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Abstract 

Currently run-time reconfigurable hardware offers 

really attractive features for embedded systems, such as 

flexibility, reusability, high performance and, in some 

cases, low-power consumption. However, the 

reconfiguration process often introduces significant 

overheads in performance and energy consumption. In our 
previous work we have developed a reconfiguration 

manager that minimizes the execution time overhead. 

Nevertheless, since the energy overhead is equally 
important, in this paper we propose a configuration 

memory hierarchy that provides fast reconfiguration while 

achieving energy savings. To take advantages of this 

hierarchy we have developed a configuration mapping 

algorithm and we have integrated it in our reconfiguration 

manager. In our experiments we have reduced the energy 

consumption 22.5% without introducing any performance 

degradation. 

1. Introduction 

Nowadays applications are continuously demanding not 

only high performance, but also extended battery life. It 

gets worst if we take into account that these two objectives 

are not orthogonal, and their optimization frequently steer 

the design process to different directions. 

Reconfigurable resources offer interesting advantages 

over ASICs as run-time flexibility and reusability. Hence, 

they are a very attractive alternative for embedded system. 

Reconfigurable resources can adapt their behaviour to 

meet current system demands. This feature yields area 

savings, since designers do no need to provide specific 

HW resources for all the different system functionalities. 

Reconfigurable HW also introduces performance 

improvements, since it allows loading HW accelerators 

when needed.  

Nevertheless, when analysing the performance and 

energy consumption of reconfigurable systems, it is often 

assumed that configurations are already loaded. Hence, 

this kind of analysis only depicts ideal results since they 

neglect the penalisations introduced during the 

reconfiguration process, which can introduce significant 

overheads in the performance and the energy consumed by 

the system.  

Our approach not only takes into account the 

reconfiguration overheads, but attempts to minimise them 

including a configuration memory hierarchy that provides, 

at the same time, fast reconfiguration and energy savings. 

Furthermore, we have developed a configuration mapping 

algorithm that takes advantage of the dual features of this 

configuration memory hierarchy. Finally, we have 

integrated this mapping algorithm into an existing 

reconfiguration manager [2] and tested it with a set of 

multimedia applications.   

The rest of the paper is structured as follows: the next 

section provides more details about the reconfiguration 

overhead and also introduces previous works that attempt 

to reduce it. Section 3 presents our new configuration 

memory hierarchy. Section 4 describes a motivational 

example. Section 5 explains our scheduling flow. Section 

6 describes our configuration mapping algorithm. Section 

7 presents some experimental results, and finally section 8 

summarizes our conclusions.  

2. Reconfiguration overhead 

Many research groups have addressed the minimization 

of the reconfiguration overhead. Much of this work 

proposes new reconfigurable architectures, like multi-

context FPGAs [4], FPGAs that allow partial 

reconfiguration [7], and especially coarse-grain 

architectures [5].  
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Multi-context devices allow loading a new 

configuration while another one is being executed. 

Afterwards, when the new configuration must start its 

execution, there is a context switch that normally can be 

carried out in just one clock cycle. This solution 

drastically reduces the performance reconfiguration 

overhead as long as configurations can be loaded in 

advance. However, in order to duplicate the number of 

contexts, the configuration memory resources must be also 

duplicated, and some additional HW must be added. 

Hence, the energy reconfiguration overhead is not reduced 

but probably significantly increased. 

Partial reconfiguration allows changing part of the 

configuration bits of a reconfigurable resource, without 

modifying the remaining ones. With this approach, and the 

appropriated support [6] it is possible to have several 

independent tasks running in the same device and load a 

new one without interfering with the others.  

Coarse-grain architectures trade off programming 

flexibility for more efficient functional units. Reducing the 

programming flexibility has a direct impact in the 

configuration size and, subsequently, in the configuration 

latency and in the reconfiguration overhead. Thus, loading 

a decoding object that occupies a tenth of a VIRTEX 

XC2V6000 FPGA [7] involves loading a configuration of 

260 KB (using partial reconfiguration) with a 

reconfiguration latency of 4 ms when clocking the 

configuration bus at the maximum speed. The 

configuration size of the same task for a coarse grain array 

can be between 10 and 50 times smaller depending on the 

programming granularity. Of course for fine-grain the 

decoding object can be optimised at bit level, whereas for 

coarse-grain it must be implemented using operations of a 

fixed bit width and, normally with less interconnection 

possibilities. However, if the coarse-grain architecture fits 

appropriately the decoding computations, it will provide 

good performance and fast reconfigurations. 

