
A Real-Time PES
Supporting Runtime State Restoration

after Transient Hardware-Faults

Martin Skambraks

FernUniversität in Hagen
Dept. of Electrical and Computer Engineering

58675 Hagen, Germany
martin.skambraks@fernuni-hagen.de

Abstract

Controlling safety-critical real-time applications that
cannot immediately be transferred to a safe state re-
quires highly reliable Programmable Electronic Systems
(PESs). This demand for fault-tolerance is usually sat-
isfied by applying redundant processing structures in-
side each PES and, additionally, configuring multiple
PES redundantly. Instead of minimising the failure
probability of single PESs, it is also desirable to provide
a redundant configuration of PESs with the capability to
re-start single units at runtime. This requires copying a
PES’s internal state at runtime, since a re-started unit
must equalise its internal state with that of its redun-
dant counterparts before the redundant processing can
be rejoined. As a result, redundancy attrition due to
transient faults is prevented, since failed channels can
be brought back on line. This article states the prob-
lems concerned with runtime state restoration of real-
time systems, discusses the advantages and disadvan-
tages of existing techniques and introduces a hardware-
supported state restoration concept.

1. Introduction

When Programmable Electronic Systems (PESs)
have to be applied in highly safety-critical applications,
‘availability’ becomes one of the most significant per-
formance measures. The term refers to the probability
that a system is, at a predefined point in time, in an
error-free state. In applications requiring safety licens-
ing in accordance with the safety standard IEC 61508,
it is usually not sufficient to increase availability solely

by minimising the failure rate of the built-in compo-
nents. Since hardware failures are not totally avoidable
– only their probability can be minimised –, it is also
necessary to apply fault-tolerance techniques that en-
sure continuation of operation in case component fail-
ures. Almost all fault-tolerance techniques base on the
principle of redundancy, e. g., on the multiple existence
of functionally or characteristically equivalent objects.

In many real-time applications the regular operation
can not at all, or only with unreasonably high effort, be
interrupted. An example is the control electronics of an
aeroplane, which can only be turned off and re-started
on the ground. In case one unit of an n-fold redun-
dant PES configuration fails during a non-interruptible
processing phase, the safety of the entire system is im-
paired, as only (n−1)-fold redundancy remains. Rem-
edying this redundancy attrition during regular oper-
ation is problematic, since restarting a single unit re-
quires to harmonise its internal state with the ongo-
ing redundant processing. Due to this, even quickly
removable failure reasons or transient hardware fail-
ures, which transfer a PES to a faulty state, can cause
long enduring impairment of safety. This problem is
of growing importance, since the ever-increasing man-
ufacturing density of integrated circuits causes higher
sensitivity to temporary disturbances like electromag-
netic noise or alpha rays.

Conventionally, the redundancy attrition problem is
solved by configuring as many PES units redundantly
as necessary to decrease the probability – that the num-
ber of PES units failed during a non-interruptible pro-
cessing phase does not allow to maintain normal op-
eration – below the maximum tolerable risk. In order
to reduce the number of required PES units to an ac-
ceptable quantity, redundant processing structures are

1-4244-0054-6/06/$20.00 ©2006 IEEE

also applied inside each PES to minimise the failure
probability of single units. An other approach to in-
crease the availability of a single unit is to provide a
redundant configuration of PESs with the capability to
re-start units that are in a faulty state, e. g., due to a
transient hardware failure or unit replacement, with-
out the need to interrupt real-time processing. This
approach, which is subsequently referred to as State
Restoration at Runtime, has various benefits and is the
subject of this article.

The main body of this paper is structured as fol-
lows. Section 2 states the main problems associated
with restoring the state of real-time PESs. Existing
techniques are discussed in Section 3. Section 4 intro-
duces the architecture of the PES on which the state
restoration concept proposed in section 5 builds up.
The conclusion at the end summarises the main as-
pects of this article.

2. State Restoration at Runtime

Restoring the state of a failed PES at runtime re-
quires a redundant configuration of uniformly operat-
ing PESs. Each PES must be able

• to detect processing errors by comparing its own
results with the results of the redundant counter-
parts,

• to drop out of the redundant operation in case of
processing errors,

• to copy the internal state of the redundant units
at runtime, and

• to rejoin the redundant operation when state
equivalence has been reached.

