencies.
Task graphs due to module program structures can be
explicit, i.e. the task graph can be seen in the pro-
gram structure, or the task graph can be more implicit

when iterative or recursive module structures are al-
lowed [10]. A suitable library for M-task programming
is Tlib [17].

Each M-task may have an internal structure which
arizes from a data-parallel or SPMD computation. But
there is no relation between the internal computations
of different M-tasks. In the following, we consider an
M-task program with input and output dependencies
where each M-task can be executed on an arbitrary
number of processors of one of the computing resources
in a distributed environment. The execution has to
guarantee that the input data required by an M-task
M ∈ V is available when the execution of M starts.
More precicely, this means:

• The input data must have been produced by pre-
decessor tasks M ′ of M with (M ′,M) ∈ E or are
given as input data to the application program.

• The input data of M must be available at the com-
puting resource which executes M . Usually, M
expects the input data using a specific data distri-
bution which must either be produced by the cor-
responding predecessor M ′ or which must be gen-
erated by a specific redistribution operation before
the start of M .

Due to the input-output relations, the task graph G
of one M-task program forms a directed acyclic graph
(DAG). In the context of a Grid environment, a com-
puting resource may have more than one DAG to com-
pute at the same time. The set of DAGs may result
from the submission of different M-task programs by
different users.

2.2 Distributed environment

The execution model that we assume in the follow-
ing is a Grid environment where clients specify M-task
programs for execution. The environment consists of a
set of servers {S1, . . . , Sn} where each server controls
a local execution resource that allows the execution of
M-tasks. The local execution resources of a server usu-
ally consist of more than one processor and different
servers may control execution resources with different
numbers of processors. The servers are connected by a
grid network such that each server has a direct connec-
tion to a set of neighboring servers. A client submits
M-tasks programs to its local server for execution. A
server obtaining an execution request from its client is
responsible for the execution. The execution may be
performed completely on the local computing resource,
but the execution request may also be forwarded to a
neighboring server, if the local server is busy with other
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Figure 1. Task graph (left) and partitioning
into a sequence of layers (right).

task executions. The execution of an M-task program
may be split over the execution resources of several
servers.

3 Scheduling approach for dynamic
task graphs

For the scheduling of an M-task graph, we use a two-
step approach, see [15]. In the first step, the task graph
is partitioned into a sequence of layers Li, i = 1, 2, . . .
such that the tasks of one layer are independent of each
other and can therefore be executed concurrently, see
Figures 1 for an illustration. The different layers have
to be executed sequentially one after another. Usu-
ally, there are several possibilities to partition a task
graph into layers. The greatest flexibility for the overall
scheduling is obtained by using as few layers as possi-
ble. This can be achieved by a greedy algorithm that
runs over the task graph and puts as many nodes as
possible into the current layer. The number of layers
is determined by the longest path from the entry node
of the task graph to the exit node.

In the second step, the scheduling of the tasks in one
layer is determined: The algorithm decides whether
the independent tasks in one layer should be executed
(concurrently or sequentially) on the local cluster or
whether tasks should be forwarded to other servers for
execution. To make this decision, the following issues
have to be taken into consideration: (1) the local re-
sources available to the server, their current workload
and the number of M-tasks waiting for execution; (2)
the workload and resources available on neighboring
servers; (3) the expected execution time and migration
costs of the M-tasks of the current layer, mainly deter-

mined by the costs of moving the data required to an-
other server. In [16], we have presented an algorithm to
make the decision which of the tasks of a server should
be forwarded to another server and which of the tasks
should be computed locally. In this article, we extend
the algorithm presented in [16] such that the decision
of the task placement of one of the layers is taken be-
fore the computation of the previous layer. The goal is
to hide the necessary communication times for task mi-
gration as far as possible behind the computations for
the previous layer. We also give suboptimality bounds
for the new algorithm.

3.1 Scheduling with anticipated task
placement

The decision for the placement of the tasks of layer
Li+1 is taken after the task placement of layer Li,
i = 1, 2, . . .. Before starting the execution of the tasks
in Li, the placement of the tasks of layer Li+1 is de-
termined. Thus, the necessary task migration can be
performed during the task execution of layer Li for
those tasks whose input data is already available. The
goal is to hide the migration costs of the tasks of the
next layer Li+1 as far as possible. For the placement of
the tasks of Li+1, we assume that the total execution
costs Ti(S) of the tasks of layer Li is known for each of
the servers S of the execution environment.

