
A Configuration Memory Hierarchy for Fast Reconfiguration with Reduced

Energy Consumption Overhead

Elena Pérez Ramo
1
, Javier Resano

1
, Daniel Mozos

1
, Francky Catthoor

2, 3

1
Department of Computer Architecture,

Universidad Complutense de Madrid, Spain

{eperez, javier1, mozos}@dacya.ucm.es

2
IMEC vzw, Leuven, Belgium

3
 Katholieke Universiteit Leuven, Belgium

catthoor@imec.be

Abstract

Currently run-time reconfigurable hardware offers

really attractive features for embedded systems, such as

flexibility, reusability, high performance and, in some

cases, low-power consumption. However, the

reconfiguration process often introduces significant

overheads in performance and energy consumption. In our
previous work we have developed a reconfiguration

manager that minimizes the execution time overhead.

Nevertheless, since the energy overhead is equally
important, in this paper we propose a configuration

memory hierarchy that provides fast reconfiguration while

achieving energy savings. To take advantages of this

hierarchy we have developed a configuration mapping

algorithm and we have integrated it in our reconfiguration

manager. In our experiments we have reduced the energy

consumption 22.5% without introducing any performance

degradation.

1. Introduction

Nowadays applications are continuously demanding not

only high performance, but also extended battery life. It

gets worst if we take into account that these two objectives

are not orthogonal, and their optimization frequently steer

the design process to different directions.

Reconfigurable resources offer interesting advantages

over ASICs as run-time flexibility and reusability. Hence,

they are a very attractive alternative for embedded system.

Reconfigurable resources can adapt their behaviour to

meet current system demands. This feature yields area

savings, since designers do no need to provide specific

HW resources for all the different system functionalities.

Reconfigurable HW also introduces performance

improvements, since it allows loading HW accelerators

when needed.

Nevertheless, when analysing the performance and

energy consumption of reconfigurable systems, it is often

assumed that configurations are already loaded. Hence,

this kind of analysis only depicts ideal results since they

neglect the penalisations introduced during the

reconfiguration process, which can introduce significant

overheads in the performance and the energy consumed by

the system.

Our approach not only takes into account the

reconfiguration overheads, but attempts to minimise them

including a configuration memory hierarchy that provides,

at the same time, fast reconfiguration and energy savings.

Furthermore, we have developed a configuration mapping

algorithm that takes advantage of the dual features of this

configuration memory hierarchy. Finally, we have

integrated this mapping algorithm into an existing

reconfiguration manager [2] and tested it with a set of

multimedia applications.

The rest of the paper is structured as follows: the next

section provides more details about the reconfiguration

overhead and also introduces previous works that attempt

to reduce it. Section 3 presents our new configuration

memory hierarchy. Section 4 describes a motivational

example. Section 5 explains our scheduling flow. Section

6 describes our configuration mapping algorithm. Section

7 presents some experimental results, and finally section 8

summarizes our conclusions.

2. Reconfiguration overhead

Many research groups have addressed the minimization

of the reconfiguration overhead. Much of this work

proposes new reconfigurable architectures, like multi-

context FPGAs [4], FPGAs that allow partial

reconfiguration [7], and especially coarse-grain

architectures [5].

1-4244-0054-6/06/$20.00 ©2006 IEEE

Multi-context devices allow loading a new

configuration while another one is being executed.

Afterwards, when the new configuration must start its

execution, there is a context switch that normally can be

carried out in just one clock cycle. This solution

drastically reduces the performance reconfiguration

overhead as long as configurations can be loaded in

advance. However, in order to duplicate the number of

contexts, the configuration memory resources must be also

duplicated, and some additional HW must be added.

Hence, the energy reconfiguration overhead is not reduced

but probably significantly increased.

Partial reconfiguration allows changing part of the

configuration bits of a reconfigurable resource, without

modifying the remaining ones. With this approach, and the

appropriated support [6] it is possible to have several

independent tasks running in the same device and load a

new one without interfering with the others.

