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Abstract

In this paper we consider the map construction prob-
lem in the case of an anonymous, unoriented torus of
unknown size. An agent that can move from node to
neighbouring node in the torus is initially placed in
an arbitrary node and has to construct an edge-labeled
map. In other words, it has to draw, in its local mem-
ory, an edge-labeled torus isomorphic to the one it is
moving on. The agent has enough local memory to
represent the torus and one or two tokens that can be
dropped on and picked up from nodes. Efficiency is
measured in terms of number of moves performed by
the agent.

When the agent has no token available, the problem
is clearly unsolvable. In the paper we show that, when
the agent has one token available there exists an opti-
mal algorithm for constructing the map of the torus;
the agent, in fact, performs Θ(N) moves (where N
is the number of nodes of the torus). Before showing
the optimal solution with the optimal number of tokens,
we describe a simpler solution that works when two to-
kens are available, we then modify it to obtain the same
bound when the agent has only one token available.
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information, torus, anonymity.

1 Introduction

In this paper we are interested in the Map Construc-
tion problem, widely studied in the literature (e.g., see
[1, 2, 4, 5, 6, 8, 11] ). In the map-construction problem
an agent has to traverse the network and to reproduce,
in its local memory, an edge-labeled map isomorphic
to the graph it is moving on. In the literature, this
problem is sometimes also referred to as Exploration;
in some instances, however, exploration refers to the

simpler problem of traversing the whole network with-
out constructing its topology.

Studies on map construction of edge-labeled graphs
(or digraphs), have emphasized minimizing the cost of
exploration in terms of either the number of moves
(edge traversals) or the amount of memory used by
the agent (e.g., see [1, 4, 5, 11]). Map construction of
anonymous graphs is possible only if the agents are al-
lowed to mark the nodes in some way; except when the
graph has no cycles (i.e. the graph is a tree [6, 8]). For
exploring arbitrary anonymous graphs, various meth-
ods for marking nodes have been used by different au-
thors. Bender et al. [2] proposed the method of drop-
ping a token on a node to mark it, and showed that any
strongly connected directed graph can be explored us-
ing just one token if the size of the graph is known, and
using O(log log n) tokens, otherwise. In the following
we will refer to this model as the token model. Dudek
et al. [7] used a set of distinct markers to explore unla-
beled undirected graphs. Yet another approach, used
by Bender and Slonim [3] was to employ two cooperat-
ing agents, one of which would stand on a node, thus
marking it, while the other explores new edges. The
whiteboard model (i.e., nodes have locally available a
whiteboard where information can be written and read
by the agents) has been used by Fraigniaud and Il-
cinkas [9] for exploring directed graphs and by Fraigni-
aud et al. [8] for exploring trees. In [6, 9] the authors
focus on minimizing the amount of memory used by
the agents for exploration (they however do not require
the agents to construct a map of the graph, the agents
must only visit all the nodes). Finally, a problem that
is somehow related to ours, but in a totally different
model, is the problem of orienting a torus in the clas-
sical message passing system (e.g., see [10, 12, 13]). In
this case, the torus is unlabeled and a message-passing
algorithm has to be designed to construct a compass
labeling of the edges. Among these works, the closer
to ours is [10], where a linear orientation algorithm is
designed for a non-anonymous torus.
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As mentioned before, in the token model, the map of
an arbitrary anonymous graph can be constructed us-
ing a single token only if the size of the graph is known;
otherwise more tokens are necessary [2]. An interesting
open question is for what classes of graphs a single to-
ken is sufficient to perform the map construction when
the size of the graph is not known.