Based on Ti(S), a task M of layer Li+1 at server S
should only be migrated, if the migration costs C(M) of
M can be hidden by the execution time of the tasks of
layer Li for server S, i.e., if C(M) < Ti(S). According
to this observation, we partition the tasks of server S
of layer Li+1 into migratable and not-migratable tasks
as follows:

• The set of not-migratable tasks Mi+1
nmig =

{M ′
1, . . . , M

′
l} of server S contains all tasks whose

input data is not available yet and those tasks
whose expected migration costs exceed the exe-
cution time of layer Li on server S, i.e., those M ′

j ,
j = 1, . . . , l, for which we have:

Ti(S) < C(M ′
j). (1)

The migration costs of the not-migratable tasks
cannot be hidden by the execution of the tasks of
layer Li at server S. Hence, it is not beneficial to
migrate a not-migratable task of layer Li+1 to a
neighboring server, since the execution of such a
task can be started earlier on this server than it
arrives at other servers.

• The set of migratable tasks Mi+1
mig =

{M1, . . . , Mm} of server S contains all tasks



whose migration costs can be hidden by the
execution time of layer Li on server S, i.e. for all
tasks Mj , j = 1, . . . , m, we have:

Ti(S) ≥ C(Mj). (2)

The migratable and not-migratable tasks are deter-
mined for each of the servers of the execution environ-
ment.

In the following, Tnmig(S,Li+1) denotes the ex-
pected accumulated execution time of the not-
migratable tasks of server S for layer Li+1 and
Tmig(S,Li+1) is the expected accumulated execution
time of the migratable tasks of server S for layer
Li+1. We consider a server S with neighboring servers
S1, . . . , SnS

. S sends migratable tasks to its neigh-
boring servers as long as there exists a server Sj ,
j = 1, . . . , nS for which

Ti+1(Sj) < Ti+1(S) (3)

with Ti+1(Sj) = Tnmig(Sj , Li+1) + Tmig(Sj , Li+1), i.e.,
Ti+1(Sj) is the total accumulated task execution time
of layer Li+1 on server Sj . If there are several neighbor-
ing servers for which Equation (3) is fulfilled, the server
Sj with the smallest value of Ti+1(Sj) is selected. If
there is such a neighboring server Sj , S selects a mi-
gratable task M for which the following conditions are
fulfilled:

1. After the migration of M to Sj , Equation (3) is
still fulfilled.

2. Task M ∈ Mi+1
mig is selected such that the execu-

tion time of M is as large as possible.

To find suitable tasks for migration, the migratable
tasks of layer Li+1 of S are sorted according to decreas-
ing values of T (M,pmax) where T (M,pmax) describes
the expected execution time of task M on S, assum-
ing that S controls pmax homogeneous execution units.
Hence, the migratable task with the largest value of
T (M,pmax) is migrated first to server Sj . If task M
is migrated, then this migration changes the value of
Tmig(Sj , Li+1) or Tnmig(Sj , Li+1) for the target server
Sj , depending on whether M is a migratable or not-
migratable task for server Sj .

The selection for migration is repeated until no tar-
get server is available for which Equation (3) is fulfilled.
The placement algorithm avoids the circular placement
of tasks, since tasks are only migrated from servers
with larger values of Tnmig(S,Li+1) + Tmig(S,Li+1) to
servers with smaller values of this expression and since
tasks are only migrated as long as Equation (3) is ful-
filled after the migration. The scheduling algorithm for

the anticipated tasks placement of one layer is given in
Figure 2.

The placement of the tasks of layer Li+1 is based on
the situation of the execution environment before the
execution of the tasks of layer Li. During the execution
of Li, the execution environment may change because
new servers are added to the environment or because
existing servers are removed from the system. This dy-
namic change of the execution environment may make
the scheduling decision sub-optimal. But the execution
environment is usually not changed very often. More-
over, the placement of the tasks is chosen such that it
is completely hidden by the execution time of the tasks
of layer Li, i.e., the task placement essentially comes
for free because of the overlapping of migration and
computation costs.

3.2 Suboptimality Bounds

In the following, we analyze the schedules produced
by the distributed scheduling algorithm in Figure 2.
We first consider task graphs with single-processor
tasks and then generalize the result to task graphs with
M-tasks in the next subsection.

