
The Robot Software Communications Architecture (RSCA): Embedded

Middleware for Networked Service Robots

Seongsoo Hong1, Jaesoo Lee1, Hyeonsang Eom2, and Gwangil Jeon3

1Real-Time Operating Systems Laboratory, School of Electrical Engineering and Computer Science,

Seoul National University, Seoul 151-744, Korea

{sshong, jslee }@redwood.snu.ac.kr
2Distributed Information Processing Laboratory, School of Computer Science and Computer Engineering,

Seoul National University, Seoul 151-744, Korea

hseom@cse.snu.ac.kr
3Department of Computer Engineering

Korea Polytechnic University, 2121 Jungwang-Dong, Siheung-Si, Gyunggi-Do 429-793, Korea

gijeon@kpu.ac.kr

Abstract

In this paper, we present a robot middleware

technology named Robot Software Communications

Architecture (RSCA) for its use in networked home service

robots. The RSCA provides a standard operating

environment for the robot applications together with a

framework that expedites the development of such

applications. The operating environment is comprised of a

real-time operating system, a communication middleware,

and a deployment middleware. Particularly, the

deployment middleware supports the reconfiguration of

component-based robot applications including installation,

creation, start, stop, tear-down, and un-installation. In

designing RSCA, we have adopted a middleware called

SCA from the software defined radio domain and extend it

since the original SCA lacks the real-time guarantees and

appropriate event services. We have fully implemented

RSCA and performed measurements to quantify its

run-time performance. Our implementation clearly shows

the viability of RSCA.

1. Introduction

Recently, the Ubiquitous Robotic Companion (URC)

project has been launched in Korea with an aim of putting

networked service robots into a practical use in residential

environments by overcoming technical challenges of the

conventional home service robots. While the usefulness of

an intelligent service robot has been evident for a long time,

its emergence as a common household device has been

painfully slow. This is due in part to the variety of

technologies involved in creating a cost-effective robot. A

modern service robot often makes a self-contained

distributed system, typically composed of a number of

embedded processors, hardware devices, and

communication buses. The logistics behind integrating

these devices are dauntingly complex, especially if the

robot is to interface with other household devices. The

ever-falling prices of high performance CPUs and the

evolution of communication technologies have made the

realization of robots’ potential closer than ever. What is left

is to address the complexity of the robotic technology

convergence.

At the head of this effort is the URC robot project.

Under development since 2004, the URC has been

conceived as “a robot friend to help people anywhere,

anytime.” The project’s aim is to improve the robot

technology and to facilitate the spread of the robot use by

making the robots more cost-effective and practical.

Specifically to that end, it has been proposed that the

robot’s most complex calculations are handled by a

high-performance remote server, which is connected via a

broadband communication network. For example, the

vision or navigation systems that need a high performance

MPU or DSP would be implemented on a remote server,

and the robot itself would act as a thin client, making it

cheaper and more lightweight.

Clearly, this type of system demands a very

sophisticated software platform which makes the logistics

of such a robot system manageable. Furthermore, beyond

simply creating such a platform, the desired goal is to create

a standard that could serve the robotics community at large.

Recently, there has been a great deal of research activity in

this area, and yet there is still no current standard that has

garnered international approval. In this paper, we thus

propose a new middleware architecture for networked

service robots by adopting an existing middleware

1-4244-0054-6/06/$20.00 ©2006 IEEE

technology from the Software Defined Radio (SDR)

domain. It is called the Software Communications

Architecture (SCA) [1]. We extend it for the use in the

URC robots. The SCA was defined by Joint Tactical Radio

Systems (JTRS) and has become a de facto standard

middleware currently adopted by the SDR forum. It is now

widely accepted as a viable solution to reconfigurable

component-based distributed computing for adaptive

wireless radio terminals and base stations. In spite of its

numerous strengths as an embedded middleware, it cannot

be directly applied to our URC robots since it lacks some

features necessary for the URC robot applications

including real-time and QoS capabilities and appropriate

event services. Thus, we have significantly extended it to

incorporate these features and we have named the end

result Robot Software Communications Architecture

(RSCA). The RSCA provides a standard operating

environment for robot applications together with a

framework that expedites the development of such

applications. We have fully implemented RSCA and

performed measurements to quantify its run-time

performance. Our implementation clearly shows the

viability of RSCA.

