
A Systematic Multi-step Methodology for Performance Analysis of

Communication Traces of Distributed Applications based on Hierarchical

Clustering

Gaby Aguilera
1
, Patricia J. Teller

1
, Michela Taufer

1
, and Felix Wolf

2

1
University of Texas-El Paso

El Paso, TX 79968 USA

{maguilera, pteller, mtaufer}@utep.edu

2
Forschungszentrum Jülich

52425 Jülich, Germany

f.wolf@fz-juelich.de

Abstract

Often parallel scientific applications are instrumented

and traces are collected and analyzed to identify

processes with performance problems or operations that

cause delays in program execution. The execution of

instrumented codes may generate large amounts of

performance data, and the collection, storage, and

analysis of such traces are time and space demanding.

To address this problem, this paper presents an efficient,

systematic, multi-step methodology, based on

hierarchical clustering, for analysis of communication

traces of parallel scientific applications. The

methodology is used to discover potential

communication performance problems of three

applications: TRACE, REMO, and SWEEP3D.

1. Introduction

Today’s most complex scientific applications require

large numbers of calculations to solve problems.

Usually, these problems exhibit some type of inherent

parallelism by either repeating the same calculation on

different data (data parallelism) or performing different

calculations on the same data (functional parallelism).

This parallelism can be exploited to arrive at solutions

faster by developing parallel algorithms and applications

to run on large-scale supercomputers. However,

designing, programming, debugging, and tuning these

applications present challenges, in part due to the level

of complexity added by the number of processes that

need to explicitly communicate, share data, and

synchronize. In addition, it is difficult to track the

execution of a program that is being executed

simultaneously by multiple processes; this makes it

difficult to hand optimize code or to find communication

and synchronization bottlenecks.

In order to identify potential application performance

problems, there exist several tools, e.g., [1, 2, 3], that

provide programmers with the ability to collect pertinent

data about the state of the system and program execution

during runtime. Usually, a user can specify the

computation-, communication-, and synchronization-

related events to monitor and the areas of code to

instrument. With respect to computation-related events,

state-of-the-art processors include a set of on-chip

performance counters that record the occurrence of

events such as floating-point operations, cache misses,

and branch mispredictions. The numbers of events that

can be monitored by architectures vary; some support the

monitoring of over 100. To aid in the collection of this

data, PAPI (Performance Application Programming

Interface) gives users a consistent interface to access the

performance counter hardware found on major

microprocessors [4].

Although instrumentation can facilitate the

identification of performance problems and guide

subsequent performance tuning efforts, it can generate

large amounts of data. For example, even for a program

that runs for a few minutes, hundreds of thousands of

data points can be collected for each execution instance.

Multiplying each instance by the number of events or

metrics collected can result in an unmanageable data set,

e.g., gigabytes of information. When data sets are so

large, the following question arises: How can we

discover where performance problems arise or what

operations caused delays in the execution of a program?

Due to the complexity of parallel programs and the

multidimensionality of the collected performance data, it

is natural to look at multivariate statistical analysis

techniques for data analysis and knowledge discovery.

This paper presents a systematic, multi-step

1-4244-0054-6/06/$20.00 ©2006 IEEE

methodology, based on a simple but effective statistical

technique, i.e., hierarchical clustering of communication

performance data, to discover potential communication

bottlenecks in distributed applications. The methodology

is used to analyze communication-related performance

data collected during the execution of three applications.

Specifically, this paper demonstrates how performance

analysts can use this methodology to identify so called

process pairs of interest, i.e., process pairs that are

characterized by heavy communication, their physical

locations within the distributed system, and potential

performance problems.

The remainder of the paper is organized in five parts.

Section 2 discusses related work. Sections 3 and 4

present the methodology. Section 5 demonstrates the use

of this methodology and, finally, Section 6 concludes the

paper and discusses future work.

2. Related Work

This work was inspired by a paper of Vetter [5] that

explores the use of multivariate statistical analysis

techniques on large sets of performance counter data to

extract relevant performance information and give

insights into application behavior. The techniques

presented in the paper include hierarchical (dendrogram)

and non-hierarchical (k-means) clustering, factor

analysis, and principal component analysis. The paper

shows that when these techniques are applied to

hardware counter data, they can result in valuable

application performance information and the removal of

redundancy in counter data. Identifying redundancy in

the collected data, i.e., identifying events that give

similar results (or are highly correlated), can reduce the

number of events to monitor and, thus, maximize the use

of counters and reduce the dimensions of the data.

Vetter and McCracken also apply statistical analysis

techniques to communication data to accurately identify

communication operations that do not scale well with

application problem size [6, 7]. Analyses of nine

benchmark profiles indicate poorly scaling

communication operations.

This paper extends the work of Vetter and McCracken

by providing a systematic, multi-step methodology,

based on hierarchical clustering, to analyze

communication traces and identify potential

communication performance problems.