 A very interesting approach to reduce FPGA’s 

reconfiguration execution-time overhead is found in the 

work of Zhiyuang Li and Scott Hauck where three 

techniques are proposed, namely configuration 

compression, caching and prefetching.  

The first technique compresses the configuration bits of 

a task to reduce their loading latency [8]. It will introduce 

a decoding overhead, that authors solve including 

dedicated HW. However, it also introduces an energy 

penalisation due to the decoding process. 

 The second technique, deals with the problem of 

allocating tasks in the FPGA trying to maximize their 

reuse [9]. However, they assume that a task can be placed 

anywhere in the FPGA which is not a realistic assumption 

unless a very costly run-time routing process would be 

performed each time that a new task is loaded.  

Finally, the configuration prefetching technique [10] 

attempts to hide the latency of the load of a configuration 

by accomplishing this load before it is needed. To this end, 

the next task to be executed is predicted based on past 

events and profiled data. If the prediction is a success, it is 

possible to hide, at least partially, its reconfiguration 

latency; otherwise, an erroneous configuration is loaded 

with the consequent penalization.   

Noguera and Badia [11] have also proposed a 

configuration prefetching approach that attempts to hide 

the reconfiguration latency. Their proposal is especially 

interesting because they have developed a HW 

implementation of a configuration manager that applies 

their technique providing good results while introducing 

almost no run-time penalty due to the computations 

needed to apply it.  

In our previous work, we have also developed a 

reconfiguration manager specifically designed to hide the 

reconfiguration latency [3]. This manager applies a 

prefetch scheduling technique that attempts to load the 

configurations in advance and a replacement technique 

that reduces the number of demanded reconfigurations. 

Our manager interacts with a multiprocessor task 

scheduler in order to obtain accurate information about the 

near future and use it to take near optimal decisions. In our 

experiments the manager succeeds hiding at least 93% of 

the initial execution-time overhead even for highly 

dynamic applications. 

Other good approaches regarding how to minimise the 

influence of the reconfiguration latency applying 

scheduling techniques at design-time are found in [12] and 

[2]. However, they do not include any run-time 

component. Therefore, they are only suitable for static 

applications.  

The main focus of all these works is reducing the 

reconfiguration execution-time overhead. However, many 

researches have pointed out that, in embedded systems, the 

energy consumption due to the instruction memory 

hierarchy stands for a very important percentage (around 

30%) of the overall energy consumption [13], [14]. And 

this is also true for fine-grain [2] and coarse-grain [15] 

reconfigurable architectures, as long as frequent 

reconfigurations are demanded. Hence, there is a need for 

reconfigurable systems with energy-efficient 

reconfigurations. 

Currently, no vendor has published an estimation of the 

energy reconfiguration overhead. Hence, in order to obtain 

at least coherent energy numbers we will model 

reconfigurations simply as data transfer operations 

between a SRAM memory and a reconfigurable unit. In 

order to estimate the SRAMs memory consumption we 

will use accurate data from ST microelectronics. 

3. Configuration memory hierarchy 

The typical configuration memory hierarchy (figure 1) 

for reconfigurable HW is composed of a reconfigurable 



fabric that stores the configurations that are ready for 

being executed and an off-chip memory where the 

remaining configurations are stored. These configurations 

can be loaded from the external memory using a dedicated 

reconfiguration circuitry. This scheme is usually present 

on fine-grain architectures, as FPGAs.  

One interesting improvement often introduced for 

coarse-grain devices (and sometimes also for fine grain 

like in [23]) consist in adding a smaller intermediate on-

chip configuration memory, where the configurations of 

the running tasks are stored (figure 2). This configuration 

memory is critical for the system, not only for the heavy 

configuration traffic required by dynamic applications 

execution, but also for its energy consumption.  