In this paper we address this question by showing
a class of graphs where one token is indeed sufficient
and where the algorithm is optimal in terms of number
of moves. We consider a highly symmetric environ-
ment: a network whose topology is a n×m torus. The
network is anonymous, i.e., the nodes are all identical
and cannot be distinguished. Furthermore, the torus
is not oriented, i.e., the links incident to each node are
labeled with four distinct labels, but not with a con-
sistent compass. The agent is located in an arbitrary
node of the torus (the homebase) and can move asyn-
chronously from node to node (i.e., the time it takes
for the agent to move on a link is finite, but other-
wise unpredictable); the agent knows the network is a
torus but does not know its size. Moreover, the agent
can carry one or two tokens that can be dropped on
and picked up from the nodes of the network. In this
model the agent has locally available enough memory
to store information about the network while moving
around. The efficiency of our solutions will be mea-
sured in terms of number of moves performed by the
agent.

We first describe a simpler algorithm for construct-
ing the map of the torus when the agent has available
two tokens. Essentially one token is used for detecting
termination, while the other token is used to actually
construct the map. The algorithm is optimal in terms
of number of moves, which are Θ(n × m). We then
modify this solution to adapt it to the situation when
only one token is available. In this case, we do use the
single token both to construct the map and to check for
termination. This solution is both move-optimal and
token-optimal since without a token the map cannot
be constructed.

2 Optimal Algorithm Using Two to-
kens

In this section we consider the case when the agent
has available two identical tokens. In this case, we de-
sign an optimal algorithm that constructs the labeled
map in O(N) moves (where N = n × m is the size of
the torus). In the next section we will modify the tech-
nique to obtain the same result reducing the number
of tokens.

2.1 The Algorithm

The idea of the algorithm is to first construct a col-
umn and a row intersecting at the home base, and then
complete the map by incrementally constructing all the
other rows and the other columns.

During the algorithm, one of the tokens is always
kept at the homebase, while the second token is used
by the agent to move around the torus. More precisely,
while constructing a column (or a row), the agent uses
the second token to move in a straight direction to
construct a column (row).

Before describing in details the idea of our solution,
we introduce some terminology. We call expansion of
node x the action of the agent of visiting all the nodes
at distance smaller then or equal to two from x (i.e.,
visiting the neighbourhood at distance two). We call
d-expansion of node x (1 ≤ d < 4) the action of visiting
the nodes at distance smaller than or equal to two from
x passing only through d of the four neigbhours. When
we talk about a d-expansion of a node, we will specify
through which of the four neighbours it is performed.
The high level description of the algorithm is given
below in Figure 1.

Protocol Construct Map from X0 (the homebase)

Release a token at X0, the homebase.
construct column(X0)
(* the column is composed by nodes X0, . . . , Xn−1 *)

back at X0

construct row(X0)
(* the row is composed by nodes X0, . . . , Ym−1 *)

go to X1, i:=1
While not back at homebase do

select row direction
construct row(Xi)
i:=i+1

end-while
go to Y1, i:=1
While not back at homebase do

select column direction
construct column(Yi)
i:=i+1

end-while

Figure 1. Protocol Construct Map.

First Column and Row. The idea is as follows:
from the homebase (let us call it X0), the agent releases
its first token marking its starting node; it chooses an



arbitrary direction which determines the direction of
movement, it then moves on that link reaching a node
(call it X1). Node X1 is the next node in the column
that the agent is trying to traverse, the agent start
drawing the column in its local memory. At this point,
the agent has to find the next node in the column.

Figure 2. A 2-expansion from Xi. The black nodes
are the candidate nodes.

Notice that, the next node to be included in the
column is the one, out of the three “candidate” nodes
that are adjacent to X1, that would not be visited in
the 3-expansion of X0 (i.e., the expansion that does not
pass through X1). In order to find this node, the agent
checks, one by one, the three candidates. The check-
ing procedure for candidate v works as follows: the
agent drops its second token in v, it then performs a 3-
expansion of the homebase (not passing through X1).
If, during that expansion, the agent finds its token,
then v is not the node to add to the column and there-
fore the agent has to preform the 3-expansion again for
the next candidate. On the other hand if, during the
3-expansion for candidate v, the agent does not pass by
the node with the token, then v is the right node to add
to the column. As we will show, the selected node (let
us call it X2) is unique, and the agent can move there
to pick up its token and to continue the exploration for
the next node to be added to the column.