This approach covers all failures caused by temporary
disturbances and enables to replace defect PESs at run-
time. The problem is that, while a PES equalises its
internal state to that of the running counterparts, the
latter continously change their internal state.

Comparable problems have already been solved for
many IT-applications. RAID controllers, for instance,
can restore the data of replaced hard disks in the back-
ground by using the periods between disk accesses for
copying [7]; state changes of the source disks can di-
rectly be taken into account by forwarding the corre-
sponding write accesses to the replaced disk. Unfortu-
nately, state restoration of real-time systems is more
complex. Since they must be capable of handling sev-
eral simultaneous events concurrently, the data mod-
ifications (= state changes) that are important for
copying the internal state can be categorised into two

classes: Program-controlled and Event-controlled Data
Modifications (PDMs and EDMs).

The PDMs comprise all data modifications the ap-
plication software induces during execution. The vol-
ume of PDMs can easily be limited, e. g., by restrict-
ing the number of write accesses permitted within a
specified time-frame. Appropriate compiler directives
are easily realisable. Of course, the restriction to a
number that allows continuous transfer of informa-
tion about PDMs strongly limits the computing perfor-
mance achievable. The latter, however, is not the ma-
jor concern in terms of safety, and the high bandwidths
of modern transfer technologies allow for performance
more than sufficient for most highly safety-critical ap-
plications.

Limiting the volume of EDMs by an upper bound is
more problematic. Since digital systems always oper-
ate in discrete time steps, several events can fall within
one clock cycle and, thus, virtually occur simultane-
ously. Moreover, a single event can cause – in com-
parison with the program-controlled situation – a rel-
atively large number of data modifications within an
extremely short period of time. For example, in prin-
ciple it is possible that one single event activates all
tasks of an application software at once. In this case,
storing the activation time for each task would result
in a huge amount of EDMs. Obviously, restricting the
frequency of write accesses limits the minimum real-
isable response time strongly. Thus, the capability to
transfer all information about EDMs at runtime neces-
sitates a trade-off between restricting the frequency of
EDMs to a volume that allows acceptable real-time per-
formance and the transfer bandwidth required. That
is why in real-time PESs, which must provide both
practicable computational performance and very short
response times, more sophisticated methods need to be
applied to enable copying the internal state at runtime.

3. Existing Techniques

The problem of state restoration at runtime has been
widely treated in literature, and the proposed solu-
tions can be categorised into hardware- and software-
oriented methods. Unfortunately, almost all techniques
proposed in literature are very application-specific [4].
This is especially true for the hardware-oriented meth-
ods.

One of the most well-known hardware-oriented tech-
niques, which has been developed at the Charles Stark
Draper Laboratory in Cambridge, is presented in [1],
[2] and [8]. The method bases on a cyclically oper-
ating processing unit. A dedicated logic circuit gen-
erates characteristic signatures for all write accesses to

the data memory and stores them separately. Compar-
ing the signatures of the current and the previous cy-
cle enables to determine the modified data words. For
this, a special hierarchical order of the signatures de-
creases the computing effort and, thus, accelerates the
comparison. At the end of each cycle, each processing
unit determines the modified data words and transfers
them to its redundant counterparts. For this, a por-
tion of the transfer bandwidth is reserved to transfer
a fixed number of data words at the end of each cy-
cle. This number restricts the maximum number of
data modifications in a cycle. During the processing,
the signatures are also transferred to the redundant
processing units and enable the detection of process-
ing errors by majority voting. Recovery can then be
accomplished by restoring only those segments which
have been corrupted as designated by the signatures. If
the corrupted segments belong only to the data words
that were modified within the current cycle, recovery
can be completed at once (One Shot Recovery). Oth-
erwise, the signature technique can also be used to re-
store the memory content incrementally. In case the
exchanged amount of data is not completely needed
to transfer the current data modifications, the remain-
ing data words are used for incremental transfer of the
memory content (Incremental Recovery).