2. URC Robot Hardware Platform and

Software Requirements

Figure 1 depicts the hardware and software structure of

the URC robot. Two of the most essential properties of the

URC robot are (1) that it should be able to utilize a

high-performance remote server called a URC server

provided by a URC service provider and (2) that it should

be able to interface with various smart home appliances and

sensor networks that are connected to a larger home

network. Thus, the URC robot is inherently a part of an

overall distributed system including the URC servers and

various home network appliances. In this section, we first

look into the hardware structure of a URC robot and

describe the properties that the system software of a URC

robot must have to support the hardware structure.

2.1. Hardware Structure of URC Robot

A URC robot itself is a self-contained distributed system,

composed of a number of embedded processors, hardware

devices, and communication busses. More specifically, as

shown in Figure 1, the main hardware components in a

URC robot are a Main Host Controller (MHC) and one or

more Integrated Hardware Controllers (IHC). An IHC

provides accesses to the sensors and the actuators for other

components such as other IHCs and an MHC. The MHC

acts as an interface to the robot from the outside world; it

provides a GUI for the interactions with the robot users and

it routes messages from an inner component to the URC

server and the home network appliances and vice versa.

For communication among the IHCs and MHC, a high

bandwidth medium such as Giga-bit Ethernet, USB 2.0, or

IEEE1394 is used. It allows a huge amount of data streams

such as MPEG4 video frames to be exchanged inside the

robot. Also, a controller area network such as CAN or

FlexRay is used for communication among the IHCs,

sensors, and actuators. Note that it is important to provide

timing guarantees for this type of communication.

2.2. Requirements for URC Robot Software

As previously mentioned, the URC robot is not only a

self-contained distributed system by itself but also part of

an overall distributed system including remote URC

servers and various home network appliances. Therefore,

its application software must be developed according to the

special requirements of a distributed robotic system. We

argue that reconfigurability, flexibility, and reusability are

the key requirements, among many others, for the URC

robot software. To achieve these, developers should

construct the application software according to the

component-based software model, and the system software

RSCA Interface

Robot Software

Communication

Architecture

RTOS

DSPs, MCPs

RT Control Area Networks

(CAN, FlexRay, PCI, …)

RT CORBA

& Services

Integrated Hardware Controller

RSCA

RT CORBA

Home Network

Middleware

A
d

a
p
te

r

Embedded OS

CPU

Actuator

Module

Actuator

Module

Sensor

Interface

Module

Sensor

Interface

Module

High-speed Network

(IEEE1394, USB 2.0, …)
Home ServerHome Server

Home Network

Device

Home Network

Device

Multimedia

Interface

Module

Multimedia

Interface

Module

Robot Applications

Main Host Controller

URC ServersURC Servers

Robot Inside

Home Network

& Internet

Infra-Network

(IEEE802.11g, …)

Figure 1. Structure of hardware and software of URC robot.

of the URC robot should support this model along with the

reconfigurable distributed computing.

More specifically, the system software should provide

(1) a framework in which programs can be executed in a

distributed environment, (2) a dynamic deployment

mechanism by which a program can be loaded,

reconfigured, and run, (3) real-time capabilities that allow

the robot software to meet hard deadlines, (4) QoS

capabilities which can support the robotic vision and voice

processing, and (5) a management capability for limited

resources and heterogeneous hardware inherent in the URC

robot.

3. Overall Structure of RSCA

The RSCA is specified in terms of a set of common

interfaces for the robot applications as the SCA is. These

interfaces are grouped into two classes: (1) the standard

operating environment (OE) interfaces and (2) the standard

application component interfaces. The former defines APIs

that developers use to dynamically deploy and control

applications and to exploit services from underlying

platforms. The latter defines interfaces that an application

component should implement in order to exploit the

component-based software model supported by the

underlying platforms.