Reconfigurable

HW

Main Memory

(off-chip)

Fig. 1. Typical memory hierarchy for FPGAs. 

Internal

Configuration

Memory

(on-chip)

Reconfigurable

HW

Main Memory

(off-chip)

Fig. 2. Typical memory hierarchy for coarse-
grain. 

This internal configuration memory is usually a High-

Speed (HS) SRAM memory. SRAM memories typically 

have high performance ratios per price unit. And due to 

the new development techniques applied, its cost is, at 

present, very affordable. However, despite the fact that 

several improved Low-Energy (LE) techniques have been 

applied to these HS SRAM memories [16], they still 

generate an important percentage of the total energy 

consumption of the embedded system.  

During recent years extensive efforts have been focused 

on reducing SRAM memories energy consumption. As a 

result, there are currently available in the market a new 

type of memories oriented to LE, with similar features 

than the HS ones, but with worse speed ratios. Different 

memory manufacturers, for example, Virage Logic [17] 

and Micron Technology [18], have introduced some of 

these innovating techniques in the design of LE SRAM 

memory.  

Consequently, the embedded systems designers must 

select the appropriate memory for their platform among 

the wide number of possibilities available on the market. 

However, selecting a memory optimized for high-

performance, usually involves energy consumption 

overheads, while selecting a memory optimized for 

reducing the energy consumption may lead to important 

performance degradation (more data-path cycles are 

needed per access).  Since designers need both high 

performance and low energy consumption features, we 

propose to include two different types of memories in the 

configuration memory hierarchy, one optimized for HS 

and the other one optimized for LE. Hence, we are 

potentially supplying high performance and low energy 

features to the configuration memory hierarchy. The goal 

of this scheme is to reduce the energy consumption of the 

system, while keeping high performance. Figure 3 depicts 

this configuration hierarchy memory scheme. 

HS 

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

Reconfigurable 

HW

HS 

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

Reconfigurable 

HW

Fig. 3. Proposed scheme of configuration 
hierarchy memory. 

Our approach presents a new challenge, because it is 

necessary to decide for each part of the application 

sequence where to load each configuration, in the HS 

memory or in the LE one. Hence, we have developed a 

configuration memory mapping algorithm that takes these 

decisions automatically and we have integrated it into our 

previous reconfiguration manager. Our mapping algorithm 

is explained in detail in Section 5. 

4. Motivating example 

We will illustrate our approach with the following 

example (figure 4). In this example the four subtasks must 

be loaded and executed on a device with two 

reconfigurable units (RU) and three different configuration 

memory hierarchies. A RU is composed by reconfigurable 

resources, wrapped by a fixed communication interface. 

We will provide more details about the RUs in the 

following section. It is important to remark that current 

reconfigurable systems have only one reconfigurable 

circuitry to carry out the reconfigurations of the different 

RUs. Therefore, simultaneous reconfigurations are not 

supported.  
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Fig. 4. Example of graph. 

Figure 5 shows the schedule of the graph execution 

when only a HS DRAM memory is used to store the 

configurations of the running applications.  

Figure 6 presents another schedule for the same graph, 

but with a LE memory instead of the HS one. We 

realistically assume that the reconfiguration latency of this 

LE memory is 50% larger than the HS memory one. In 

this second schedule an overall execution delay has 

appeared due to the increment on the configuration 

latency. Finally, Figure 7 depicts the schedule obtained 

with the configuration memory hierarchy that we have 

proposed with a HS memory and a LE memory. These 

memories have the same features as the HS and LE ones 

used in the previous examples. Our approach tries to 

achieve energy savings, moving subtasks from HS 

memory to LE one, without reducing the overall system 

performance. From the resulting scheduling, depicted on 

figure 7, it is shown that our aim have been achieved: 

energy consumption has been clearly reduced since three 

configurations have been mapped to the LE memory while 

the performance level is kept.  

