
Abstract

Step caches are caches in which data entered to an
cache array is kept valid only until the end of ongoing step
of execution. Together with an advanced pipelined multi-
threaded architecture they can be used to implement con-
current read concurrent write (CRCW) memory access in
shared memory multiprocessor systems on chip (MP-SOC)
without cache coherency problems. Unfortunately obvious
step cache architectures assume full associativity, which
can become expensive since the size and thus associativity
of caches equal the number of threads per processor being
at least the square root of the number of processors. In this
paper, we describe a technique to radically reduce the
associativity and even size of step caches in CRCW opera-
tion. We give a short performance evaluation of limited
associativity step cache systems with different settings
using simple parallel programs on a parametrical MP-
SOC framework. According to the evaluation, the perform-
ance of limited associativity step cache systems comes very
close to that of fully associative step cache systems, while
decreasing the size of caches decreases the performance
gradually.

1. Introduction

Due to ongoing gradual changes in silicon technology,

designs relying on long wires and extremely high frequen-

cy components will face serious feasibility and yield prob-

lems and are expected to be gradually replaced with

designs trading frequency to silicon area and parallelism

[Brooks00, Mudge01, Flynn05]. This will not be easy since

so far majority of computing engines has been designed

with maximal frequency and sequential execution para-

digm in mind. Among the most promising technologies uti-

lizing parallelism are multiprocessor systems on chip (MP-

SOC) and networks on chip (NOC) [Jantsch03].

Unfortunately the architecture of most MP-SOC designs

has been mainly copied from the sequential architecture

limiting their use to certain very narrow application areas

[Cesario02,Forsell02b,Ye04]. The latest architectural

advances, however, indicate that wide application areas can

be covered with a single MP-SOC architecture

[Forsell02a,Forsell05b]. One missing features of these

architectures has been ability to provide concurrent read
concurrent write (CRCW) memory access providing loga-

rithmically faster execution time for a class of algorithms

[Jaja92]. The existing solutions have sequentialized refer-

ences on memory modules causing severe congestion since

an excessive amount of references gets routed to the same

target location [Forsell02a]. There exists an alternative

solution avoiding congestion by combining messages that

are targeted to the same location, but this requires a sepa-

rate sorting phase prior to actual routing phase, which

decreases the performance and increases the complexity

[Ranade91, Keller01].

Recently, a novel class of cache memories attached to

processors, called step caches, has been proposed to elimi-

nate extra steps in CRCW operation [Forsell05a]. The main

idea of step caches is that cache lines are valid only until

the end of the ongoing step of multithreaded execution.

Together with an advanced pipelined multithreaded archi-

tecture they can be used to implement CRCW memory

access in shared memory multithreaded MP-SOCs without

cache coherency problems. Unfortunately obvious step

cache architectures assume full associativity, which can

become expensive in terms of silicon area since the size

and associativity of caches equal the number of threads per

processor being at least the square root of the number of

processors. In this paper, we describe a technique to radi-

cally reduce the associativity and even size of step caches

in CRCW operation. We give a short performance evalua-

tion of limited associativity step cache systems with differ-

ent associativity and size settings using simple parallel pro-

grams on a parametrical MP-SOC framework. According

to the evaluation, the performance of limited associativity

step caches systems comes close to that of fully associative

Reducing the Associativity and Size of Step Caches in CRCW Operation

Martti Forsell1

1VTT Technical Research Centre of Finland

Platform Architectures Team

Box 1100, FI-90571 Oulu, Finland

Martti.Forsell@VTT.Fi

1-4244-0054-6/06/$20.00 ©2006 IEEE

step cache systems while decreasing the size of caches

decreases the performance gradually.

The rest of the paper is organized so that in section 2 we

give basic definitions of caches, describe structure and

operation of step caches and outline implementation of

CRCW operations in MP-SOCs. In section 3 we introduce

a technique to reduce the associativity and size of step

caches in CRCW operation. An evaluation of limited asso-

ciativity step caches is given in section 4. Finally, in section

5 we give our conclusions.

2. Step Caches and CRCW

In order to define basic terms and to understand better

the idea of step caches with respect to ordinary caches, we

give a short overview of cache memories before proceed-

ing to structure and operation of step caches.