As shown in Figure 1, the RSCA’s operating

environment consists of a real-time operating system

(RTOS), a communication middleware, and a deployment

middleware called core framework (CF). Since RSCA

exploits COTS software for the RTOS and communication

middleware layers, most of the RSCA specification is

devoted to the CF. More specifically, RSCA defines the

RTOS to be compliant to the PSE52 class of the IEEE

POSIX.13 Real-Time Controller System profile [6], and

the communication middleware to be compliant to

minimum CORBA [3] and RT-CORBA v.1.1 [2]. The CF

is defined in terms of a set of standard interfaces, called CF

interfaces, and a set of XML descriptors, called domain

profiles, as will be explained subsequently in Section 4.

The RTOS provides a basic abstraction layer that makes

the robot applications both portable and reusable on diverse

hardware platforms. Specifically, a POSIX compliant

RTOS in RSCA defines standard interfaces for

multi-tasking, file system, clock, timer, scheduling, task

synchronization, message passing, and I/O to name a few.

The communication middleware is an essential layer

that makes it possible to construct distributed and

component-based software. Specifically, the RT-CORBA

compliant middleware provides (1) a standard way of

message communication, (2) a standard way of using

various services, and (3) real-time capabilities. First, the

(minimum) CORBA ORB in RSCA provides a standard

way of message communication between components in a

manner transparent to heterogeneities existing in hardware,

operating systems, network media, communication

protocols, and programming languages. Second, the RSCA

communication middleware provides a standard way of

using various services. Among others, naming, logging,

and event services are the key services that RSCA specifies

as the mandatory services. Finally, the RT-CORBA in

RSCA provides real-time capabilities including static and

dynamic priority scheduling disciplines and prioritized

communications in addition to the features provided by

CORBA. Robot application developers are free to exploit

these real-time capabilities to meet their applications’ hard

deadlines. A robot application developer, for example, can

assign a higher priority to the processing of an

emergency-stop event than to the processing of other lesser

important events, thereby avoiding the deadline misses of

the emergency-stop processing that could otherwise occur.

Note that the original SCA’s communication middleware

does not support real-time capabilities since it recommends

using minimum CORBA instead of RT-CORBA.

The deployment middleware layer provides a dynamic

deployment mechanism by which robot applications can be

loaded, reconfigured, and run. A URC robot application

consists of application components that are connected to

and cooperate with each other as illustrated in Figure 2.

Consequently, the deployment entails a series of tasks that

include determining a particular processing node to load

each component, connecting the loaded components,

enabling them to communicate with each other, and starting

or stopping the whole URC robot software.

4. RSCA Core Framework

Before getting into the details of the RSCA CF, we

begin with a brief explanation about the structural elements

that the RSCA CF uses to model a robot system and the

relationship between these elements. In the RSCA, a robot

system is modeled as a domain that distinguishes each

robot system uniquely. In a domain, there exist multiple

DSP

GPPDSP

MCU

MCU

DSP

DSP

DSP

deployment

DSP

application components

sensors or actuators

processing nodes

component-based

robot application

Figure 2. Deployment of component-based robot

applications.

processing nodes and multiple applications. The nodes and

applications respectively serve as units of hardware and

software reconfigurability. Hardware reconfigurability is

achieved by attaching or detaching a node to or from the

domain. A node may have multiple logical devices, which

act as device drivers for real hardware devices such as Field

Programmable Gate Arrays (FPGA), Digital Signal

Processors (DSP), General Purpose Processors (GPP), or

other proprietary devices. On the other hand, software

reconfigurability is achieved by creating an instance of an

application in a domain or removing the instance from the

domain. An application consists of components, each of

which is called a resource. A resource in turn exposes ports

that are used for the communication to or from other

resources. For communication between two components, a

port of one component should be connected to a port of the

other where the former port is called a uses port and the

latter port is called a provides port. For the ease of

communication between the components and the logical

devices, the logical devices are modeled as a specialized

form of a resource. Configurations of each of the nodes and

applications are described in a set of XML files called

domain profiles.