Reconfigurable

circuit

RU 1

RU 2

L A L C

Ex A

Ex B

L B

Ex C

L D

Ex D

4 8 14 18 25 29 34 39

Fig. 5. Subtasks scheduling for the 
execution with one HS configuration 
memory.  L i: load of subtask i. Ex i: 
execution of subtask i 
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Fig. 6. Subtasks scheduling for the 
execution with one LE configuration 
memory. L i: load of subtask i. Ex i: 
execution of subtask i 
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Fig. 7. Subtasks scheduling for the 
execution with two configuration memory 
(HS and LE). L i: load of subtask i. Ex i: 
execution of subtask i 

From the point of view of the RU arrangement, this 

dual configuration memory can be applied in a centralized 

way or in a distributed way. On the centralized scheme 

there is only one LE memory and one HS memory, which 

are shared among the reconfigurable resources (figure 8). 

On the distributed memory hierarchy there is one LE 

memory and one HS memory for each one of the 

reconfigurable resources of the device. Our current work is 

targeted only on centralized architectures. However, the 

distributed configuration allows extra energy saving 

applying some energy-aware techniques such as clock-

gating or switch-off the configuration memories.  

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

RURU

HS

Memory
(on-chip)

LE

Memory
(on-chip)

Main Memory

(off-chip)

RURU

Fig. 8. Centralized scheme for the 
configuration hierarchy memory.  

5. Scheduling environment 

In our previous work we have developed a 

reconfiguration manager designed to reduce the delays 

generated due to reconfigurations. This manager steers the 

reconfigurations of a set of reconfigurable units. A 

reconfigurable unit is composed of a reconfigurable fabric 

(that can be either fine or coarse grain) and a fixed 

communication interface. Each reconfigurable unit can 

accommodate one task that can use the services provided 

by the interface to carry out inter-task communications. To 

support these communications each interface contains a 

routing table that the OS actualises each time that a new 

task is loaded. This organisation for reconfigurable 

systems was presented by Marexcaux et al. in [6], [19].  



Our work is not limited to systems with just one 

processor and a variable number of reconfigurable units, 

but it is intended for any heterogeneous multiprocessor 

platform that includes reconfigurable units. On top of such 

a platform a multiprocessor task scheduler will guide the 

execution of the running applications. This scheduler 

assigns tasks to the processing elements at run-time 

according to the computational load of the system and the 

real-time constraints. However, when dealing with the 

reconfigurable units, it must be taken into account that the 

run-time flexibility comes at the price of a large 

reconfiguration overhead. Hence, in order to efficiently 

tackle reconfiguration overheads, reconfigurable HW 

resources need specific scheduling support. Providing this 

support is the goal of our reconfiguration manager.  

We assume that applications are described as a set of 

tasks (where each task is represented as a subtask graph) 

that interact dynamically among them. Thus, the non-

deterministic behaviour must remain outside the 

boundaries of the tasks. This allows analysing and pre-

scheduling the graphs at design time. If the behaviour of a 

task heavily depends on external data, different versions 

(graphs) of the same task are generated. Each of these 

versions is called a scenario [24]. Thus, the idea of 

scenario allows supporting data dependencies and loops 

inside the tasks. The run-time scheduler must select the 

appropriated scenarios for each running task, select one of 

the pre-computed schedules and decide the task execution 

order taking into account the inter-task dependencies and 

the real-time constraints. However, the schedule selected 

by the run-time task scheduler is not aware of the 

reconfiguration overhead. This is going to be the input of 

our reconfiguration manager. The manager will analyse 

the initial schedule and will take all the decisions 

regarding the run-time reconfigurations.  

Fig. 9. Run-time scheduling flow 

5.1 The Reconfiguration Manager 

Our reconfiguration manager (figure 9) is composed of 

three different modules, namely the reuse module, the 

prefetch module and the replacement module. These 

modules apply different optimisation techniques to the 

sequence of scheduled tasks provided by the run-time 

scheduler.  

The reuse module takes advantage of the possibility of 

reusing subtasks that are executed periodically. The 

second module schedules the reconfigurations of those 

subtasks that cannot be reused. This schedule attempts to 

hide the loading latency by applying a prefetch technique 

that schedules, if possible, all the reconfigurations in 

advance. Therefore, those configurations that can be pre-

fetched do not introduce any execution time overhead.  