3. Collection and Storage of Large-Scale

Performance Data

Parallel applications developed to run on

multiprocessor systems are, by nature, complex and are

expected to run for long periods of time. If these

applications are instrumented to collect performance

data, the longer they run, the larger the size of the

recorded performance data set. For example, if

performance data is collected for a program executed on

thousands of nodes for millions of time steps, and a large

number of metrics is collected, the size of the file that

stores the data can explode — it can be many gigabytes

in size. Accordingly, three important issues arise:

efficient data collection, efficient data storage, and

efficient access and analysis of stored data. This section

briefly describes the various data collection techniques

provided by different tools and the data collection and

storage techniques used in the work presented in this

paper.

3.1. Data Collection

There are a number of tools that collect data to identify

potential performance problems present in parallel

programs. The data to be collected is identified by

manual or automatic instrumentation. The former is

accomplished by manually inserting directives in code

locations of interest [3]. The latter can be accomplished

by modifying a Makefile to enable a tool to

automatically preprocess the code, inserting directives

automatically before compilation [2, 3]. Alternatively,

users can opt for a completely automated and dynamic

process, where the executable does not have to be

recompiled and instrumentation occurs at execution time

[1].

These tools differ not only in the approach adopted for

program instrumentation, but also with respect to the

information they collect and whether or not the user

specifies the types of data to collect. Some tools capture

trace files, possibly with time stamps, that record the

history of events that occur in the system during program

execution. One example of this is a communication trace

file that contains communication event information and,

when supported and specified, hardware performance

counter data [8, 9]. Other tools produce profiles that

record the amount of time spent in each function,

number of times each function is called, and, if available,

other metrics, such as event counts, supplied by

hardware counters [1, 3]. In terms of analysis, a tool can

provide offline or postmortem inspection and analysis of

trace files and/or profiles, or it can provide performance

information as the program executes, In the latter case, it

might even allow the user to stop execution to respecify

the data to be collected or the code sections to be

monitored [1].

This paper utilizes communication traces of parallel

programs. The tool used for data collection is KOJAK

(Kit for Objective Judgment and Knowledge-based

Detection of Performance Bottlenecks), developed by

Mohr and Wolf [2]. KOJAK is an automatic

performance analyzer that can collect and analyze

performance data from MPI, OpenMP, and hybrid

parallel programs. The latter use OpenMP directives for

shared-memory code segments and MPI library calls for

message-passing segments. KOJAK uses OPARI

(OpenMP Pragma And Region Instrumentor), a source-

to-source translation tool, the PMPI library, and TAU

(Tuning and Analysis Utilities) to instrument OpenMP

directives, MPI functions, and user-defined functions,

respectively. Once the source code is instrumented, the

compile and link commands are modified to include all

necessary libraries. If the user links to the PAPI library,

hardware counter performance data also is collected.

While the application is executed, an EPILOG trace file

is generated, which contains information about MPI-

communication, OpenMP, and, if specified, hardware-

counter events. An API (Application Programming

Interface), EARL (Event Analysis and Recognition

Library), can be used to facilitate access to data stored in

EPILOG format trace files.

3.2. Data Storage

The use of the EPILOG trace file format and EARL

result in efficient storage and access of trace files [11,

12]. The binary trace data format is designed to store

performance data associated with the execution of

parallel applications [9]. It guarantees that each event is

mapped to a physical system location defined as a

quadruplet {machine, node, process, thread}. The format

also supports collection of information associated with

source code, such as line numbers and file names, call

sites, and, if available, event counts (from hardware

counters). The trace format defines the structure of the

trace file, which is composed of three sections: header,

definition records, and event records. The header

identifies the byte order and trace file format version,

while the definition and event records comprise all the

performance data. Definition records store information

that describes machines, nodes, processes, threads,

source-code entities, performance metrics, and MPI

communicators. Event records store performance data

that vary with the type of event. Two fundamental pieces

of data are stored in each record: a location identifier and

a time stamp. Location identifiers map occurrences of

events to physical locations, while time stamps map

events to specific points in time during application

execution.

The EARL API facilitates access to all types of event

and definition records described in the EPILOG trace file

format. EARL gives users the flexibility to access events

and manage them as objects so that events have

associated attributes. Most importantly, EARL gives

users the ability to: randomly access events in a trace,

link pairs of related events, such as send/receive

communication event pairs, and access the execution

state at the time of a specific event.

4. Methodology for Analysis of

Communication Data

This section describes a multi-step methodology for

analysis of communication data guided by hierarchical

clustering. The method is used in Section 5 to analyze

the communication traces of three real-world

applications.

4.1. Hierarchical Clustering

Hierarchical clustering consists of partitioning a data

set into subsets or clusters, so that the data in each subset

share a common trait. This is done by using a distance

measure to quantify similarity or proximity in data, in

this case, communication data.