In this section, we explain the structure of the RSCA

core framework in detail and the functionalities it provides.

Note that what is described in this section is common with

the SCA while the QoS capabilities and event service

which will be described subsequently in Section 5 are

unique to the RSCA.

4.1. Structure of RSCA Core Framework

The RSCA CF is defined in terms of a set of interfaces

called CF interfaces and a set of XML files called domain

profiles. As shown in Figure 3, the CF interfaces consist of

three groups of APIs: the base application interfaces, the

CF control interfaces, and the service interfaces. Each of

these interfaces is defined for the application components,

domain management, and services, respectively. The

deployment middleware is therefore the implementation of

the domain management and service part of the RSCA CF

interfaces.

Specifically, (1) the base application interfaces are the

interfaces that the deployment middleware uses to control

each of the components comprising an application. Thus,

every application component should implement these

interfaces. These interfaces include the functionalities of

starting/stopping a resource, configuring the resource, and

connecting a port of the resource to a port of another

resource. (2) The CF control interfaces are the interfaces

provided to control the robot system. Controlling the robot

system includes activities such as installing/uninstalling a

robot application, starting/stopping it,

registering/unregistering a logical device, tearing up/down

a node, etc. (3) The service interfaces are the common

interfaces that are used by both the deployment middleware

and the applications. Currently, three services are provided:

distributed file system, event, and QoS.

The domain profiles are a set of XML descriptors

describing the configurations and the properties of

hardware and software in a domain. They consist of seven

types of XML descriptors as shown in Figure 4. (1) The

Device Configuration Descriptor (DCD) describes a

hardware configuration, and (2) the Software Assembly

Descriptor (SAD) describes a software configuration and

the connections among components. (3) These descriptors

consist of one or more Software Package Descriptors

(SPD), each of which describes a software component

(Resource) or a hardware device (Device). (4) The

Properties Descriptor File (PRF) describes optional

reconfigurable properties, initial values, and executable

parameters that are referenced by other domain profiles. (5)

The domainmanager configuration descriptor (DMD)

describes the DomainManager component and services

used. (6) The Software Component Descriptor (SCD)

describes the interfaces that a component provides or uses.

Finally, (7) the Device Package Descriptor (DPD)

Figure 3. Relationships among CF interfaces.

Domain Profile

Device Configuration

Descriptor

DomainManager

Configuration Descriptor

Software Assembly

Descriptor

Software Package

Descriptor

Properties

Descriptor

Device Package

Descriptor

Software Component

Descriptor

0..n0..n 1

1..n

1

0..n

0..n

0..n
0..1

1..n

1..n

0..n0..n 1

1..n

1

0..n

0..n

0..n
0..1

1..n

1..n

HW profile

SW profile

HW/SW profile

Legend

Figure 4. Relationships among domain profiles.

describes a hardware device and identifies the class of the

device.

4.2. Functionalities of RSCA Core Framework

Primarily, the RSCA core framework provides (1)

dynamic system reconfiguration, (2) QoS and real-time

guarantees, (3) heterogeneous distributed computing, and

(4) heterogeneous resource management.

Dynamic system reconfiguration. In RSCA, the system

reconfiguration is supported at three different levels:

component level, application level and deployment level.

For reconfiguration at the individual component level, the

RSCA deployment middleware provides a way to specify

and dynamically configure reconfigurable parameters of

components. For the application-level reconfiguration, the

RSCA deployment middleware provides a way to describe

an application in various possible configurations

(structures and parameters), each for different application

requirements and constraints. The deployment-level

reconfiguration indicates that the RSCA deployment

middleware should choose one of possible assemblies as it

is appropriate to the current resource availabilities.

QoS and real-time guarantees. As will be explained

subsequently in Section 5, the deployment middleware

supports application-level QoS guarantees while the RTOS

and the communication middleware support real-time

guarantees for individual components.