This technique imposes only minor constraints on
the application software. The restriction to a cyclic
software execution is acceptable, since this operating
principle is applied in many safety-related PESs be-
cause of its advantages in terms of safety licensing [9].
Disadvantageous is that – at the end of each cycle – the
modified data words need to be identified by a compar-
ison. An access logic that only stores the addresses of
the write accesses would be much easier to implement
and – as long as multiple write accesses to one address
are avoided by storing intermediate values in unpro-
tected memory regions – directly hint to the modified
data.

Some software-oriented state restoration methods,
like the ones presented in[3] and [6], found on the re-
covery block approach proposed first in [5]. Since they
usually make use of ‘recovery points’ to which they can
go back in case of failures, these strategies are com-
monly referred to as ‘roll-back recovery.

Like the formerly discussed method, the method
described in [3] also bases on cyclic software execu-
tion, but distinguishes between the main-cycle and sub-
cycles. The duration of the main-cycle is a common
integer multiple of the sub-cycle durations and all sub-
cycles begin simultaneously at begin of each main cy-
cle. Each computing task is assigned to one of the sub-
cylces or the main-cycle. Each time a task withdraws

its processing till the end of the associated cycle, it
stores special recovery data. In case a processing error
occurs during the task’s next execution, these recovery
data enable a restart at the recovery point. The restric-
tion to cyclically synchronous software execution allows
to take data dependencies (precedense relations) into
account.

The techniques founded on recovery blocks have the
advantage that recoveries can completely be conducted
internally; it is not necessary to transfer data be-
tween redundant units. This prevents computing per-
formance to depend on transfer bandwidth. A draw-
back is that merely isolated errors can be corrected;
a complete state restoration, as it is necessary to re-
place units at runtime, is not possible. Even if the
task administration functions are unalterably stored in
a read-only memory, their execution can be unrecov-
erably affected by processing errors inside a processor.
Moreover, not all errors can be detected (e. g., errors
leading to plausible results), and the fact that faulty
execution of a task might alter the data of other tasks
is not taken into account (Domino effect). Thus, these
techniques do not cover all error types and are inap-
propriate for applications of highest safety criticality.

In [4], two variants of software-oriented state
restoration are presented, which also found on cyclic
software execution. Both variants re-start units af-
fected by a processing error and, then, transfer data
between redundant units to completely restore the in-
ternal state. The first variant transfers within every
cycle all current data modifications and, additionally,
within a number of successive cycles the entire mem-
ory content in fractions. The second variant assigns
to each data word an Identification Bit. A data word
is only transferred to a faulty unit, if the associated
identification bit is set. If a unit is informed about a
re-start of one of its counterparts, it sets all identifi-
cation bits. Subsequently, an identification bit is set
when the data word is modified, it is reset when the
data word is transferred. The state restoration is com-
plete when all identification bits are in the reset state.

The first variant requires less implementation effort
and completes state restoration within a predictable
time-frame, but the immediate transfer of a cycle’s
data modifications causes an unacceptable high depen-
dence of the maximum achievable performance on the
transfer bandwidth. The second variant attains the
same computational performance with a lower transfer
bandwidth, but it is problematic to predict the time
required for state restoration. Besides, identifying the
data words whose identification bits are reset causes
additional computational effort, and – as long as not
carried out in parallel to the task processing – decreases

the performance achievable.

4. The Dedicated PES Architecture

The hardware-assisted state restoration method pro-
posed here founds on the PES-architecture presented
in [9]. This architecture, which was particularly de-
vised for safety-critical applications, performs task-
administration and -processing on two physically sepa-
rated units, the Task Administration Unit (TAU) and
the Task Processing Unit (TPU). Time is quantised
into discrete Execution Intervals, and tasks are parti-
tioned into a number of Execution Blocks each. The
Execution Intervals have a fixed duration, and define
the cyclic synchronous operation of the TAU and the
TPU. The Task’s Execution Blocks are completely ex-
ecutable within one interval and not pre-emptable.

The operating principle can be roughly described
as follows: At the beginning of each Execution Inter-
val, the TAU outputs the ‘IDs of Task and Execution
Block to process’, which identifies the next Execution
Block of the task that must be executed according to
the scheduling algorithm. The ID corresponds to the
task’s Next-Block-Pointer stored in the task list. After
the TPU has read this ID, it processes the associated
Execution Block. When the APU completes the block
at the end of the Execution Interval, it outputs the ‘ID
of Task’s next Execution Block ’ identifying the task’s
Execution Block that needs to be executed next. The
TAU reads this ID and stores it in the task list as new
Next-Block-Pointer. Fig. 1 illustrates this mode of op-
eration in more detail.