Notice that, when looking for Xi+1, with i > 1
the agent needs to perform the expansions from Xi−1

only in the two directions different from the ones lead-
ing to Xi−2, and Xi ( 2-expansion). In fact, let
X0, X1, . . . , Xi be the first i + 1 nodes included in the
column with i ≥ 1: then, to find the next node Xi+1,
the agent can perform a 2-expansion from Xi−1 select-
ing as Xi+1 the unique node that is neighbour of Xi

and has not been visited in the expansion (see Figure
2). The high level description of the column construc-
tion algorithm is given in Figure 3.

Protocol construct column(X0)

Release a token at X0, the homebase.
choose an arbitrary direction and move to
an arbitrary neighbour X1

draw (X0, X1) with its labels in the local map
Repeat until back at the homebase

/* Let X0 . . . Xi (i ≥ 1) be already constructed */
consider as candidates the three neighbours of Xi

different from Xi

for each candidate
release token at candidate
If i = 1 then

3-Expand(Xi)
/* do not expand through Xi−1 */

If i > 1 then
2-Expand(Xi)
/* do not expand through Xi−1 and Xi+1 */

If no token is found
this candidate is Xi+1: the next in the column.
move to Xi+1 and
mark (Xi, Xi+1) in local map. i = i + 1

Figure 3. Protocol construct column.

The procedure to construct a column terminates
when the agent drops its second token in a node that
does already contain a token (i.e., it is back at the
homebase). Notice that, at this point the agent knows
one dimension of the torus.

Once the column is constructed, the agent proceeds
to construct the row (Algorithm construct row not
reported here) following exactly the same procedure in
the other direction and finding, as a byproduct, also the
second dimension of the torus. The agent now knows
the size of the torus; in order to construct the full map,
it has only to discover the correct labeling.

Other rows and columns. At this point the agent
constructs, one by one, all the other rows following the
same procedure described above, this time preceded by
a procedure select direction to select the correct
orientation of each row (column).

Let X0, . . . Xn−1 be the nodes of the first column.
The agent starts from the row corresponding to X1 and
then proceeds to the other rows. Before constructing
row Xi, the agent has to correctly choose the orien-
tation of the row between the two possible departing
directions. To do so, it places the token in one of the
two directions, it then goes to Xi−1 and performs a 2-
expansion. The 2-expansion will reveal the direction to



be followed in the construction of the row (see Figure
4 and the algorithm in Figure 5).

Z

U

Figure 4. Determining the direction of the row start-
ing from Xi.

Select row direction from Xi

- Place the token in an arbitrary neighbour z of Xi

(different from X(i−1)modn and X(i+1)modn)
- move to Xi−1

- perform a 2-expansion from Xi−1

(* not passing through Xi and Xi−2 *)
- let (Xi−1, u) be the edge through which the expansion
finds the token
- construct in your map (Xi−1, u), (Xi, z), and (u, z)
- continue the construction in the direction of z

Figure 5. Protocol Select row direction.

Since the agent now knows the dimensions of the
torus, the construction of each row terminates when
the correct number of nodes has been included. The
procedure to construct the columns is similar.

2.2 Correctness and Complexity

Lemma 2.1 Using Algorithm construct column,
the agent walks in a straight direction and correctly
constructs a column.

Proof. We prove by induction that nodes X0, X1, . . .
selected by Algorithm construct column are indeed
consecutive nodes in a column.
Basis. Node X1 is chosen arbitrary and is giving the
direction of the column. An expansion from X0 is then

performed for each of the three candidate neighbours
of X1. By definition of candidate node and by the
torus topology, the only node at distance one from X1

which is not at distance two from X0 is the next in
the column. Thus, the only candidate node that is
not visited during an expansion from X0 (because the
expansion does not pass by X1) is the next node in the
column. This node is then correctly considered by the
agent as X2 when the token is placed on it and the
expansion does not find it.