For single-processor tasks, the following suboptimal-
ity property holds:

Lemma 1 Let S1, . . . , Sn be servers of the same speed
connected by a complete graph and let each server con-
trol a single processor. If all tasks of layer Li+1 are
single-processor tasks and if all tasks of layer Li+1 are
migratable, then for the total execution time Ti+1 com-
puted by the anticipated scheduling algorithm the fol-
lowing holds

Ti+1 ≤ Topt + 2 · T (Mx) (4)

where Topt ist the execution time of an optimal sched-
ule of layer Li+1 and T (Mx) is the execution time of
the smallest task Mx of the server with the largest ac-
cumulated execution time.

Proof: We sort the servers S1, . . . , Sn according to de-
creasing accumulated execution time for layer Li+1 of
a task graph. After the algorithm has stopped, no task
can be migrated from S1 to one of the other servers.
This is particularly true for the M-task Mx of S1 with
the smallest execution time.

Let Ti+1(Sn) denote the accumulated execution time
of Sn. Since there are no waiting times for any of the
servers, an optimal schedule at least needs execution
time Ti+1(Sn), i.e., it is Topt ≥ Ti+1(Sn).
Since Mx has not been migrated from S1 to Sn, the



for each server S {
sort the neighboring servers S1, . . . , SnS

of S according to increasing values of Ti+1(Sj);
sort the migratable tasks Mi+1

mig = {M1, . . . , Mm} of layer Li+1 of S according to
decreasing values of T (M,pmax);

while (there exists a server Sj with Ti+1(Sj) < Ti+1(S)) {
select the first task M from Mi+1

mig;
if (Ti+1(Sj) + T (M,p′max) < Ti+1(S) − T (M, pmax)) {

migrate task M to server Sj ;
re-compute execution times of S and Sj and re-sort S1, . . . , SnS

;
}
else {

add M to set of not-migratable tasks of S;
Tnmig(S,Li+1) = Tnmig(S,Li+1) + T (M, pmax);

}
}}

Figure 2. Anticipated scheduling of migratable M-tasks M1, . . . , Mm of one layer for server S.

following inequality holds according to the scheduling
algorithm:

Ti+1(S1) − T (Mx) ≤ Ti+1(Sn) + T (Mx)

Thus, we get

Ti+1(S1) ≤ Ti+1(Sn) + 2 · T (Mx)
≤ Topt + 2 · T (Mx)

Since S1 has the largest accumulated execution time,
we have Ti+1(S1) = Ti+1 which leads to Inequality (4).
�

The suboptimality bound (4) of Lemma 1 can be ex-
pressed in a different way by using the ratio α between
the execution time of the task Mx with the smallest ex-
ecution time and the execution time of all other tasks
of server S1, i.e.

T (Mx) = α · (Ti+1 − T (Mx)) (5)

This is formulated in the following corollary.

Corollary 1 Given the assumptions of Lemma 1 and
the assumption 0 < α < 1 for α defined in (5), then
the accumulated execution time Ti+1 of the anticipated
scheduling algorithm fulfills the suboptimality bound:

Ti+1 ≤ 1 + α

1 − α
Topt. (6)

Proof: It is Ti+1(S1) = Ti+1 according to the sorting
of the servers. ¿From Equation (5), we obtain T (Mx) =

α
α+1Ti+1. Substituting T (Mx) in Equation (4) yields

Ti+1 ≤ Topt + 2 · T (Mx) = Topt + 2 · α

α + 1
Ti+1

Hence, we get

Ti+1(1 − 2α

α + 1
) ≤ Topt

which results in

Ti+1(S1) ≤ 1 + α

1 − α
Topt

�
For large numbers of tasks, we usually have values

of α, 0 < α < 1, near 0. Since (1 + α)/(1 − α) → 1
for α → 0, the suboptimalty bound of the anticipated
scheduling algorithm converges to 1, i.e. is close to 1
for small α.

3.3 Suboptimality bounds for M-task
graphs

In the following, we generalize Lemma 1 and Corol-
lary 1 to M-tasks. We assume that Server Si controls
pi processors and that all processors in the system are
identical. Furthermore, we assume that each task has
linear speedup, i.e. for servers Sj and Sl, j �= l, and for
each M- task M , we have

pj · T (M, pj) = pl · T (M, pl) (7)

where Sj controls pj execution units and T (M,pj)
is the execution time of M-task M on pj processors,
j = 1, . . . , n. We again sort the server according to de-
creasing accumulated execution times. Let S1, . . . , Sn

be the resulting order. We first show that the accumu-
lated execution time Ti+1(Sn) of the server Sn with the
smallest accumulated execution time is a lower bound
for the execution time Topt of an optimal schedule.