If the executed block was a task’s last one, i. e., if
a task has been executed completely, the APU out-
puts the block ID ‘Nil’. This completion is taken into
account when the TAU determines the ‘IDs of Task
and Execution Block to process’ for the next Execution
Interval. That is why the TAU – while the TPU pro-
cesses an Execution Block – does not only determine
the task with the earliest, but also the task with the
earliest-but-one deadline. This enables the TAU to im-
mediately output the NextBlock identifier of the task
with the next-but-one deadline, in case the task with
the next deadline corresponds to the task just been
processed and just been completed by the APU.

This concept of task-oriented real-time execution
without asynchronous interrupts suits safety demands
best. The cyclic operating style simplifies the tempo-
ral behaviour, complies perfectly well with the safety
standard IEC 61508 for applications of the two high-
est safety classes, and eases formal verification of the
application software. Despite operating in discrete cy-
cles, it allows for arbitrarily process-controlled program

Task
Administration
Unit
(TAU)

Task
Processing

Unit
(TPU)

Input

Begin

End

Output

Storing block ID in task list

Determination of the Execution
Block that needs to be ex-
ecuted in the next interval.

Begin

Input

Output

Synchronous begin of
Execution Intervals

IDs of Task and Execution
Block to process

Either task completion
notification or ID of task´s

next Execution Block

Task-Administration:
- Control of task-states (reading

event inputs, checking
activation characteristics,
inducing state transitions)

- Computation of deadlines
- Determination of the two tasks

with the most urgent deadlines

Task-Execution:
- Processing the Execution

Block identified by the IDs
submitted

- In case this block does not
complete this tasks’ execution,
the block that needs to be
executed next is determined

Figure 1. Illustration of the task-oriented op-
erating principle without asynchronous inter-
rupts

flows, just like in conventional task-oriented systems.
Of course, special compilation of the application soft-
ware is required.

The TPU consists of a conventional processor with
the Harvard architecture; the TAU is realised as a ded-
icated logic circuit. For this, the administration algo-
rithms are structured in a way as to allow for parallel
processing of the operations related to a single task,
whereas all tasks are sequentially subjected to these
operations. Fig. 2 illustrates this processing pattern.
It shows the main parts of the TAU, the Task Data Ad-
ministration (TDA) and the unit for Activation Control
and Scheduling (ACS).

The TDA administrates a Task List (TL), which
contains a set of parameters for each task such as its
current state and its execution characteristics. It co-
operates closely with the ACS while sequentially pro-
cessing all tasks within each Execution Interval. Dur-
ing this Sequential Task Administration (STA), the
TDA initiates for each task a three-phase process:

1. First, the TDA accesses the TL and transfers the
task’s entire data set to dedicated input registers
of the ACS.

2. Then, the ACS processes the task data and out-
puts an updated data set. This is done by combi-
national logic within one clock cycle.

3. During the last phase, the TDA transfers the up-
dated task data from the ACS back to the TL.

ID of execution
block to be
processed

UTC

ID of task’s next
execution block

Asynchronous
event signals

Load
ACS
input

registers

Read
ACS
output
registers

TDA

ACS

Task List (TL)
One set of data

for each task

[]

[]

: Latch for temporary storage within execution interval[]

3-phase process
for each task

RTOS algorithms implemented
as combinational logic circuit

Operations related to one task
executed in parallel;

most urgent tasks determined
sequentially

Figure 2. The TAU consists of the TDA and the
ACS. While they do the Sequential Task Ad-
ministration (STA), a 3-phase process is car-
ried out once for each task.