Coarse-grain architectures trade off programming

flexibility for more efficient functional units. Reducing the

programming flexibility has a direct impact in the

configuration size and, subsequently, in the configuration

latency and in the reconfiguration overhead. Thus, loading

a decoding object that occupies a tenth of a VIRTEX

XC2V6000 FPGA [7] involves loading a configuration of

260 KB (using partial reconfiguration) with a

reconfiguration latency of 4 ms when clocking the

configuration bus at the maximum speed. The

configuration size of the same task for a coarse grain array

can be between 10 and 50 times smaller depending on the

programming granularity. Of course for fine-grain the

decoding object can be optimised at bit level, whereas for

coarse-grain it must be implemented using operations of a

fixed bit width and, normally with less interconnection

possibilities. However, if the coarse-grain architecture fits

appropriately the decoding computations, it will provide

good performance and fast reconfigurations.

 A very interesting approach to reduce FPGA’s

reconfiguration execution-time overhead is found in the

work of Zhiyuang Li and Scott Hauck where three

techniques are proposed, namely configuration

compression, caching and prefetching.

The first technique compresses the configuration bits of

a task to reduce their loading latency [8]. It will introduce

a decoding overhead, that authors solve including

dedicated HW. However, it also introduces an energy

penalisation due to the decoding process.

 The second technique, deals with the problem of

allocating tasks in the FPGA trying to maximize their

reuse [9]. However, they assume that a task can be placed

anywhere in the FPGA which is not a realistic assumption

unless a very costly run-time routing process would be

performed each time that a new task is loaded.

Finally, the configuration prefetching technique [10]

attempts to hide the latency of the load of a configuration

by accomplishing this load before it is needed. To this end,

the next task to be executed is predicted based on past

events and profiled data. If the prediction is a success, it is

possible to hide, at least partially, its reconfiguration

latency; otherwise, an erroneous configuration is loaded

with the consequent penalization.

Noguera and Badia [11] have also proposed a

configuration prefetching approach that attempts to hide

the reconfiguration latency. Their proposal is especially

interesting because they have developed a HW

implementation of a configuration manager that applies

their technique providing good results while introducing

almost no run-time penalty due to the computations

needed to apply it.

In our previous work, we have also developed a

reconfiguration manager specifically designed to hide the

reconfiguration latency [3]. This manager applies a

prefetch scheduling technique that attempts to load the

configurations in advance and a replacement technique

that reduces the number of demanded reconfigurations.

Our manager interacts with a multiprocessor task

scheduler in order to obtain accurate information about the

near future and use it to take near optimal decisions. In our

experiments the manager succeeds hiding at least 93% of

the initial execution-time overhead even for highly

dynamic applications.

Other good approaches regarding how to minimise the

influence of the reconfiguration latency applying

scheduling techniques at design-time are found in [12] and

[2]. However, they do not include any run-time

component. Therefore, they are only suitable for static

applications.

The main focus of all these works is reducing the

reconfiguration execution-time overhead. However, many

researches have pointed out that, in embedded systems, the

energy consumption due to the instruction memory

hierarchy stands for a very important percentage (around

30%) of the overall energy consumption [13], [14]. And

this is also true for fine-grain [2] and coarse-grain [15]

reconfigurable architectures, as long as frequent

reconfigurations are demanded. Hence, there is a need for

reconfigurable systems with energy-efficient

reconfigurations.

Currently, no vendor has published an estimation of the

energy reconfiguration overhead. Hence, in order to obtain

at least coherent energy numbers we will model

reconfigurations simply as data transfer operations

between a SRAM memory and a reconfigurable unit. In

order to estimate the SRAMs memory consumption we

will use accurate data from ST microelectronics.

3. Configuration memory hierarchy

The typical configuration memory hierarchy (figure 1)

for reconfigurable HW is composed of a reconfigurable

fabric that stores the configurations that are ready for

being executed and an off-chip memory where the

remaining configurations are stored. These configurations

can be loaded from the external memory using a dedicated

reconfiguration circuitry. This scheme is usually present

on fine-grain architectures, as FPGAs.