Finally, the third module applies a replacement policy 

for the loaded configurations attempting to maximise the 

percentage of reused configurations. This module takes 

into account the initial schedule in order to optimise its 

decisions. The scheduling and replacement decisions are 

taken sequentially for all the tasks following the order of 

the initial schedule. Afterwards, if needed, this schedule is 

updated by adding the delay created by the 

reconfigurations.  

More details about our reconfiguration manager can be 

found in [3] and [20]. The results presented in these papers 

shows that with this specific support the execution-time 

reconfiguration overhead is drastically reduced. The 

manager has also a positive impact in the reconfiguration 

energy overhead, since by applying an efficient 

replacement heuristic the percentage of subtasks reused is 

maximised, leading to a significant reduction in the 

number of reconfigurations demanded with the consequent 

energy savings.  

The reconfiguration manager was developed for a very 

simple configuration memory hierarchy similar to the one 

depicted in figure 1. In order to adapt our manager to a 

system with a memory hierarchy like the one proposed in 

figure 8, a mapping algorithm must be included in the 

system. This module must decide whether configurations 

should be stored in the LE or in the HS memory. Storing a 

configuration in the LE memory reduces the energy 

reconfiguration overhead but at the cost of a possible 

increase in the execution-time.  

The goal of our mapping algorithm is to identify a 

partition of the configurations that minimise the 

reconfiguration energy overhead without increasing the 

execution-time overhead significantly. To achieve this 

goal we have developed a systematic mapping algorithm 

that analyses the features of the subtask graphs at design-

time and interacts with the prefetch module. 

6.  Configuration mapping algorithm 

An efficient prefetch technique may succeed hiding 

most of the reconfigurations (in [3] our heuristic was able 

to hide at least 75% of them assuming that there was no 

reuse, which is the worst possible case). But for certain 

subtasks, it may fail meeting its objective because there is 

not always enough time available to schedule all the loads 

in advance (e.g. subtask A of figure 5).  

TCM Run-Time Scheduler
Platform 

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each 

task

-Real-time constraints

Initial schedule that 

neglects the 

reconfiguration 

overhead

TCM Run-Time Scheduler
Platform 

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each 

task

-Real-time constraints

Initial schedule that 

neglects the 

reconfiguration 

overhead



In order to conveniently map the configurations to the 

different memories is very important to identify which are 

those subtasks which loading latencies cannot be hidden, 

because an intelligent mapping will assign those subtasks 

to the HS memory and the remaining subtasks to the LE 

memory. The pseudo code of the algorithm that computes 

the mapping is depicted in figure 10.  

The process starts assigning a weight to each subtask of 
the graph. These weights represent how critical is the 

execution of each subtask. They are assigned by 

computing the longest path (in terms of execution time) 

from the beginning of the execution of the subtask to the 

end of the execution of the whole graph with an As-Late-

As-Possible (ALAP) schedule. Hence the first subtask in 

the critical path has always more weight than the others 

(more details about how these weights are computed can 

be found in [21]).

For each subtask graph, the process starts assigning all 

the configurations to the HS memory (this is the optimal 
mapping for performance) and invoking the function 

schedule reconfigurations. This function applies a prefetch 

scheduling heuristic to obtain a schedule of the 

reconfigurations assuming that none of the subtasks 

assigned to reconfigurable units can be reused. Any 
prefetch-scheduling heuristic can be used. In our case, we 
use a branch&bound scheduling approach for small graphs 
(this b&b guarantee that always the optimal schedule is 
found), and the heuristic presented in [3] for large graphs, 
since it provides near optimal schedules in an affordable 
time. The schedule obtained is going to be used as a 
reference during all the process. Since, in this schedule all 
the configurations are store in the HS memory; it always 
provides the optimal result for performance. 

Afterwards, the algorithm will look for a mapping same 
performance than the reference one, but with the 
maximum number of configurations assigned to the LE 
memory.  