This way, the ACS carries out the following operations
in the course of the STA:

1. Checking the activation characteristics (e. g.,
checking time schedules or asynchronous occur-
rences)

2. Supervising task state transitions

3. Computing deadlines

4. Generating updated task parameters

5. Identifying the task with the earliest deadline and
the one next in line

6. Output of the ID of Block to Execute

The first four operations are separately executable for
each task. Therefore, they are performed in parallel by
a combinational digital circuit. The fifth item requires
comparing the deadlines of all activated tasks. This is
carried out sequentially, while the IDs of the two most
urgent tasks are temporarily stored within the itera-
tions of the 3-phase process. The ID of the Execution
Block that needs to be processed in the subsequent in-
terval is output at the end of an Execution Interval,
after the TPU submitted an ID to the TAU.

Since the TDA and the ACS are implementable in
form of a digital logic circuit, extremely short response
times are realisable without the use of a multi-layered
operating system structure and without minimising
the computational effort by applying a priority-based

scheduling algorithm, as it is usually done in conven-
tional real-time systems. This results in a low complex-
ity of the proposed hardware scheduling concept and
makes it particularly suited for highly safety critical
applications.

It is an important fact that, at the begin of an Ex-
ecution Interval, the state of a PES is completely de-
fined by the content of the TPU’s RAM and of the TL.
Thus, these instants are most appropriate to rejoin the
redundant processing after state restoration.

For further details of the PES concept please refer
to [9] or [10].

5. Hardware-Assisted State Restoration

In a redundant configuration of multiple PESs, each
PES outputs a Serial Data Stream (SDS) that pro-
vides full information about the internal processing.
By monitoring the SDSs of redundant units, a re-
started PES can copy the internal state, and – after
state equivalence has been reached – rejoin redundant
processing. The SDSs are organised in Transfer Cycles
that match the Execution Intervals. Fig. 3 illustrates
this. Within every cycle, an SDS transfers informa-
tion about a fixed number of data modifications. This
number sets the limit of modifications permitted.

D: Determination of the Execution Block processed next; TA: Transfer of Ad-
ditional state information (e.g., identifier of Execution Block processed next)

: Time needed to determine the 'oldest' TLMs�

tExecution Interval / Transfer Cycle

N
ex

tI
nt

er
va

l

UTC syn-
chronous

begin

TA
TPU-PDM-

Transfer
TLM-

Transfer
SDS

Content

TAU
Activity

TPU
Activity

D

Processing of one
Execution Block

STA

Phase A Phase B

�

Consecutive-
RAM-Transfer

Figure 3. Data transfer of Serial Data Streams
(SDS)

Restoring the TPU’s RAM Content: Changes of
the data memory content of the TPU are always PDMs,
e. g., they are always induced by the application soft-
ware. As already discussed in Section 2, the volume
of these PDMs can easily be limited by restricting the
number of write accesses permitted within an Execu-
tion Interval. This allows complete transfer of the as-
sociated information at the end of every cycle (TPU-
PDM Transfer). The write accesses can be limited by
the compiler software while partitioning a program’s

code into Execution Blocks. Complete transfer of the
RAM content within a predefined time-frame t1 also
requires to transfer the memory content not altered
within t1. This is carried out by transferring subsets of
the RAM content while the TAU sequentially admin-
istrates the tasks.

The method described so far copies only the RAM
content that is modified at least once. In order to
guarantee that the complete content is copied within
in a predefined time frame, the entire RAM content is
transferred within a number of consecutive cycles. This
Consecutive RAM transfer is performed in synchrony
with the international time standard UTC (Universal
Time Co-ordinated) to obtain identical SDSs from re-
dundant PESs.
Restoring the TAU’s Task List: The volume of TL
Modifications (TLMs) depends upon the frequency of
task state transitions, which is bounded by the execu-
tion characteristics of all tasks. Since TLMs can be
either program-controlled (PDM) or event-controlled
(EDM), a special technique is applied to minimise the
required transfer bandwidth. Each TL data word i is
assigned an integer Ai that represents the Age of the
stored value. By default, each Age parameter is set to
its maximum representable value, AMax. Any time a
data word is modified, the associated Age integer is set
to 0. As long as an Age value is lower than (AMax−1),
it is incremented by one at the begin of every Execu-
tion Interval. Thus, the highest integer values (except
AMax) identify the oldest data values. Within each cy-
cle, only a fixed number n of oldest data words is trans-
ferred via SDS, and the associated Age integers are set
to AMax. As shown in Fig. 3, this TLM-Transfer starts
after the TAU completed the STA. The moment all
Age integers become AMax, all recent TLMs have been
transferred and a notification signal is sent via SDS.