Heterogeneous distributed computing. The RSCA

deployment middleware hides the distributed nature of

hardware platforms from the applications by making

distributed nodes be seen as a single virtual system or a

domain. Robot applications need not consider how many

processing nodes the domain consists of or which

communication medium they use.

Heterogeneous resource management. The RSCA

deployment middleware supports heterogeneous resource

management via the Device interface. The Device interface

provides interfaces to allocate and de-allocate a certain

amount of resource such as memory, CPU, and network

bandwidth. The Device interface also supports the

synchronization of accesses to a resource by providing the

resource usage and management status. A developer should,

of course, choose and implement how resources are

allocated and synchronized based on the efficiency of

resource usage.

5. QoS and Event Support in RSCA Core

Framework

QoS and event services are the newly added services

that mostly delineate RSCA from the original SCA. In this

section, we explain how these services are provided by the

RSCA core framework in detail.

5.1. QoS Support in RSCA Core Framework

While home service robots are heavily involved in

real-time signal processing such as vision and voice

processing, the original SCA lacks QoS capabilities in

terms of both QoS specification and enforcement. Thus, we

have significantly extended the SCA for the QoS support in

defining RSCA [4]. Specifically, we have (1) extended

domain profiles to allow for resource and QoS

requirements specification, (2) added services providing

admission control and resource allocation to the RSCA

core framework, and (3) extended the software

communication bus based on the real-time ORB following

the RT-CORBA v.1.1 specification. All of these extensions

are made while maintaining backward compatibility so that

URC robot developers can use existing SCA tools.

Using our RSCA core framework, the robot application

developers can achieve their desired QoS by simply

specifying their requirements in the domain profiles. In

doing so, the application developers are responsible for

describing their application structure and participating

components in a dedicated XML descriptor called the

Software Assembly Descriptor (SAD) described in Figure

4. Since a legacy SCA SAD only describes connections or

flows of messages between components, we extend various

fields in the SAD to specify QoS-related information such

as the sampling periods and the maximum latencies.

The robot application component developers should

specify in the extended fields of Software Package

Descriptor (SPD) resource demands in terms of

dependencies on the hardware and the expected

computational resource requirements for data processing.

Along with this, application component developers should

implement a predefined set of configurable property

operations that the RSCA core framework invokes to

deliver the results of resource allocation. For the

implementation of configurable property operations, RSCA

provides a skeleton component implementation from which

QoS-aware components will be derived.

In order to guarantee the desired QoS, described in the

domain profiles, a certain amount of resources needs to be

allocated to each application based on the current resource

availability, and this must be enforced throughout the

lifetime of the application. This involves admission control,

resource allocation, and resource enforcement. For the

admission control and the resource allocation, we add the

ResourceAllocator component as shown in Figure 3. On the

other hand, for the resource enforcement, we rely on the

COTS layer of the RSCA operating environment following

the design philosophy of SCA. To aid in understanding

how the desired QoS is guaranteed, we explain the

modified application creation process in RSCA.

An application in an RSCA domain is created by the

ApplicationFactory component, which belongs to the

RSCA domain management part and is in charge of

instantiating a specified type of application. When

ApplicationFactory instantiates an application in RSCA, it

ascertains its QoS requirements from the domain profile

and then passes the information to the ResourceAllocator.

If the application is admissible, the ResourceAllocator

generates the resource allocation plan for the application

based on the current resource availability. The

ApplicationFactory component performs the resource

allocation plan generated by ResourceAllocator in the

following steps: it deploys all components onto the

loadable/executable devices as designated in the plan, and

then it delivers scheduling parameters to each component.

On receiving the scheduling parameters, each component

should set the RT-CORBA scheduling policy with the

given scheduling parameters, and ascertain that those are

enforced throughout its lifetime.