Our algorithm starts searching for an optimal mapping 
carrying out another schedule for the same graph assuming 
that all the configurations are stored in the LE memory. 
Then, it compares both schedules identifying which 
subtasks generate extra delays in the global execution time 
when their configuration is stored in the LE memory. The

configuration selected to be mapped in the HS memory is, 

logically, the one with greatest weight. This process is 
performed by the function: compare(reference schedule, 

current schedule, penalty, configuration), where reference

schedule and current schedule are the two schedules to 

compare; penalty is the difference in the execution time 

between these two schedules and configuration is the 

configuration selected. 

After moving the first configuration from LE to HS, 

another schedule is computed assuming that all the 

configurations, but the one previously selected, are 

assigned to the LE memory. This schedule is again 

compared with the reference one, and if extra delays are 

found, another configuration is assigned to the HS 

memory. This process continues iteratively until the 

execution time of the current schedule is the same than the 

execution time of the reference schedule. At this moment, 

the algorithm generates the final partition, which provides 

as good performance as a partition that maps all the 

configurations to HS and also achieves energy savings 

since some of the configurations have been mapped to the 

LE memory.  

Fig. 10. Pseudo code for the mapping 
algorithm. 

To illustrate this process we will analyse in detail the 

different steps performed to select the mapping for the 

graph introduced in Section 3. The first step is to compute 

the weights. This process is depicted in figure 11. It is 

interesting to remark that subtask A, which is the first one 

in the critical path, has the greatest weight.  

Then two schedules are carried out, one assuming that 

all the configurations are assigned to the HS memory, and 

another one assuming that they are assigned to the LE 

memory.  These schedules are depicted in figures 5 and 6.  

Since there is a 2 ms delay in the second, one of the 

configurations must be assigned to the HS memory. 

Subtask A is selected because it has the greatest weight. 

D

C

A

B

Weight = 7 +

Weight D

Weight = 5

Weight = 10 + Max(WeightB ,WeightC )

Weight = 20 +

Weight D

D

C

A

B

Weight = 7 +

Weight D

Weight = 5

Weight = 10 + Max(WeightB ,WeightC )

Weight = 20 +

Weight D

Fig. 11. Subtasks graph with the assigned 
weights. 

For each subtask graph do

1. compute weights 

2. assign all subtasks to HS 

3. schedule reconfigurations(reference schedule) 

4. assign all subtasks to LE 

5. schedule reconfigurations(current schedule) 

6. compare(reference schedule, current schedule, 

penalty, configuration) 

7. While (penalty  0) do

a. assign to HS (configuration) 

b. schedule reconfigurations(current 

schedule) 

c. compare(reference schedule, current 

schedule, penalty, configuration) 



Our mapping 
Task

Ideal  ex. 

time 

HS time 

overhead

LE time 

overhead
Sub-tasks

LE HS 

Energy Rec 

overhead 

Pattern Rec. 94 ms +4% +6% 6 5 1 -25% 

JPEG dec. 81 ms +5% +7% 4 3 1 -22.5% 

Parallel JPEG 57 ms +7% +10% 8 5 3 -19% 

MPEG 33 ms +18% +30% 5 4 1 -24% 

Average  +7% +13%    -22.5% 

Table 1. Features of the set of multimedia benchmarks and experimental results.

Finally, a new schedule is carried out assuming that 

subtask A is mapped to the HS memory while the 

remaining subtasks are mapped to the LE memory (this 

schedule is depicted in figure 7). This schedule is 

compared with the first one, and the comparison shows 

that both of them provide the same execution time. Hence 

this mapping is selected as the final one. 

7. Experimental results 

To demonstrate our modules, we have integrated them 

into an existing hybrid run-time/design-time scheduling 

methodology (called Task Concurrency Management, 

TCM, methodology) [22]. This methodology attempts to 

reduce the energy consumption of the platform while 

meeting the real-time constraints of the applications. 

However our modules can be used with any other 

scheduling flow developed for heterogeneous 

multiprocessor systems as long as it shares the same graph 

format to represent the tasks, and provides sufficient 

design-time-generated information.  