The method described so far copies only the TL data
words that are modified at least once. Complete trans-
fer of the TAU data is achieved by changing the Ages of
all data words at UTC-synchronous instants. This also
ensures that the SDSs of redundant PESs are identical.
Implementation as Digital Circuit: The SDS is
generated by a digital logic circuit. This enables to
improve performance by special custom-built oppor-
tunities to access the TL of the TAU, which is also
implemented as digital circuit. Realising the functions
to restore the TPU RAM content as digital circuit is
straightforward and, therefore, not discussed here. For
this, it is just necessary to temporarily store the write
accesses in a dedicated memory block. This is prefer-
ably a Dual-Port-Memory to enable separate data ac-
cess for the digital logic that generates the SDSs.

Determining the oldest TL data words is more prob-

lematic. In order to avoid detrimental delays which
lengthen the cycle duration, the oldest data words
should instantaneously be accessible after the TAU
completed the STA. This detrimental delay, which is
depicted in figure 3 as δ, decreases the computational
performance: the shorter the STA and δ, the higher the
proportion of cycle time that can be used for TLM- and
TPU-PDM-Transfer. The time spent for the consecu-
tive RAM-Transfer can be freely chosen.

Realising the administration of the age variables is
easy to implement. During the STA, the TAU pro-
cesses all TL data words in consecutive order: each
word is read, modified if necessary, and stored again
(comp. figure 2). The associated age integers can eas-
ily be handled in parallel to that: if a TL data word is
modified, the associated age integer is set to 0 before it
is stored again; if a TL data word is not modified, its
age integer is incremented as long as it is lower than
(AMax − 1).

The n oldest data words are determined by the dig-
ital circuit illustrated in Fig. 4. Its main components
are the Pointer Register Unit (PRU), the Temporary
Storage Unit (TSU), and the Read-Out Logic (ROL),
which co-operate within a two-phase process. Phase 1
commences at interval begin, and phase 2 starts when
the STA completes (comp. figure 3).

The PRU contains for each admissible age value (ex-
cept AMax) a register-set which comprises a Current
Pointer (CP), a Previous Pointer (PP), and a Next
Existing Age (NEA). Both CP and PP point to an ad-
dress of the TSU, whereas NEA indicates the lower age
value that occurs next in a sequence of age integers. If,
for example, the sequence {1, 4, 1, 3} is processed,
e. g. only the age values 1, 3 and 4 occur, NEA of the
register-set associated with age 4 will point to the age
value 3, and NEA of the register-set associated with
age 3 will point to the age value 1 afterwards. In addi-
tion to the register-sets, the PRU contains a register to
store the Maximum Age Value (MAV) and an Address
Counter (AC). At the begin of every processing cycle,
the CP of each register-set is set to its associated age
value, each register-set’s NEA is set to ‘-1’, and the AC
is set to AMAX .

During phase 1, PRU and TSU operate as follows.
While the TAU sequentially handles all TL data words
within the STA, it always provides the currently pro-
cessed TL Data Word, its TL Address, as well as the
associated Age Value. Every time a new data word,
address and age are provided, the PRU accesses the
register-set associated with the new age value, and out-
puts its stored CP as Storage Address (SA) at the next
clock transition. Simultaneously, induced by the same
clock transition, CP is stored as new PP, and the AC

Age
Value

TL Data
Word

TL Address

Pointer Register Unit (PRU)

Maximum
Age Value
(MAV): 4

Address
Counter
(AC): 10

Next Existing
Age (NEA)

Previous
Pointer (PP)

-1
-1
-1
1
3
-1

unb.
6

unb.
3
4

unb.

Age
Value

0
1
2
3
4
5

Current
Pointer (CP)

0
8
2
9
7
5

Read-Out Logic (ROL)

Temporary Storage Unit (TSU)

TL
Address

TL Data
Word

und.
Addr. a

und.
Addr. d
Addr. b

DW c
und.

und.
...

und.
DW a
und.

DW d
DW b

DW c
und.

und.
...