One interesting improvement often introduced for

coarse-grain devices (and sometimes also for fine grain

like in [23]) consist in adding a smaller intermediate on-

chip configuration memory, where the configurations of

the running tasks are stored (figure 2). This configuration

memory is critical for the system, not only for the heavy

configuration traffic required by dynamic applications

execution, but also for its energy consumption.

Reconfigurable

HW

Main Memory

(off-chip)

Fig. 1. Typical memory hierarchy for FPGAs.

Internal

Configuration

Memory

(on-chip)

Reconfigurable

HW

Main Memory

(off-chip)

Fig. 2. Typical memory hierarchy for coarse-
grain.

This internal configuration memory is usually a High-

Speed (HS) SRAM memory. SRAM memories typically

have high performance ratios per price unit. And due to

the new development techniques applied, its cost is, at

present, very affordable. However, despite the fact that

several improved Low-Energy (LE) techniques have been

applied to these HS SRAM memories [16], they still

generate an important percentage of the total energy

consumption of the embedded system.

During recent years extensive efforts have been focused

on reducing SRAM memories energy consumption. As a

result, there are currently available in the market a new

type of memories oriented to LE, with similar features

than the HS ones, but with worse speed ratios. Different

memory manufacturers, for example, Virage Logic [17]

and Micron Technology [18], have introduced some of

these innovating techniques in the design of LE SRAM

memory.

Consequently, the embedded systems designers must

select the appropriate memory for their platform among

the wide number of possibilities available on the market.

However, selecting a memory optimized for high-

performance, usually involves energy consumption

overheads, while selecting a memory optimized for

reducing the energy consumption may lead to important

performance degradation (more data-path cycles are

needed per access). Since designers need both high

performance and low energy consumption features, we

propose to include two different types of memories in the

configuration memory hierarchy, one optimized for HS

and the other one optimized for LE. Hence, we are

potentially supplying high performance and low energy

features to the configuration memory hierarchy. The goal

of this scheme is to reduce the energy consumption of the

system, while keeping high performance. Figure 3 depicts

this configuration hierarchy memory scheme.

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

Reconfigurable

HW

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

Reconfigurable

HW

Fig. 3. Proposed scheme of configuration
hierarchy memory.

Our approach presents a new challenge, because it is

necessary to decide for each part of the application

sequence where to load each configuration, in the HS

memory or in the LE one. Hence, we have developed a

configuration memory mapping algorithm that takes these

decisions automatically and we have integrated it into our

previous reconfiguration manager. Our mapping algorithm

is explained in detail in Section 5.

4. Motivating example

We will illustrate our approach with the following

example (figure 4). In this example the four subtasks must

be loaded and executed on a device with two

reconfigurable units (RU) and three different configuration

memory hierarchies. A RU is composed by reconfigurable

resources, wrapped by a fixed communication interface.

We will provide more details about the RUs in the

following section. It is important to remark that current

reconfigurable systems have only one reconfigurable

circuitry to carry out the reconfigurations of the different

RUs. Therefore, simultaneous reconfigurations are not

supported.

D

C

A

B

T ex = 10

T ex = 20 T ex = 7

T ex = 5

Fig. 4. Example of graph.

Figure 5 shows the schedule of the graph execution

when only a HS DRAM memory is used to store the

configurations of the running applications.

Figure 6 presents another schedule for the same graph,

but with a LE memory instead of the HS one. We

realistically assume that the reconfiguration latency of this

LE memory is 50% larger than the HS memory one. In

this second schedule an overall execution delay has

appeared due to the increment on the configuration

latency. Finally, Figure 7 depicts the schedule obtained

with the configuration memory hierarchy that we have

proposed with a HS memory and a LE memory. These

memories have the same features as the HS and LE ones

used in the previous examples. Our approach tries to

achieve energy savings, moving subtasks from HS

memory to LE one, without reducing the overall system

performance. From the resulting scheduling, depicted on

figure 7, it is shown that our aim have been achieved:

energy consumption has been clearly reduced since three

configurations have been mapped to the LE memory while

the performance level is kept.