2.1 Cache Memories

Cache memories are small and fast associative memo-

ries that are commonly used to balance the speed difference

between processors and main memory by keeping the

potentially most frequently used data in the cache from

which it can be quickly retrieved [Kilburn62]. In a case of

a memory access, data is first searched from or stored to the

cache. If it is found, a cache hit occurs and data can be

delivered fast back to the processor. If data is not found, a

cache miss occurs and an access to the slower main mem-

ory is performed. After the access is completed data is

delivered to both the processor and stored into the cache so

that further references to the same data can be performed

faster. Typically, it is beneficial to move a number of con-

secutive data words (a cache line) to the cache since it is

likely that data itself or data located close to it will be

accessed again soon. Since the size of the cache is usually

much smaller than that of the main memory, it may happen

that the place required for data to be stored in the cache is

already occupied by previously accessed data. In such a

case previous data can be overwritten after it is possibly

stored into the main memory, since cache and main memo-

ry may not be coherent as a result of a cache-only write

operation. In modern computers there are usually more

than one level of caches between processors and main

memories forming a hierarchy of memories increasing in

size but decreasing in access time.

Caches are divided to three classes according to place-

ment convention—fully associative, N-way set associative,

and direct mapped: In fully associative caches data to be

stored in the cache can be placed anywhere in the cache,

while in direct mapped caches there is only one place that

can hold particular data. The N-way set associative cache

organization in an intermediate solution between fully

associative and direct mapped caches allowing data to be

stored into one of the N alternative places. The way of

defining which of the alternative locations will be used if

they all are occuopied is called replacement policy. Typical

replacement policies include least frequently used, first in

first out, and random. The associativity is implemented by

storing partially the address next to corresponding data

storage for each cache line and comparing if the address of

searched data matches the addresses of stored data.

Typical measures related to caches are

Size The capacity of the cache

Line length Length of a cache line in words

Associativity Associativity of data placement as

described above

Latency The latency of cache access in

processor clock cycles

Hit rate The ratio between cache hits and

total cache accesses

2.2 Step Caches

A step cache is a C line, single W-bit word per line

cache with two special fields (pending, step), a slightly

modified control logic, and step-aware replacement policy.

Figure 1 shows the organization of a fully associative step

cache consisting of C lines, C comparators, C to 1 multi-

plexer, and simplified decay logic matched for a Tp-thread-

ed processor attached to a M-word main memory.

Each cache line has the following fields:

In use A bit indicating that the line is in use.

Pending A bit indicating that the data is currently

being retrieved from the memory

Tag The address tag of the line

Step Two least significant bits of the step of the

data write.

Data Storage for a data word.

Tag Word offset

<log M - log W> <log W>

In use
<1>

Pending
<1>

Tag
<log M - log W>

Data
<W>

Step
<2>

MT-processor
[address]

[data in][data out]

Line 0:

Line Tp-1

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

=?
=?

=?

=?
=?
=?

Figure 1. The organization of a fully asso-
ciative step cache.

Step caches operate similarly as ordinary caches with

few exceptions: Each time a processor refers the memory a

step cache search is performed. A hit is detected on a cache

line if the line is in use, the address tag matches the tag of

the line, and the least significant bits of step of the refer-

ence matches the step of the line. In the case of a hit, a write

is just ignored and a read is just completed by accessing the

data from the cache. In the case of a miss, the reference is

stored into the cache using the replacement policy and

marked as pending (for reads). At the same time with stor-

ing to the cache line, the reference is sent to the lower-level

memory system. When a reply of a read arrives from the

memory, the data is put to the data field of the line storing

the reference information and the pending field is cleared.

The cache decay logic takes care of invalidating the lines

before their step field matches again to the least significant

bits of current step.

Step caches avoid cache coherency problems since the

references within a single step of multithreaded execution

are independent by definition. Similarly, there is no need to

write any data from a step cache to the memory since its

content is always coherent.

2.2 Implementing Concurrent Access

Consider an advanced shared memory MP-SOC system

with P Tp-threaded W-bit processors attached to the M-

word shared memory. Step caches with capacity and asso-

ciativity of Tp lines per processor can be used to efficiently

implement concurrent memory access on such systems by

attaching a step cache between processors and the memory

system. This is because they filter out step-wisely all but

the first reference for each referred location and avoid con-

flict misses due to sufficient capacity and step-aware

replacement policy. The traffic generated by concurrent

accesses drops radically because at most P references can

occur per a memory location per single step.