Address

0
1
2
3
4

6
5

7
...

Storage
Pointer (SP)

und.
6 ()-1
und.
9 (1)
7 (3)

8
und.

und.
...

Logic to sequentially read out the TL
Data Words and their TL Addresses in

ascendenting order of their age

D

D

Storage Pointer (SP) Max.
Age
Value

und.: undefined
and irrelevant

(The values indicate the system state at the end of phase A after processing
the TL-Data-Word sequence {a,b,c,d} with the ages {1,4,1,3}. The slanted SP

Pointer values in brackets denote the state after the SP replacement.)

Storage Address (SA)

Address Storage
Pointer

TL Data
Word

TL
Address

Insertion into SDS

�

Delay of one
clock cycle

Figure 4. Digital circuit concept to determine
the oldest TL data words. Here, AMax is 6.

value is stored as new CP as well as sent out as Storage
Pointer (SP). Additionally, all register-sets associated
with higher age values check whether they must take
over the new age value as new NEA. In case the new
age value is higher than the current MAV, it is stored
as new MAV. At the next clock transition, the AC is in-
cremented, and the TSU stores the new TL data word
together with its TL address at the address to which
the output SA of the PRU points. Additionally, the
SP provided by the PRU is stored.

The completion of the STA initiates phase 2, dur-
ing which some of the most recently stored SPs are
replaced, and the data stored in the TSU are read out.
This SP replacement links the data words stored in the
TSU to a chain, which allows to sequentially read out
the stored TL data words and their addresses in de-
scending order of their age. The replacement is carried
out by processing all register-sets of the PRU in de-
scending order of their assigned age values, and takes
only one clock cycle for each register-set. For the re-
placement, the PP of each register-set is used to ad-
dress the TSU data word whose SP value is replaced
by the NEA stored in the register-set.

By accessing the Dual-Port-RAM of the TSU via

its second port, the ROL can read out the temporarily
stored data in descending order of their age. The MAV,
which is provided by the PRU, points to the address
that needs to be accessed first. The TL data words and
TL addresses read can directly be added to the SDS.
The SP pointer read indicates the TSU address that
the ROL must access next. Thus, in the example of
Fig. 4, the ROL would read out the TL data words in
the order b, d, a, c. Once the SP pointer read is ‘-1’, all
TL data words whose age values are not AMAX have
been handled and the ROL adds a special notification
signal to the SDS.

The ROL does not need to wait for completion of
the SP replacement, it can immediately start reading
out the TSU at the begin of phase 2. Since the read
out starts with the oldest data word, and the SP re-
placement takes only one clock cycle per pointer, it is
guaranteed that a necessary replacement will have been
performed before the ROL accesses the associated ad-
dress.
State Restoration Process: As can be seen in Fig. 5,
the restoration process has two phases, I and II. The
former begins together with the first transfer cycle af-
ter re-starting a PES, which is automatically initiated
after detecting a processing error or replacing a unit.
This phase endures as many module cycles as the SDS
transfer of the TPU-RAM content in consecutive sub-
sets requires to cover the entire RAM. Thus, after com-
pletion of phase I, the TPU-PDM transfer enables to
reach state equivalence of the TPU-RAM at the end
of every transfer cycle. This phase takes at least as
much module cycles as the SDS transfer of the TPU-
RAM content in consecutive subsets requires, and at
least one of the UTC-synchronous points in time, at
which all age integers are set to the maximum value,
must fall within it.

{{
n-fold

Redundancy

Transfer
Cycle Failure

n-fold
Redundancy

(n-1)-fold
Redundancy

Detection of the
Processing Error

Reintegration in the
redundant processing

State Restoration at Runtime

normal
operation Phase I Phase II

normal
operation

PES n

PES 2

PES 1

Figure 5. The state restoration process

Phase II endures until state equivalence of the TAU’s
TL of the re-started PES and the redundant counter-
parts is also reached at the end of a transfer cycle. This
is the case when at least one of the UTC-synchronous
points in time, at which all age integers are set to the

maximum value, has occurred since the beginning of
phase I, and the sending PESs have transferred all re-
cent TLMs via SDS, which is signalised via SDS by the
previously mentioned notification signal. This signal
denotes that all TL data words whose age values do
not equal AMAX have been handled. Thus, upon oc-
currence of this notification signal, state restoration is
complete, and the restored PES can re-join the redun-
dant processing at the next module cycle’s begin.