Reconfigurable

circuit

RU 1

RU 2

L A L C

Ex A

Ex B

L B

Ex C

L D

Ex D

4 8 14 18 25 29 34 39

Fig. 5. Subtasks scheduling for the
execution with one HS configuration
memory. L i: load of subtask i. Ex i:
execution of subtask i

Reconfigurable

circuit

RU 1

RU 2

L A L C

Ex A

Ex B

L B

Ex C

L D

Ex D

6 12 16 22 29 35 36 41

Fig. 6. Subtasks scheduling for the
execution with one LE configuration
memory. L i: load of subtask i. Ex i:
execution of subtask i

Reconfigurable

circuit

RU 1

RU 2

L A L C

Ex A

Ex B

L B

Ex C

L D

Ex D

4 10 14 20 27 33 34 39

Fig. 7. Subtasks scheduling for the
execution with two configuration memory
(HS and LE). L i: load of subtask i. Ex i:
execution of subtask i

From the point of view of the RU arrangement, this

dual configuration memory can be applied in a centralized

way or in a distributed way. On the centralized scheme

there is only one LE memory and one HS memory, which

are shared among the reconfigurable resources (figure 8).

On the distributed memory hierarchy there is one LE

memory and one HS memory for each one of the

reconfigurable resources of the device. Our current work is

targeted only on centralized architectures. However, the

distributed configuration allows extra energy saving

applying some energy-aware techniques such as clock-

gating or switch-off the configuration memories.

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

RURU

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

RURU

Fig. 8. Centralized scheme for the
configuration hierarchy memory.

5. Scheduling environment

In our previous work we have developed a

reconfiguration manager designed to reduce the delays

generated due to reconfigurations. This manager steers the

reconfigurations of a set of reconfigurable units. A

reconfigurable unit is composed of a reconfigurable fabric

(that can be either fine or coarse grain) and a fixed

communication interface. Each reconfigurable unit can

accommodate one task that can use the services provided

by the interface to carry out inter-task communications. To

support these communications each interface contains a

routing table that the OS actualises each time that a new

task is loaded. This organisation for reconfigurable

systems was presented by Marexcaux et al. in [6], [19].

Our work is not limited to systems with just one

processor and a variable number of reconfigurable units,

but it is intended for any heterogeneous multiprocessor

platform that includes reconfigurable units. On top of such

a platform a multiprocessor task scheduler will guide the

execution of the running applications. This scheduler

assigns tasks to the processing elements at run-time

according to the computational load of the system and the

real-time constraints. However, when dealing with the

reconfigurable units, it must be taken into account that the

run-time flexibility comes at the price of a large

reconfiguration overhead. Hence, in order to efficiently

tackle reconfiguration overheads, reconfigurable HW

resources need specific scheduling support. Providing this

support is the goal of our reconfiguration manager.

We assume that applications are described as a set of

tasks (where each task is represented as a subtask graph)

that interact dynamically among them. Thus, the non-

deterministic behaviour must remain outside the

boundaries of the tasks. This allows analysing and pre-

scheduling the graphs at design time. If the behaviour of a

task heavily depends on external data, different versions

(graphs) of the same task are generated. Each of these

versions is called a scenario [24]. Thus, the idea of

scenario allows supporting data dependencies and loops

inside the tasks. The run-time scheduler must select the

appropriated scenarios for each running task, select one of

the pre-computed schedules and decide the task execution

order taking into account the inter-task dependencies and

the real-time constraints. However, the schedule selected

by the run-time task scheduler is not aware of the

reconfiguration overhead. This is going to be the input of

our reconfiguration manager. The manager will analyse

the initial schedule and will take all the decisions

regarding the run-time reconfigurations.

Fig. 9. Run-time scheduling flow

5.1 The Reconfiguration Manager

Our reconfiguration manager (figure 9) is composed of

three different modules, namely the reuse module, the

prefetch module and the replacement module. These

modules apply different optimisation techniques to the

sequence of scheduled tasks provided by the run-time

scheduler.

The reuse module takes advantage of the possibility of

reusing subtasks that are executed periodically. The

second module schedules the reconfigurations of those

subtasks that cannot be reused. This schedule attempts to

hide the loading latency by applying a prefetch technique

that schedules, if possible, all the reconfigurations in

advance. Therefore, those configurations that can be pre-

fetched do not introduce any execution time overhead.