5.2. Event Support in RSCA Core Framework

In SCA, a CORBA event service is specified as a

mandatory service. Although the CORBA event service

provides a standardized way of producing or subscribing to

an event to and from a certain event channel, there are three

critical problems in using it for robotic applications. First,

the reusability of components is seriously damaged since

event channel names should be hard-coded within the

components. Consequently, developers cannot deploy the

components that communicate via the event channels

without recompiling them. More seriously, the naming

conflicts may occur among the events channels used by the

irrelevant components. Second, it is very difficult for

non-CORBA expert programmers to use the CORBA event

service since a significant amount of manual coding is

required for retrieving the proxy suppliers and consumers

of the event channels. Finally, developers should manage

the life cycle of the CORBA event channels manually.

Specifically, developers have to assure that an event

channel is launched before applications begin to use it.

Developers also have to assure that the event channel is

destroyed when applications do not use it any more by

monitoring the usage status of the event channel. This is

essential to avoid the waste of memory that the event

channel occupies.

Thus, instead of directly using the CORBA event

service as in the SCA, we have defined our own. To do so,

we have (1) extended domain profiles of the original SCA

to allow for describing connections using CORBA event

channels, (2) introduced interfaces to the RSCA CF

allowing application components to easily use the event

channels, (3) added to the RSCA CF a service providing the

life-cycle management of event channels, and (4) modified

the application instantiation and torn-down process to

automatically manage connections between applications

and event channels.

When using our RSCA core framework, robot

application developers can describe a connection between

components via an event channel in our extended software

assembly descriptor. The associated event channel is

identified with its unique name. When ApplicationFactory

creates an application, it locates the CORBA event channel

associated with the designated name and pass the channel

to the application component. In doing so, the

EventChannelManager shown in Figure 3 provides

interfaces to locate the event channel for the

ApplicationFactory. The EventChannelManager also

manages the lifecycle of event channels: creates or destroys

event channels dynamically on needs.

6. Experimental Evaluation

In evaluating RSCA, it is important to quantify its

run-time performance since it is built upon the COTS

software layer containing the RT-CORBA ORB. Note that

the RSCA core framework does not affect run-time

performance at all since it only participates in the

deployments of the robot applications. To quantify the

run-time performance of RSCA, we have completely

implemented the RSCA and constructed a simple robot

application. In this section, we report on our experimental

evaluation of RSCA.

6.1. Experimental Setup

As shown in Figure 5, our RSCA was implemented on a

hardware platform consisting of an ERSP Scorpion robot

from Evolution Robotics [7] and two processing nodes, a

desktop computer and a laptop computer. The laptop

computer is mounted on top of the Scorpion robot and

connected to the robot via USB 2.0. The desktop and laptop

computers are connected via 802.11b Wireless LAN.

Although this configuration is not as complicated as the

actual URC robots, it has all the components required to

measure the performance of RSCA without incurring

various side effects that could otherwise be seen.

Our RSCA core framework was implemented on top of

Linux v.2.4.20 and TAO [5] real-time ORB v.1.3.1. The

RSCA CF runs on both of the desktop and the laptop

TAO

ERSP

Driver

& Library
USB

TCP/IP

RSCA CF

TAO

TCP/IP

Driving App

ERSP

Library802.11b

WLAN

Laptop (Node1)
P4M 1.4G, 768M RAM

PC (Node2)
VIA 1G, 512M RAM

Robot
ERSP Scorpion

OS

(Linux 2.4.20)

OS

(Linux 2.4.20)

RSCA CF

Driving App

Figure 5. Experimental hardware and software

configurations.

computers. An application, named RangeStop, was

constructed using the ERSP library [7] and RSCA

components and interfaces. Specifically, the application is

constructed with two RSCA devices IRSensor and

DriveSystem as shown in Figure 7. These devices abstract a

set of range sensors and a set of motor actuators,

respectively. The application moves the robot in the

forward direction to the wall while it periodically reads the

distance to the wall using the IRSensor device. And it stops

the robot if it detects that the wall is within 60cm ahead of

the robot.