6. Conclusion

The problems related to ‘State restoration at run-
time’, which refers to rehabilitating a PES that is in
a faulty state by copying the internal state of its re-
dundantly operating counterparts at runtime, were dis-
cussed, and a concept that integrates this functionality
in a dedicated real-time system was introduced. What
distinguishes this concept from others is that different
methods are applied to restore the data of the applica-
tion software and the task-administration data. This
allows to take the differences between program-induced
and event-induced state changes into account. The
concept bases on the PES-architecture presented in [9],
which operates in discrete cycles and implements the
task administration as digital logic circuit. This en-
ables special custom-built opportunities to access the
task-administration data, like, e. g. hard-wired linkage
to a digital logic circuit. In contrast to various other
methods, the proposed state restoration concept does
not impose special constraints on the software devel-
opment, it only affects computational performance.

The transfer policy ‘oldest data first’, which is ap-
plied for the task-administration data, enables to com-
pletely transfer the task-administration data by copy-
ing a fixed number of oldest data values each cycle.
As major benefit, the amount of event-induced task-
administration data modifications within a cycle does
not need to be restricted to a number that enables
transfer of the associated state changes within the cy-
cle. Since the transfer policy avoids repeated transfer
of often modified data to a large extent, it reduces the
required transfer bandwidth, or results in a higher com-
putational performance for a fixed bandwidth. The
implementation as digital circuit partially enables to
transfer information about the internal state while the
application software is executed. Moreover, it allows
to determine the age of task-administration data val-
ues without requiring additional computing time as a
software-based implementation would do.

Unfortunately, various aspects could not be dis-
cussed here due to lack of space. The interested reader
may contact the author for further information.

References

[1] J. Adams. Hardware-assisted recovery from transient
errors in redundant processing systems. In Proc. IEEE
Fault-Tolerant Computing Symp. 19, pages 517–519,
1989.

[2] J. Adams and T. Sims. A tagged memory technique
for recovery from transient errors in fault-tolerant sys-
tems. In Proc. Teal-Time Systems Symp., pages 312–
321, 1990.

[3] D. Basu and R. Paramasivam. An approach to
software assisted recovery from hardware transient
faults for real time systems. In F. Koornneef and
M. van der Meulen, editors, Safecomp 2000, volume
1943 of LNCS, pages 264–274. Springer, 2000.

[4] A. Bondavalli, F. Giandomenico, F. Grandoni,
D. Powell, and C. Rabéjac. State restoration in a
COTS-based N-modular architecture. In 1st IEEE
Int. Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC ’98), pages 174–183, Ky-
oto, Japan, Apr. 1998.

[5] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and
B. Randell. A program structure for error detection
and recovery. In Operating Systems, Proceedings of
an International Symposium, pages 171–187, London,
UK, 1974. Springer-Verlag.

[6] M. Patino-Martinez, R. Jimenez-Peris, and A. Ro-
manovsky. Bridging the gap between hardware and
software fault tolerance. Technical Report 766, Uni-
versity of Newcastle upon Tyne, School of Computing
Science, 2002.

[7] D. A. Patterson, G. A. Gibson, and R. H. Katz. A
case for redundant arrays of inexpensive disks (raid).
In SIGMOD Conference, pages 109–116, 1988.

[8] T. Sims. Real-time recovery of fault-tolerant process-
ing elements. IEEE Aerospace and Electronic Systems
Magazine, 12:13–17, 1997.

[9] M. Skambraks. A safety-related PES for task-oriented
real-time execution without asynchronous interrupts.
In R. Winther, B. A. Gran, and G. Dahll, editors,
Safecomp 2005, volume 3688 of LNCS, pages 261 –
274, Berlin-Heidelberg-New York, 2005. Springer.

[10] M. Skambraks and W. A. Halang. A PES for use in
highly safety-critical control. In K. Man, editor, IEEE
Intl. Conf. on Industrial Technology, pages 308 – 313,
Piscataway, 2005. IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