Finally, the third module applies a replacement policy

for the loaded configurations attempting to maximise the

percentage of reused configurations. This module takes

into account the initial schedule in order to optimise its

decisions. The scheduling and replacement decisions are

taken sequentially for all the tasks following the order of

the initial schedule. Afterwards, if needed, this schedule is

updated by adding the delay created by the

reconfigurations.

More details about our reconfiguration manager can be

found in [3] and [20]. The results presented in these papers

shows that with this specific support the execution-time

reconfiguration overhead is drastically reduced. The

manager has also a positive impact in the reconfiguration

energy overhead, since by applying an efficient

replacement heuristic the percentage of subtasks reused is

maximised, leading to a significant reduction in the

number of reconfigurations demanded with the consequent

energy savings.

The reconfiguration manager was developed for a very

simple configuration memory hierarchy similar to the one

depicted in figure 1. In order to adapt our manager to a

system with a memory hierarchy like the one proposed in

figure 8, a mapping algorithm must be included in the

system. This module must decide whether configurations

should be stored in the LE or in the HS memory. Storing a

configuration in the LE memory reduces the energy

reconfiguration overhead but at the cost of a possible

increase in the execution-time.

The goal of our mapping algorithm is to identify a

partition of the configurations that minimise the

reconfiguration energy overhead without increasing the

execution-time overhead significantly. To achieve this

goal we have developed a systematic mapping algorithm

that analyses the features of the subtask graphs at design-

time and interacts with the prefetch module.

6. Configuration mapping algorithm

An efficient prefetch technique may succeed hiding

most of the reconfigurations (in [3] our heuristic was able

to hide at least 75% of them assuming that there was no

reuse, which is the worst possible case). But for certain

subtasks, it may fail meeting its objective because there is

not always enough time available to schedule all the loads

in advance (e.g. subtask A of figure 5).

TCM Run-Time Scheduler
Platform

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each

task

-Real-time constraints

Initial schedule that

neglects the

reconfiguration

overhead

TCM Run-Time Scheduler
Platform

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each

task

-Real-time constraints

Initial schedule that

neglects the

reconfiguration

overhead

In order to conveniently map the configurations to the

different memories is very important to identify which are

those subtasks which loading latencies cannot be hidden,

because an intelligent mapping will assign those subtasks

to the HS memory and the remaining subtasks to the LE

memory. The pseudo code of the algorithm that computes

the mapping is depicted in figure 10.

The process starts assigning a weight to each subtask of
the graph. These weights represent how critical is the

execution of each subtask. They are assigned by

computing the longest path (in terms of execution time)

from the beginning of the execution of the subtask to the

end of the execution of the whole graph with an As-Late-

As-Possible (ALAP) schedule. Hence the first subtask in

the critical path has always more weight than the others

(more details about how these weights are computed can

be found in [21]).

For each subtask graph, the process starts assigning all

the configurations to the HS memory (this is the optimal
mapping for performance) and invoking the function

schedule reconfigurations. This function applies a prefetch

scheduling heuristic to obtain a schedule of the

reconfigurations assuming that none of the subtasks

assigned to reconfigurable units can be reused. Any
prefetch-scheduling heuristic can be used. In our case, we
use a branch&bound scheduling approach for small graphs
(this b&b guarantee that always the optimal schedule is
found), and the heuristic presented in [3] for large graphs,
since it provides near optimal schedules in an affordable
time. The schedule obtained is going to be used as a
reference during all the process. Since, in this schedule all
the configurations are store in the HS memory; it always
provides the optimal result for performance.

Afterwards, the algorithm will look for a mapping same
performance than the reference one, but with the
maximum number of configurations assigned to the LE
memory.

Our algorithm starts searching for an optimal mapping
carrying out another schedule for the same graph assuming
that all the configurations are stored in the LE memory.
Then, it compares both schedules identifying which
subtasks generate extra delays in the global execution time
when their configuration is stored in the LE memory. The

configuration selected to be mapped in the HS memory is,

logically, the one with greatest weight. This process is
performed by the function: compare(reference schedule,

current schedule, penalty, configuration), where reference

schedule and current schedule are the two schedules to

compare; penalty is the difference in the execution time

between these two schedules and configuration is the

configuration selected.