Induction. Let us assume that the agent has cor-
rectly moved in the same direction for the first i − 2
steps (i.e., up to the expansion from the node Xi−2),
thus finding that X0, X1, . . . Xi are consecutive nodes
in a column. Consider now the next step of the al-
gorithm (i.e., the expansion from the node Xi−1 to
determine node Xi+1). The algorithm performs a 2-
expansion from Xi−1 (i.e., not expanding Xi−2 and
Xi, see Figure 1) for each of the three candidate neigh-
bours. By definition of torus, the only node at distance
one from Xi which is not at distance two from Xi−1

is the next in the column. This means that the only
candidate that is not visited during an expansion from
Xi−1 (because the expansion does not pass by Xi) is
precisely that node. Thus, when the expansion does
not meet any token, it means that the token is cur-
rently located on the correct candidate, which is then
considered Xi+2.

Finally notice that the construction of the column
terminates when a token is placed on a candidate node
that already contains a token (i.e., the agent is back
at the homebase).

Analogously we have that:

Lemma 2.2 Using Algorithm construct row, the
agent walks in a straight direction and construct a row.

Theorem 2.1 Algorithm construct map is correct.

Proof. From Lemmas 2.1 and 2.2, it follows that the
first column and the first row are correctly constructed.
At this point the construction of each new row and of
each new column is preceded by the selection of the
direction (algorithm select direction). Consider
the construction of the rows (the construction of the
columns is analogous). Before constructing the row
corresponding to Xi, the agent places the token on a
neighbour z of Xi that does not lie on the column. It
then performs a 2-expansion from Xi−1. Let us denote
by u and w the two neighbours through which the
expansion is performed (see Figure 4); obviously, the
2-expansion will find the token only in correspondence
of one neighbour (in the figure, neighbour u). Thus,



the agent can correctly draw in its map the edges
(Xi, z), (Xi−1, u), and (u, z). The construction of the
row correctly proceed in the direction of z.

We now compute the number of moves involved.

Theorem 2.2 The number of moves performed by the
agent to construct the map is Θ(N), which is optimal.

Proof. Each expansion requires O(1) moves and
the agent performs O(n) expansions for selecting
the n nodes of the first column. Thus, each pro-
cedure construct column requires O(n) moves,
each construct row requires O(m) moves. The
algorithm performs procedure construct column
m times, and procedure construct row n times,
for a total of: O(m × n) moves. This complex-
ity is clearly optimal, since to construct a torus of
size m×n, the agent has to visit at least m×n nodes.

3 Reducing the Number of Tokens:
Optimal Algorithm Using One token

We now discuss what happens if the agent has only
one token available. We first very briefly show a
quadratic algorithm that is a slight modification of the
previous. We then show that an optimal algorithm
with linear number of moves can be obtained also in
this setting.

Using the algorithm of the previous section, the
agent is still able to walk in a straight direction; it
is not however able to detect the termination of the
column (row) since there is no token available to mark
the homebase.

Checking for termination: an idea. We could
solve the termination problem by checking for termi-
nation each time a new node is added to the first col-
umn and to the first row as follows: when a node Xi is
included in the column the agent has to check whether
Xi = X0 or not. The agent goes back to the homebase
with its token, releases it there, then travels on the
portion of the column just constructed [X0, X1, . . . , Xi]
and, if the token is found on Xi it decides that the col-
umn has been entirely constructed (i.e., Xi = X0) and
starts the construction of the row. It follows the same
procedure during the construction of the row. After
the first column and row (intersecting on the home-
base) are constructed, the algorithm proceeds exactly
like in the previous section since at this point the num-
ber of nodes in a column (row) is known and there

is no need to check for termination. We call the al-
gorithm for constructing the first column using this
termination procedure: Construct First Column
with one token. As we see below, this idea requires
O(N2) moves.