Proposition 1 For M-tasks with linear speedup, it is
Ti+1(Sn) ≤ Topt, where Topt is the execution time of
an optimal schedule.

Proof: We first show that

Topt =
1

n∑
j=1

pj

n∑
j=1

pj · Ti+1(Sj) (8)

holds. To show this, we assume that

Topt <
1

n∑
j=1

pj

T ∗

where T ∗ =
n∑

j=1

pj · Ti+1(Sj) is the total work needed

for all tasks. This inequality implies that there is a
schedule with a smaller total work than T ∗. Hence,
there exists at least one M-task M on at least one server
Sj which can be executed in a smaller amount of time
on another server Sl, i.e.

T (M,pj) · pj > T (M,pl) · pl

But because M has linear speedup, we have on the
other hand

T (M,pj) · pj = T (M,pl) · pl.

and thus, Equation (8) is true.
We now show that

Ti+1(Sn) ≤ 1
n∑

j=1

pj

n∑
j=1

pj · Ti+1(Sj) (9)

To show this, we assume that

Ti+1(Sn) >
1

n∑
j=1

pj

n∑
j=1

pj · Ti+1(Sj)

¿From this equation, we get
n∑

j=1

pj · Ti+1(Sj) <

n∑
j=1

pj · Ti+1(Sn)

and
n∑

j=1

[pj(Ti+1(Sj) − Ti+1(Sn))] < 0

But since pj > 0 and since Ti+1(Sj) > Ti+1(Sn) be-
cause Sn is the server with the smallest accumulated
execution time, the last inequality cannot be true. This
proves Equation (9) and the claim of Proposition 1. �

Using Proposition 1, we can show the following

Lemma 2 Let S1, . . . , Sn be servers connected by a
complete graph and let server Sj control pj identical
processors. Furthermore let the processors of different
servers be identical. If all tasks are M-tasks with linear
speedup according to Equation (7) and if all tasks of
level Li+1 are migratable, then for the total execution
time Ti+1 of the schedule of level Li+1 computed by the
anticipated scheduling algorithm, the following holds:

Ti+1 ≤ Topt +
(

1 +
p1

pn

)
T (Mx, p1) (10)

where Topt is the execution time of an optimal schedule
and where T (Mx, p1) is the execution time of the small-
est task Mx on the server with the largest accumulated
execution time.

Proof: We sort the servers S1, . . . , Sn according to
decreasing accumulated execution time for layer Li+1

of a task graph. After the anticipated scheduling algo-
rithm has stopped, Mx cannot be migrated from S1 to
Sn. Therefore

Ti+1(S1) − T (Mx, p1) ≤ Ti+1(Sn) + T (Mx, pn)

= Ti+1(Sn) +
p1

pn
T (Mx, p1)

because of Equation (7). Since Ti+1(S1) = Ti+1 and
Ti+1(Sn) ≤ Topt because of Proposition 1, we get

Ti+1 = Ti+1(S1) ≤ Ti+1(Sn) + (1 +
p1

pn
)T (Mx, p1)

≤ Topt + (1 +
p1

pn
)T (Mx, p1)

which proofs the lemma.
�

Similarly to Corollary 1, we consider a ratio α de-
fined by

T (Mx, p1) = α · (Ti+1(S1) − T (Mx, p1)) (11)

where Mx is the task with the smallest execution time.
We use α to express the suboptimality bound given in
the next corollary.

Corollary 2 Given the assumptions of Lemma 2 and
assuming 0 ≤ α < 1 and 1−α · p1

pn
> 0 for α defined in

Equation (11), the accumulated execution time Ti+1 of
the anticipated scheduling algorithm has the following
suboptimality bound:

Ti+1 ≤ 1 + α

1 − α · p1
pn

Topt (12)
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Figure 3. If the servers S1, S2, S3 are con-
nected by a linear array, then the task with
3 work units will not be migrated to S3 by the
distributed scheduling algorithms, although
this would lead to a smaller accumulated ex-
ecution time.