After moving the first configuration from LE to HS,

another schedule is computed assuming that all the

configurations, but the one previously selected, are

assigned to the LE memory. This schedule is again

compared with the reference one, and if extra delays are

found, another configuration is assigned to the HS

memory. This process continues iteratively until the

execution time of the current schedule is the same than the

execution time of the reference schedule. At this moment,

the algorithm generates the final partition, which provides

as good performance as a partition that maps all the

configurations to HS and also achieves energy savings

since some of the configurations have been mapped to the

LE memory.

Fig. 10. Pseudo code for the mapping
algorithm.

To illustrate this process we will analyse in detail the

different steps performed to select the mapping for the

graph introduced in Section 3. The first step is to compute

the weights. This process is depicted in figure 11. It is

interesting to remark that subtask A, which is the first one

in the critical path, has the greatest weight.

Then two schedules are carried out, one assuming that

all the configurations are assigned to the HS memory, and

another one assuming that they are assigned to the LE

memory. These schedules are depicted in figures 5 and 6.

Since there is a 2 ms delay in the second, one of the

configurations must be assigned to the HS memory.

Subtask A is selected because it has the greatest weight.

D

C

A

B

Weight = 7 +

Weight D

Weight = 5

Weight = 10 + Max(WeightB ,WeightC)

Weight = 20 +

Weight D

D

C

A

B

Weight = 7 +

Weight D

Weight = 5

Weight = 10 + Max(WeightB ,WeightC)

Weight = 20 +

Weight D

Fig. 11. Subtasks graph with the assigned
weights.

For each subtask graph do

1. compute weights

2. assign all subtasks to HS

3. schedule reconfigurations(reference schedule)

4. assign all subtasks to LE

5. schedule reconfigurations(current schedule)

6. compare(reference schedule, current schedule,

penalty, configuration)

7. While (penalty 0) do

a. assign to HS (configuration)

b. schedule reconfigurations(current

schedule)

c. compare(reference schedule, current

schedule, penalty, configuration)

Our mapping
Task

Ideal ex.

time

HS time

overhead

LE time

overhead
Sub-tasks

LE HS

Energy Rec

overhead

Pattern Rec. 94 ms +4% +6% 6 5 1 -25%

JPEG dec. 81 ms +5% +7% 4 3 1 -22.5%

Parallel JPEG 57 ms +7% +10% 8 5 3 -19%

MPEG 33 ms +18% +30% 5 4 1 -24%

Average +7% +13% -22.5%

Table 1. Features of the set of multimedia benchmarks and experimental results.

Finally, a new schedule is carried out assuming that

subtask A is mapped to the HS memory while the

remaining subtasks are mapped to the LE memory (this

schedule is depicted in figure 7). This schedule is

compared with the first one, and the comparison shows

that both of them provide the same execution time. Hence

this mapping is selected as the final one.

7. Experimental results

To demonstrate our modules, we have integrated them

into an existing hybrid run-time/design-time scheduling

methodology (called Task Concurrency Management,

TCM, methodology) [22]. This methodology attempts to

reduce the energy consumption of the platform while

meeting the real-time constraints of the applications.

However our modules can be used with any other

scheduling flow developed for heterogeneous

multiprocessor systems as long as it shares the same graph

format to represent the tasks, and provides sufficient

design-time-generated information.

In the first experiment we have evaluated our mapping

technique with a set of multimedia tasks assuming that the

subtask configurations can be mapped either to a HS

memory or to a LE memory. These tasks are a sequential

and a parallel version of the JPEG decoder, an MPEG-1

encoder, and a Pattern Recognition application that applies

the Hough transform over a matrix of pixels in order to

identify geometrical figures.