3. Reducing the Associativity and Size

The associativity requirement of the step cache solution

described in section 2 equals Tp, which is at least the square

root of the number of processors in advanced MP-SOC

machines to hide the latency of memory accesses

[Forsell02a]. This can explode the silicon area require-

ments of the step cached system if the number of proces-

sors is larger than, say, 4 or the number of threads per

processor is larger than 16.

The associativity can be reduced to a S-way set associa-

tive or even direct mapped organization by allowing an ini-

tiated sequence of references to a certain memory location

to be interrupted by another reference to a different location

if the capacity of the referred set of cache lines is exceed-

ed. In order to distribute this kind of conflicts (almost)

evenly over the cache lines, access addresses are hashed

with a randomly selected hashing function. This kind of

technique is already used in memory modules of some MP-

SOCs and parallel computers to balance the speed differ-

ence between processors and memory banks with a high

probability [Forsell02a, Keller01].

Consider a similar MP-SOC setup than in section 2. Let

h(x) be a linear hashing function randomly selected from a

family of hashing functions implemented by a special hash-

er block attached between the processor and step cache.

Assume that the fully associative step caches are replaced

with caches featuring capacity of Tp h(x)-hashed lines per

processor and associativity S<Tp (see Figure 2). The

obtained solution implements concurrent memory access

with a low overhead with respect to the fully associative

solution with a high probability since the number of con-

flicts and thus additional traffic remains low with a high

probability. As a result of decreasing associativity of step

caches, the number of comparators and degree of the mul-

tiplexer drops from Tp to S. At the same time also the size

dependence of step caches on the number of threads per

processor, Tp, is cut, but this happens of course with the

cost of increased memory traffic. In the next section we

will evaluate the practical effect of reducing associativity

and size of step caches to CRCW access performance of

MP-SOCs.

4. Evaluation

We evaluated the proposed limited associativity and

size step cache solutions and their fully associative coun-

terparts assuming a step aware FIFO replacement policy by

measuring key properties of parallel execution of five two-

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <log W>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?
Mux

MT-processor
[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Figure 2. The organization of a limited asso-
ciativity (S-way set associative) step cache.

component programs (see Table 1) mixing the CRCW and

exclusive read exclusive write (EREW) memory access

components in 0%-100%, 25%-75%, 50%-50%, 75%-

25%, 100%-0% ratio on three step cached systems (see

Table 2) based on the Eclipse MP-SOC framework

[Forsell02a] with three associativity settings (direct

mapped, 4-way set associative, 16-way set associative and

fully associative) and three size settings (Tp, Tp/2 and Tp/4).

For reference purposes we made similar measurements on

similarly configured non-step cached systems and ideal

shared memory systems.

The benchmark program components were written in

Eclipse assembler and optimized by hand. The CRCW

component performs a series of concurrent reads and writes

for each thread and the EREW component performs mem-

ory patterns extracted from a random SPEC CPU 2000

memory access traces on Alpha processor and shifted by a

random constant for each thread. The two-component

trace-based benchmarking approach was used to be able to

determine the effect of concurrent memory access in vari-

ous use cases and to overcome the practical limitations of

the application development system. This kind of an evalu-

ation method gives quite reliable on results on performance

and usability of the proposed step cache solution. Since the

actual SPEC programs are not likely to refer memory as

often as the traces executed at the rate of one reference per

step, the obtained results may be a bit too pessimistic.

The measurements were made with a modified

IPSMSim simulator [Forsell02c]. For each evaluated

benchmark-configuration pair we measured the execution

time, step cache hit rate, and maximum latency of memory

references. Due to extensive simulation times the 64

processor configuration was evaluated only for the 50%-

50% component mix ratio benchmark and a shortened

number of steps, and thus these results are not fully compa-

rable to those of 4 and 16 processor configurations and are

presented in as a separate graph.

The results of measurements are shown in Figures 3-6.

We can make the following observations from the results:

• The overhead of CRCW operation in the step cached sys-

tems decreases as the degree of concurrent access increas-

es indicating that the step cache technique works efficient-

ly (see Figure 3 and 4). The overhead remains very low for

the fully associative and 4-way set associative configura-

tions and stays at acceptable level for the rest of the step

cached configurations except for the 4-way associative

quarter sized configurations while the overhead comes

close to the number of processors for the non-step cached

systems due to sequentialization of references at the mod-

ule level. Increasing the number of processors increases

slowly the overhead since the architectural capacity for

hiding the memory latency, i.e. the number of threads per

processor, is not increased accordingly but is kept as a con-

stant (see Figures 3 and 4).