Proof: From the definition of α in Equation (11), we
obtain

T (Mx, p1) =
α

1 + α
Ti+1(S1)

Substituting T (Mx, p1) into Equation (10) yields

Ti+1(S1) ≤ Topt +
(

1 +
p1

pn

)
T (Mx, p1)

= Topt +
(

1 +
p1

pn

)
α

1 + α
Ti+1(S1)

Therefore, we get

Ti+1 = Ti+1(S) ≤ 1 + α

1 − α · p1
pn

· Topt

since 1 − α · p1
pn

> 0 �
Again, for a large number of tasks, we have α near 0

and therefore 1+α
1−α· p1

pn

→ 1, i.e. the algorithm generates

schedules which are nearly optimal.
If the servers are not connected by a complete graph,

the structure of the server interconnection may inhibit
an exchange of tasks when there is no direct intercon-
nection between servers of different accumulated exe-
cution times, see Figure 3 for an example. This may
lead to a total accumulated execution time which is
larger than for a complete graph.

4 Related work

The scheduling of computational resources is an im-
portant issue for Grid platforms and many execution
environments provide a scheduling component. Ex-
amples of such systems are I-WAY [5], Condor [11],
Condor-G [6], Legion [3] and Prospero [13]. But most

of these systems aim at the scheduling of complete, in-
dependent, coarse-grained jobs that are submitted by
independent users. In contrast, the approach presented
in this article considers the scheduling of tasks belong-
ing the same application, but takes into consideration
that there may be different applications to be sched-
uled at the same time.

In addition to these application-independent ap-
proaches, there are several Grid scheduling techniques
that have been developed for a specific application or
a specific class of applications, and it is not necessarily
straightforward to extend them to other applications
or classes [18, 20]. A general approach for arbitrary
applications has been proposed in [4]. The approach
is based on a decoupling of the scheduling decision
from the application-specific information by encapsu-
lation of the application characteristics in an analyti-
cal performance model and a data mapper. The core
of the scheduler is a general-purpose search procedure
identifying useful schedules that can then be evaluated
with the performance model. A related approach has
been developed in the context of the Application-Level
Scheduling Project (AppLeS), see [2] for an overview.

A comparison of different grid scheduling methods
for independent coarse-grained tasks has been given in
[7], including DFPLTF (dynamic fastest processor to
largest task first) [14], Suffrage-C, Min-min and Max-
min [12], WQ (work queue) [8], as well as a new algo-
rithm based on a ring organization of the tasks. A min-
min heuristics for grid task scheduling has also been
presented in [9]. The use of performance prediction
techniques to obtain a priori estimates of task execu-
tion times which can then be used for the scheduling
decision is considered in [19]. That paper presents the
performance prediction system PACE and shows how
it can be used in combination with a genetic algorithm
to select schedules for independent tasks.

Grid scheduling techniques in the context of the
Grid Application Development Software (GrADS)
project have been presented in [1]. This approach uses
a scheduling of workflow graphs which is based on a
ranking of the computing resources, reflecting the fit
between the component to be executed and the re-
sources available for execution. For the actual schedul-
ing, one of three pre-defined heuristics is selected.

5 Conclusions

In this paper, we have presented a new distributed
algorithm for the dynamic scheduling of multiprocessor
tasks with dependencies in a Grid environment. The
new algorithm tries to hide the migration costs of tasks
by deciding on the migration of tasks before the execu-



tion of their predecessor tasks has been started. Thus,
the migration can be performed during the execution
of the predecessor tasks. A detailed analysis of the al-
gorithm shows that the resulting schedules exhibit a
suboptimality bound near 1, if a large number of par-
allelizable tasks is scheduled and if we assume that the
structure of the interconnection network does not in-
hibit the exchange of M-tasks if this is beneficial. Based
on these assumptions, the schedules generated by the
algorithm can be proven to be efficient.

The algorithm can be extended in several ways. The
current version of the algorithm considers the execu-
tion and migration of two consecutive layers of the task
graph. This could be extended to more than two lay-
ers: If the execution time of the tasks of a layer allows
the hiding of the migration costs of more than one of
the subsequent layers, the anticipated migration could
be extended to these additional layers, provided that
the tasks of this layers are already known. The current
version of the algorithm migrates a task only if the nec-
essary migration costs can be completely hidden by the
execution time of the tasks in the preceding layer. This
could be generalized to allow a migration also if this is
not the case.
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