To model the HS and the LE memories we have used

real data of two memory modules from ST

microelectronics. In this realistic case, the memory

module optimised for performance is 50% faster but

consumes 30% more energy per access than the one

optimised to save energy. In this experiment we assume

that the time needed to load a subtask from a HS memory

to a RU is 4ms (hence, the loading latency for the LE

memory is 6 ms), and that all the subtasks are executed in

the RUs resources. These loading latencies are realistic for

fine-grain reconfigurable resources [3].

In Table 1 the features of this set of tasks and the results

of our experiments are presented. Ideal ex. time is the

average execution time of each application when there is

no reconfiguration overhead. HS and LE time overhead is

the execution-time reconfiguration overhead when all the

reconfigurations are mapped to HS and LE respectively.

Our reconfiguration manager has already been applied to

reduce this overhead as much as possible. As it can be

seen in the table, the increase in the reconfiguration

latency has a direct impact on the execution time. Thus, if

all the reconfigurations are stored in a LE memory instead

of in a HS memory the energy consumed in order to read

them is reduced by 30%. However, the execution time of

the tasks increases 6% on average. For many applications

with demanding timing requirements this increase is not

acceptable. Hence, our mapping approach will try to

achieve energy consumption reductions in the

configuration memory hierarchy without introducing this

execution-time penalisation.

The last four columns present the results of our

approach. Sub-tasks is the number of subtasks of each

task. The following two columns depict how many of

these subtasks have been mapped to the HS memory, and

how many to the LE memory when applying our mapping

algorithm. It is important to remark that this mapping

guarantees the optimal performance (similar to the

performance achieved when all the configurations are

stored in the HS memory). However, almost 75% of the

configurations have been mapped to the LE memory.

Hence, our mapping algorithm has achieved important

energy savings in the configuration memory hierarchy

without degrading the performance of the applications. It

consumes on average 22.5% less energy per configuration

which is close to the theoretical maximal saving of 30%

with the given memory library. If the low power version

of the memory is further optimised we can expect even

larger savings.

8. Conclusions

Reconfigurable HW presents high performance and

flexibility at the cost of a reconfiguration overhead both in

execution time and energy consumption. Previous works

[3], [20] have demonstrated that, with the appropriated

support, the execution-time overhead can be drastically

reduced. However, since embedded systems are frequently

battery-dependent, specific support to reduce the

reconfiguration energy overhead is also needed. In this

paper we propose a simple memory hierarchy for

configurations with a memory module optimised for

performance and another module optimised to reduce the

energy consumption per access. In addition, we have

developed a systematic mapping algorithm to decide

where to store each configuration and we have integrated

it in our previous reconfiguration manager. Our mapping

algorithm attempts to store the maximum number of

configurations in the memory optimised for energy

without generating any performance degradation. To this

end, the mapping algorithm interacts with the

reconfiguration manager and takes into account how the

mapping will influence the system performance. In the

experiments, our algorithm has found an optimal mapping

for performance, but with 75% of the reconfigurations

stored in the memory optimised to reduce the energy

consumed per access.

Our experiments have been carried out for fine-grain

reconfigurable resources with a centralised memory

hierarchy. We expect to test our approach with coarse-

grain architectures, and extend it for a distributed memory

hierarchy, where each RU will have its local HS and LE

memories. We also plan to extend our approach for

configurable RAMs like the ones described in [25]. These

memories can be configured at run-time both for HS and

LE, exhibiting a large energy and delay trade-off range

with a very small area penalty.

9. Acknowledgments

This work has been partially supported by TEC 2005-

04752/MIC.

10. References

[1] J. Kneip et al. "Applying and Implementing the MPEG-4

Multimedia Standard", IEEE Micro, Vol. 19, Issue 6, pp. 66-

74, 1999.

[2] Li Shang et al., "Hw/Sw Co-synthesis of Low Power Real-

Time Distributed Embedded Systems with Dynamically

Reconfigurable FPGAs", ASP-DAC'02, pp. 345-360, 2002.

[3] Resano et al., "A Reconfiguration Manager for Dynamically

Reconfigurable Hardware", IEEE Journal on Design&Test

of Computers, Vol. 22, Issue 5, pp. 452-460, 2005.

[4] D. Lehn et al., "Evaluation of Rapid Context Switching on a

CSRC Device", ERSA'02, pp. 209-215, 2002.