Lemma 3.1 Algorithm construct First Column
with one token is correct.

Proof. From Lemmas 2.1 and 2.2, we know that
the selection of the next node to be included in the
column is correct. We have only to show that the
algorithm can correctly terminate the construction of
the column (row). Since after each new node Xi, the
portion of the ring X0, . . .Xi is known, the agent can
correctly move back to the homebase to release the
token. If Xi = X0, then X0, . . . Xi is a ring; thus, in
this case the agent will find its token there. Since we
are checking after each new node is added, if the token
is not found in Xi, it means that X0, . . .Xi is only
a portion of the ring and the column has not been
constructed yet.

Analogous proof holds for the construction of the
first row. At this point the algorithm is identical to
the one of the previous section.

Theorem 3.1 The number of moves performed by the
agent to construct the map with one token is O(N2).

Proof. Consider the construction of the first column.
Each expansion requires O(1) moves and the agent
performs O(n) expansions for selecting the n nodes
of the first column. Furthermore, for each portion
X0, . . . , Xi the agent performs O(i) moves to check for
termination, for a total of O(n2) moves for checking
termination. Thus, O(n2) moves are required in total
for the construction of the column. Analogously,
O(m2) moves are required for the construction of the
first row. At this point, for each of the other n − 1
rows, O(m) moves are performed, for each of the other
m − 1 columns, O(n) moves are performed. The total
number of moves is then: O(n2 + m2 + 2nm). The
worst case occurs when one of the dimensions is O(N);
in this case, in fact the number of moves would be
O(N2).

Token-Optimal and Move-Optimal Solution.
In order to obtain a linear solution, we use the same
idea; however, instead of checking for termination ev-
ery time a new node is included in the column (row),
we proceed at successive steps, starting from step 0.
The agent checks for termination every time that the



column is composed by 2i nodes. In other words, at
step 0 the agent adds one node to the column and then
checks for termination; at step i the agent adds new
nodes to the column until the current column is com-
posed by 2i nodes, it then comes back to the home base
releasing the token to check the termination condition;
if the termination condition is not met, the agent moves
to step i + 1 and continue the construction.

The high level description of the algorithm for con-
structing the first column with one token is given in
Figure 6.

Protocol Linear Construct First Column
with one token from X0 (the homebase)

Select X1; i := 2; j := 0; done = false
While not done do

Repeat 2j−1 times when j > 0 (once when j = 0)
Expand Xi−1 to determine Xi

Draw new labeled edge in local map
End Repeat
Move to X0 with token; release the token
Traverse portion already constructed
If find token done = true

end-while

Figure 6. Optimal Protocol.

Lemma 3.2 Algorithm Linear Construct First
Column with one token is correct. The number
of moves performed by the agent to construct the map
with one token is Θ(N).

Proof. The only difference between this solution and
the quadratic one is that the termination condition is
checked only once for each step; i.e., only when the
column is composed by 2i nodes (i > 0). Clearly, when
2i is smaller than n, the termination condition is not
met and the algorithm continues; on the other hand,
when 2i ≥ n during the checking procedure the token
will be found and the algorithm terminates.

To calculate the number of movements, consider
first the construction of the first column. Each
expansion requires O(1) moves and the agent performs
O(n) expansions for selecting the n nodes of the first
column. Furthermore, at step i the agent performs
2 · 2i moves to check for termination, which is detected
when 2i ≥ n; i.e., when i is �log(n) − 1�. Thus, the
total number of moves for checking the termination of
the column is

∑�log(n)−1�
i=0 2i+1, which is O(n). In total

O(n) moves are required for the construction of the

column. Analogously, O(m) moves are required for the
construction of the first row. At this point, for each
of the other n − 1 rows, O(m) moves are performed,
for each of the other m − 1 rows, O(n) moves are
performed. The total number of moves is then:
O(n + m + 2nm), which is O(N). This complexity is
clearly optimal, since the agent has to visit all nodes.
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