To compare the run-time performance of the application

against those that do not use RSCA, we also constructed the

same application in two other versions making use of

TCP/IP and the ERSP’s legacy message passing,

respectively, for communication among the components.

Note that TCP/IP is widely used as a legacy transport for

the communication among the components spanning

multiple distributed nodes. Also, an application version

making use of the ERSP’s legacy message passing is

constructed as a single monolithic binary, and thus it can be

executed only on a single node.

6.2. Performance Evaluation of RSCA

In order to quantify the run-time performance, we used

two metrics: the communication delay and the distance

from the wall. The delay incurred by transferring messages

between two application components is measured to

quantify the overhead incurred by using COTS software

layer of the RSCA. The distance from the wall when the

robot stops completely is measured to quantify the resultant

effects of the COTS layer on the robot’s behavior. The

results are presented in comparisons among the three cases:

single node, TCP/IP, and RSCA cases. Note that, in the

cases of TCP/IP and RSCA, the components are deployed

with spanning the two nodes: IRSensor and DriveSystem on

the Node1, and StopCrash on the Node2.

Figure 8 (a) depicts the message propagation delay

measured from the RangeStop application. As shown, the

message propagation delays of the TCP/IP and RSCA cases

are 8 to 9 times larger than those of the single node case,

while the message propagation delay of the RSCA case is

slightly larger than that of the TCP/IP case. The average

latencies in the single node, the TCP/IP, and the RSCA

cases are 222.2us, 1872.6us, and 2045.9us, respectively.

Thus, the overhead incurred by distributed communication

is almost 900% while the communication using

RT-CORBA incurs less than 10% of the additional delay

compared to the TCP/IP communication.

It is worthwhile to emphasize that the distributed

communication mechanisms such as TCP/IP, UDP/IP, and

UNIX domain sockets would be used if the robot

application components have to be collaborated on a

distributed hardware inherent in the most modern robot

systems. Even though RT-CORBA incurs a small

additional overhead compared to the legacy

communication mechanisms, it seems that the flexibility of

RT-CORBA is enough to compensate the overhead. Note

that RT-CORBA ORB selects the communication medium

flexibly at run-time without changing the implementations

of the application components. If properly configured, for

example, TAO RT-CORBA ORB automatically selects

shared memory for the communication between the

components collocated on the same node.

Figure 8 (b) depicts the distance from the wall to the

robot when it stops completely. As shown, there are no

significant differences among those three cases. The

average distances for each case of single node, TCP/IP, and

RSCA are 49.97cm, 48.67cm, and 48.35cm, respectively,

meaning that the robot advanced by 10.03cm, 11.33cm, and

11.65cm, respectively after the robot detects the wall within

IRSensor StopCrash DriveSystem

Figure 6. Structure of RangeStop application used for

the experiments.

0

500

1000

1500

2000

2500

3000

3500

4000

Single TCP/IP RSCA

d
el

ay
 (

u
se

c)

30

40

50

60

Single TCP/IP RSCA

d
is

ta
n

ce
 (

cm
)

(a) Message propagation delay (b) Distance from the wall

Figure 7. Results from StopCrash application.

60 cm. Compared to the differences in the message

propagation delay, this is not a large difference of less than

4%. Thus, we can conclude that the effects of using the

RT-CORBA on the overall behavior of the robot are less

than 4% for the StopCrash application.

7. Related Work

Traditionally, research into robot software architectures

has been mainly focused on an application software

framework [7][8][9][10] with an aim of helping developers

programming their robot applications. However, as the

robot hardware becomes distributed and heterogeneous, the

robot software architectures are requested to address

software complexity arising during both the management

of complex distributed robot applications and the

development of such applications. Recently, several

approaches have been proposed based on middleware

technologies to overcome ever-increasing software

complexity, thereby significantly reducing the

time-to-market. DROS [11] and Connexis [12] are the

examples that use RPC-level custom middleware, and

MIRO [13] and OCP [14] are the examples that utilize

CORBA and RT-CORBA, respectively.

Unfortunately, these middleware systems fail to meet all

of the software requirements presented in Section 2.2.