[5] Hartenstein, R. "A decade of reconfigurable computing: A

visionary retrospective", Proc. DATE, 2001, pp. 642-649,

Munich, Germany, 2001.

[6] T. Marescaux et al., "Interconnection Network enable Fine-

Grain Dynamic Multi-Tasking on FPGAs", Proc. of FPL'02,

pp. 795-805, 2002.

[7] www.xilinx.com

[8] Z. Li and S. Hauck. "Configuration Compression for Virtex

FPGAs". IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM’01). 2001.

[9] Z. Li et al., "Configuration Cache Management Techniques

for FPGAs" IEEE Symposium on FPGAs for Custom

Computing Machines, pp. 22-36, 2000.

[10] Z. Li and S. Hauck, "Configuration prefetching techniques

for partial reconfigurable coprocessor with relocation and

defragmentation" Int’l Symp. FPGAs, pp. 187-195, 2002.

[11] J. Noguera and R. M. Badía, "Multitasking on

Reconfigurable Architectures: Microarchitecture Support and

Dynamic Scheduling". ACM Transactions on Embedded

Computing Systems, Vol. 3, No. 2, pp. 385-406. 2004.

[12] R. Maestre et al, "Configuration Management in Multi-

Context Reconfigurable Systems for Simultaneous

Performance and Power Optimizations", ISSS'00, pp 107-

113, 2000.

[13] L. Benini, et al., "A Power Modeling and Estimation

Framework for VLIW-based Embedded Systems,"

PATMOS'01, pp. 26-28. 2001.

[14] M. Jayapala et al., "Clustered Loop Buffer Organization for

Low Energy VLIW Embedded Processors". IEEE Trans.

Computers 54(6) pp. 672-683. (2005).

[15] F. Barat et al., "Low Power Coarse-Grained Reconfigurable

Instruction Set Processor". FPL'03, pp. 230-239, 2003.

[16] J.-M. Masgonty, S. Cserveny, and C. Piguet, “Low-Power

SRAM and ROM Memories” in Proc. PATMOS, 2001, pp.

7.4.1–7.4.7.

[17] http://www.viragelogic.com/render/content.asp?id=292

[18] http://www.micron.com/products/dram/mobilesdram/

[19] J-Y. Mignolet et al. "Infrastructure for Design and

Management of Relocatable Tasks in a Heterogeneous

Reconfigurable System-on-Chip" DATE'03, 2003, pp.10986-

10993.

[20] J. Resano et al., "A Hybrid Prefetch Scheduling Heuristic to

Minimize at Run-time the Reconfiguration Overhead of

Dynamically Reconfigurable HW". DATE'05, pp. 106-111.

2005

[21] J. Resano et al. "A hybrid design-time/run-time scheduling

flow to minimise the reconfiguration overhead of FPGAs",.

Journal on Microprocessors and Microarchitectures. Elsevier

publishers. Volume 28, Issues 5-6, pp. 291-301, 2004.

[22] P. Yang et al., "Energy-Aware Runtime Scheduling for

Embedded-Multiprocessors SOCs", IEEE Journal on

Design&Test of Computers, pp. 46-58, 2001.

[23] D. Blodget et al. , “ A Self-reconfiguring Platform”, Proc. of

FPL'03, pp. 565-574, 2003.

[24] M.Palkovic, E.Brockmeyer, P.Vanbroekhoven,

H.Corporaal, F.Catthoor,

"Systematic Preprocessing of Data Dependent Constructs for

Embedded Systems"',

 {\em Proc.\ IEEE Wsh.\ on Power and Timing Modeling,

Optimization and

Simulation (PATMOS)}, Antwerp, Belgium, Sep.\ 2005.

[25] H.Wang, M.Miranda, A.Papanikolaou, F.Catthoor,

W.Dehaene, 'Variable Tapered Pareto Buffer Design and

Implementation Allowing

Run-Time Configuration for Low Power Embedded

SRAMs'', {\em IEEE Trans.\ on VLSI Systems}, Vol.13,

No.10, Oct.\ 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