• The step cache hit rate comes close to the CRCW-EREW

component mix ratio in the step cached configurations

except in the 4-way set associative quarter size configura-

tion where it begins to decrease as the degree of concurrent

access decreased (see Figure 5). As the number of proces-

sors is increased the hit rate decreases very slowly due to

constant threading configuration.

• Due to efficiency of the step caching solutions the maxi-

mum latency of memory access decreases radically as the

degree of concurrent access increases for the fully associa-

tive and 4-way set associative configurations (see Figure

6). Decreasing latency can be detected also with the direct

mapped and limited size organizations, but now decreasing

happens more gradually and randomly. Finally, the latency

of memory operations increases radically as the degree of

concurrent access increases in the non-step cached organi-

zations. This is expected behavior since the amount of

sequentialized references per location increases as the

degree of concurrent access increases.

5. Conclusions

We have described a technique to radically reduce the

associativity and even size of step caches in advanced

shared memory MP-SOCs in CRCW operation by allowing

CRCW A parallel program component that reads and writes
concurrently a given sequence of locations in the
shared memory

EREW A parallel program component issuing a memory pat-
tern extracted from random SPEC CPU 2000 data ref-
erence trace on Alpha architecture [Milenkovic03] for
each thread.

E4 E16 E64
Processors 4 16 64
Threads per processor 512 512 512
Functional units 5 5 5
Bank access time 1 c 1 c 1 c
Bank cycle time 1 c 1 c 1 c
Length of FIFOs 16 16 16

Table 1. The program components that are
mixed in 0%-100%, 25%-75%, 50%-50%,
75%-25% and 100%-0% ratios to form five
benchmark programs.

Table 2. The configurations of machines
used in evaluation (c=processor clock
cycles).

conflict misses and distributing them evenly over the cache

lines with a high probability. We committed a performance

evaluation of limited associativity and size step cached sys-

tems with different settings using simple parallel programs

on our parametrical MP-SOC framework. According to the

evaluation, the performance of limited associativity step

cached systems comes very close to that of fully associa-

tive step cache systems and decreasing the size of caches

decreases the performance of the measured systems gradu-

ally. As the side effect of decreasing associativity and size

the overhead of exclusive memory access increases, but it

is possible to partially eliminate this problem by adding

separate non-step cached memory referencing instructions

for exclusive access.

Our future work includes more thorough testing of step

caching and expanding it for active memory multiopera-

tions [Forsell05b] that are useful in further dropping the

execution time of parallel algorithms. This is not trivial

since the CRCW implementation technique described in

this paper does not work with multioperations taking two

steps to execute and potentially having different conflict

pattern for each step. We also plan to extend the proposed

step caching technique to systems with long latency mem-

ory modules to allow applying this technique to high per-

formance computing systems requiring extensive amounts

of memory. Finally we are planning a journal publication

on the architectural support for the computational model

that can be implemented using the proposed step caching

technique.

23

24

25

26

27

28

29

30

31

32

33

0%-100% 50%-50%

O
ve

rh
ea

d

00

01

02

03

04

05

0%-100% 50%-50%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

FA
SA4
DM
SA4-H
SA4-Q
NSC

0
0,2
0,4
0,6
0,8

1
1,2
1,4

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

Figure 3. The execution time overhead of
concurrent memory access with respect to
similarly configured ideal machine. From
top to bottom: fully associative, 4-way set
associative, direct mapped,4-way set asso-
ciative half size, 4-way set associative
quarter size, and non-step cached.

0
0,2
0,4
0,6
0,8

1
1,2
1,4

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

0

0,5

1

1,5

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

0

0,5

1

1,5

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

0
0,5

1
1,5

2
2,5

3

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

0

5

10

15

20

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

O
ve

rh
ea

d

E4
E16

Figure 4. The execution time overhead of
concurrent memory access with respect
to similarly configured ideal machine for
0%-100% and 50%-50% CRCW-EREW
component mix ratios and E64. (FA=fully
associative, SA4 = 4-way set associative,
DM = direct mapped, SA4-H = 4-way set
associative half size, SA4-Q = 4-way set
associative quarter size, NSC = non-step
cached.

Acknowledgements

This work was supported by the grant 107177 of the

Academy of Finland.

0

100

200

300

400

500

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

E4
E16

Figure 6. The maximum latency of step
caches in clock cycles. From top to bot-
tom: fully associative, 4-way set associa-
tive, direct mapped, 4-way set associa-
tive, direct mapped, 4-way set associative
half size, 4-way set associative quarter
size, and non-step cached.