Specifically, they do not support dynamic deployment,

dynamic reconfiguration, and resource managements even

though the real-time and the QoS capabilities and

component-based distributed computing are partially

supported in OCP. As already explained in the paper, the

RSCA effectively fulfills those requirements.

8. Conclusions

In this paper, we have presented the Robot Software

Communication Architecture (RSCA) we have developed

to address the complexity inherent in networked home

service robots. The RSCA provides a standard operating

environment for the robot applications together with a

framework that expedites the development of such

applications. The operating environment is comprised of a

real-time operating system, a communication middleware,

and a deployment middleware, which collectively form a

hierarchical structure. Particularly, the deployment

middleware called the RSCA core framework provides (1)

a framework in which programs can be executed in a

distributed environment, (2) a dynamic deployment

mechanism by which a program can be loaded,

reconfigured, and run, (3) real-time capabilities that allow

robot software to meet hard deadlines, (4) QoS capabilities

which can support robotic vision and voice processing, and

(5) a management capability for limited resources and

heterogeneous hardware inherent in the URC robot. As a

result, the RSCA solves many of important problems

arising in creating an application performing complex tasks

in the URC robot composed of the heterogeneous and

distributed hardware.

We have completely implemented the RSCA and

performed extensive measurements to analyze the effects of

the RSCA’s COTS software layer on the performance and

the robot behaviors. The results are promising: less than

10% of an additional delay to the legacy communication

and less than 4% of an effect on the overall robot compared

to the case where the RSCA is not used. This outcome

clearly demonstrates the viability of the RSCA. The RSCA

is currently in an adoption process as a Korean domestic

standard and is waiting for the industry approval.

References

[1] Joint Tactical Radio Systems. “Software Communications

Architecture Specification V.3.0,” August, 2004.

[2] Object Management Group. Real-Time CORBA

Specification Revision 1.1. OMG document

formal/02-08-02 (August 2002).

[3] Object Management Group. The Common Object

Request Broker Architecture: Core Specification Revision

3.0. Dec. 2002.

[4] J. Lee, J. Park, S. Han, and S. Hong, "Extending Software

Communications Architecture for QoS Support in SDR

Signal Processing," 11th IEEE Intl. Conf. on Embedded and

Real-Time Computing Systems and Applications, 2005.

[5] F. Kuhns, D. D. Schmidt, et al. “The Design and

Performance of a Real-Time Object Request Broker.” IEEE

Real-Time/Embedded Technology and Applications

Symposium, May 2000.

[6] Institute for Electrical and Electronic Engineers.

“Information Technology- Standardized Application

Environment Profile- POSIX Realtime Application Support

(AEP).” IEEE Std 1003.13, Feb. 2000.

[7] Evolution Robotics. “ERSP 3.0 Users Guide.”

http://www.evolution.com, 2004.

[8] Peter Soetens. “The Complete OROCOS Software Guide.”

http://www.orocos.org.

[9] ORiN Forum. “Specification of ORiN(Ver. 0.5).”

http://jara.jp/e/orin/En_ORiN.pdf.

[10] David J. Miller and R. Charleene Lennox. “An

Object-Oriented Environment for Robot System

Architectures.” IEEE Intl. Conf. on Robotics and

Automation, Cincinnati, Ohaio, Aug. 13-16, 1990.

[11] David Austin. “Dave’s Operating System.”

http://www.dros.org.

[12] IMB Rational Software Corporation. “Rational Rose

Real-Time Connexis User Guide: Revision 2003.06.00.”

2003.

[13] H. Utz, and et. el. “Miro - middleware for mobile robot

applications.” IEEE Transactions on Robotics and

Automation, Volume: 18, Issue: 4 , pp:493 – 497, Aug.

2002.

[14] James L. Paunicha, Brian R. Mendel, and David E. Corman.

“The OCP – An Open Middleware Solution for Embedded

Systems.” Proceedings of the American Control Conference,

Arlington, VA, June 25-27, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