In the first experiment we have evaluated our mapping 

technique with a set of multimedia tasks assuming that the 

subtask configurations can be mapped either to a HS 

memory or to a LE memory. These tasks are a sequential 

and a parallel version of the JPEG decoder, an MPEG-1 

encoder, and a Pattern Recognition application that applies 

the Hough transform over a matrix of pixels in order to 

identify geometrical figures.  

To model the HS and the LE memories we have used 

real data of two memory modules from ST 

microelectronics. In this realistic case, the memory 

module optimised for performance is 50% faster but 

consumes 30% more energy per access than the one 

optimised to save energy. In this experiment we assume 

that the time needed to load a subtask from a HS memory 

to a RU is 4ms (hence, the loading latency for the LE 

memory is 6 ms), and that all the subtasks are executed in 

the RUs resources. These loading latencies are realistic for 

fine-grain reconfigurable resources [3]. 

In Table 1 the features of this set of tasks and the results 

of our experiments are presented. Ideal ex. time is the 

average execution time of each application when there is 

no reconfiguration overhead. HS and LE time overhead is 

the execution-time reconfiguration overhead when all the 

reconfigurations are mapped to HS and LE respectively. 

Our reconfiguration manager has already been applied to 

reduce this overhead as much as possible. As it can be 

seen in the table, the increase in the reconfiguration 

latency has a direct impact on the execution time. Thus, if 

all the reconfigurations are stored in a LE memory instead 

of in a HS memory the energy consumed in order to read 

them is reduced by 30%. However, the execution time of 

the tasks increases 6% on average. For many applications 

with demanding timing requirements this increase is not 

acceptable. Hence, our mapping approach will try to 

achieve energy consumption reductions in the 

configuration memory hierarchy without introducing this 

execution-time penalisation.  

The last four columns present the results of our 

approach. Sub-tasks is the number of subtasks of each 

task. The following two columns depict how many of 

these subtasks have been mapped to the HS memory, and 

how many to the LE memory when applying our mapping 

algorithm. It is important to remark that this mapping 

guarantees the optimal performance (similar to the 

performance achieved when all the configurations are 

stored in the HS memory). However, almost 75% of the 

configurations have been mapped to the LE memory.  

Hence, our mapping algorithm has achieved important 

energy savings in the configuration memory hierarchy 

without degrading the performance of the applications. It 

consumes on average 22.5% less energy per configuration 

which is close to the theoretical maximal saving of  30% 

with the given memory library. If the low power version 

of the memory is further optimised we can expect even 

larger savings. 

8. Conclusions 

Reconfigurable HW presents high performance and 

flexibility at the cost of a reconfiguration overhead both in 

execution time and energy consumption. Previous works 

[3], [20] have demonstrated that, with the appropriated 

support, the execution-time overhead can be drastically 

reduced. However, since embedded systems are frequently 

battery-dependent, specific support to reduce the 

reconfiguration energy overhead is also needed. In this 



paper we propose a simple memory hierarchy for 

configurations with a memory module optimised for 

performance and another module optimised to reduce the 

energy consumption per access. In addition, we have 

developed a systematic mapping algorithm to decide 

where to store each configuration and we have integrated 

it in our previous reconfiguration manager. Our mapping 

algorithm attempts to store the maximum number of 

configurations in the memory optimised for energy 

without generating any performance degradation. To this 

end, the mapping algorithm interacts with the 

reconfiguration manager and takes into account how the 

mapping will influence the system performance. In the 

experiments, our algorithm has found an optimal mapping 

for performance, but with 75% of the reconfigurations 

stored in the memory optimised to reduce the energy 

consumed per access.  

Our experiments have been carried out for fine-grain 

reconfigurable resources with a centralised memory 

hierarchy. We expect to test our approach with coarse-

grain architectures, and extend it for a distributed memory 

hierarchy, where each RU will have its local HS and LE 

memories.  We also plan to extend our approach for 

configurable RAMs like the ones described in [25]. These 

memories can be configured at run-time both for HS and 

LE, exhibiting a large energy and delay trade-off range 

with a very small area penalty. 
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