0

100

200

300

400

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

E4
E16

0
50

100
150
200
250
300

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

E4
E16

0
50

100
150
200
250
300

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

E4
E16

0
100
200
300
400
500
600

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

E4
E16

0

2000

4000

6000

8000

10000

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

M
ax

im
um

 la
te

nc
y

R4
R16

0
20
40
60
80

100
120

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

St
ep

 c
ac

he
 h

it
ra

te
 %

E4
E16

0
20
40
60
80

100
120

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

St
ep

 c
ac

he
 h

it
ra

te
 %

E4
E16

0
20
40
60
80

100
120

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

St
ep

 c
ac

he
 h

it
ra

te
 %

E4
E16

0
20
40
60
80

100
120

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

St
ep

 c
ac

he
 h

it
ra

te
 %

E4
E16

0
20
40
60
80

100
120

0%-100% 25%-75% 50%-50% 75%-25% 100%-0%

CRCW-EREW component mix ratio

St
ep

 c
ac

he
 h

it
ra

te
 %

E4
E16

Figure 5. The hit rate of step caches. From
top to bottom: fully associative, 4-way set
associative, direct mapped, 4-way set
associative, direct mapped,4-way set
associative half size, and 4-way set asso-
ciative quarter size.

References

[Brooks00] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P.

Kudva, A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta and

P. Cook, Power-Aware Microarchitecture: Design and Modeling

Challenges for Next Generation Microprocessors, IEEE Micro

20, 6 (November-December 2000), 26-32.

[Cesario02] W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S.

Yoo, L. Gauthier, M. Diaz-Nava, A. Jerraya, Multiprocessor SoC

platforms: a component-based design approach, IEEE Design and

Test of Computers 19, 6 (2002), 52-63.

[Forsell02a] M. Forsell, A Scalable High-Performance

Computing Solution for Network on Chips, IEEE Micro 22, 5

(September-October 2002), 46-55.

[Forsell02b] M. Forsell, Architectural differences of efficient

sequential and parallel computers, Journal of Systems

Architecture 47, 13 (July 2002), 1017-1041.

[Forsell02c] M. Forsell, Advanced Simulation Environment for

Shared Memory Network-on-Chips, In the Proceedings of the

20th IEEE NORCHIP Conference, November 11-12, 2002,

Copenhagen, Denmark, 31-36.

[Forsell05a] M. Forsell, Step Caches—a Novel Approach to

Concurrent Memory Access on Shared Memory MP-SOCs, In the

Proceedings of the 23th IEEE NORCHIP Conference, November

21-22, 2005, Oulu, Finland, 74-77.

[Forsell05b] M. Forsell, Realizing constant time parallel algo-

rithms with active memory modules, International Journal of

Electronic Business 3, 3-4 (2005), 255-263.

[Flynn05] M. Flynn, Microprocessor Design Issues: Thoughts on

the Road Ahead, IEEE Micro 25, 3 (May-June 2005), 16-31.

[Jaja92] J. Jaja, Introduction to Parallel Algorithms, Addison-

Wesley, Reading, 1992.

[Jantsch03] A. Jantsch and H. Tenhunen (editors), Networks on

Chip, Kluver Academic Publishers, Boston, 2003.

[Keller01] J. Keller, C. Keßler, and J. Träff, Practical PRAM

Programming, Wiley, New York, 2001.

[Kilburn62] T. Kilburn, D. Edwards, M. Lanigan, and F. Sumner,

One-level storage system, IRE Transactions on Electronic

Computers EC-11, April 1962, 223-235.

[Milenkovic03] A. Milenkovic and M. Milenkovic, Exploiting

Streams in Instruction and Data Address Trace Compression, In

the Proceedings of the IEEE 6th Annual Workshop on Workload

Characterization, October 27, 2003, Austin, USA, 99-107.

[Mudge01] T. Mudge, Power: A First-Class Architectural Design

Constraint, Computer 34, 4 (April 2001), 52-58.

[Ranade91] A. Ranade, How to Emulate Shared Memory, Journal

of Computer and System Sciences 42, (1991), 307-326.

[Ye04] T. Ye, L. Benini and G. De Micheli, Packetization and

routing analysis of on-chip multiprocessor networks, Journal of

Systems Architecture 50, 2-3 (2004), 81-104.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