Typical statistical methods, such as maximum,

minimum, and mean, can be used to analyze data,

however, when dealing with large amounts of data, these

methods are not effective alone. To compliment and

increase the effectiveness of these methods, hierarchical

clustering can be used to decrease the size of the data set

to be analyzed. Hierarchical clustering algorithms form

successive clusters using previously formed clusters. In

the case of a communication trace, to be analyzed for

performance problems, hierarchical clustering can be

used to reduce the size of the data to be analyzed by

identifying the data associated with processes that

exhibit heavy communication. Subsequently, the

performance analyst can focus on this data subset,

performing a more in-depth analysis of it to identify code

that may present performance problems.

To effectively use this method of analysis for this

purpose, the question that must be answered is: What

metric should be used to evaluate the similarity or

distance between processes so that meaningful clusters

(of performance data) are formed? A logical metric to

use to identify processes that are heavy communicators

is the number of bytes exchanged between process pairs.

Accordingly, the first attempt at clustering uses this

metric, which is quantified by calculating the aggregate

number of bytes exchanged between processes.

Preliminary results indicate that most process pairs

exchange similar numbers of bytes. This is not surprising

for two reasons. First, since one of the goals of

parallelizing applications is to distribute the workload

among a group of processes, the programmer endeavors

to evenly distribute the data among the processes.

Second, the applications used in this case study have

been highly optimized and, as a result, likely exhibit

good load balancing.

Given that the aggregate number of bytes exchanged

between processes does not differentiate pairs of

processes, the second attempt at clustering uses

communication time as the differentiating metric for two

reasons. First, if two processes communicate frequently,

then their aggregate communication times should reflect

their frequencies of communication. Second, long

communication times between processes that reside in

different nodes should be reflected in aggregate

communication times larger than those associated with

communicating processes in the same node – this

information should be highlighted in the analysis since it

can help the analyst identify communication patterns that

should be modified if possible. Note that in using the

aggregate communication time metric, the overall

outcome is not affected by one long message but is

affected by a series of long messages – this also can help

the analyst decide if communication patterns should be

changed.

To turn this metric into a distance function that can be

used to identify heavily communicating process pairs,

the extracted communication data is processed to attain

the aggregate communication time for each pair of

communicating processes. Because the objective of this

first step in the analysis is to group pairs of processes

that communicate heavily, the inverse of the aggregate

communication time is used as the distance function. As

shown in Figure 1, this results in the distance function,

D(a,b), for process pair (a,b), where T(a b)i is the time

for the i
th
communication between processes a and b.

Figure 1: Distance function.

After the distance functions are calculated for all

communicating process pairs and stored in a distance

matrix, a hierarchical clustering algorithm is applied to

identify heavily communicating processes based on their

aggregate communication times. The results can guide

the analysis of the communication data. The next section

explains in detail the steps followed to perform this

analysis.

4.2. Multi-Step Methodology

The methodology is based on a sequence of steps,

outlined in Figure 2, implemented by software

components written in C++, Perl, and MATLAB. The

first step, S1, extracts communication information from

an EPILOG format trace file. Trace.C, the code that does

this, is a C++ program that uses the EARL API. The

second step, S2, summarizes in a text file the extracted

communication information (see Table 1 for an

example), i.e., the aggregate number of bytes exchanged

between process pairs and the related aggregate

communication time. Step S3 forms a distance matrix of

size p-by-p, where p is the number of processes in the

multiprocessor system, using the inverse of the aggregate

communication time as the distance function. The

distance matrix is the input to the fourth step, S4. This

step uses the hierarchical clustering utility in MATLAB

to form clusters of the performance data and represent

them graphically to identify heavily communicating

processes (see Figure 3, 4, and 5 for examples). This

information is the input to the final step, S5, comprised

of several components, which can: (1) determine if pairs

of processors reside on the same node; (2) attain call

path information for execution points of interest; and (3)

analyze small versus large messages based on message

summary data.

S1: Extract communication data from trace file

S2: Summarize extracted communication
information

S3: Create distance matrix using data from
previous step

S4: Perform hierarchical clustering

S5: Identify process pairs of interest and
perform a more in-depth analysis

Figure 2: Multi-step methodology for trace
analysis.

5. Use of Methodology

To show the effectiveness of the methodology

described in Section 4, this section analyzes the results

of using the methodology to analyze traces from three

real-world applications, TRACE, REMO, and

SWEEP3D.

5.1. Applications

Three real-world applications were used to generate

trace files: TRACE, REMO, and SWEEP3D. TRACE

[12] was developed at the Research Center in Jülich,

Germany. It simulates the subsurface water flow in

variably saturated porous media. TRACE uses message

passing to communicate. The trace file used in this paper

was generated by executing this application on four SMP

nodes with four processes, one per processor of a node

[13].

REMO [14] is a weather forecast application of the

German climate computer center DKRZ (Deutsches

Klima Rechenzentrum). It implements a hydrostatic

limited area model, which is based on the

German/European weather forecast model of the German

Meteorological Services (Deutscher Wetterdienst or

DWD). REMO is a hybrid MPI/OpenMP application.

The REMO traces used in this paper were taken from an

early experimental MPI/OpenMP (i.e., hybrid) version of

the production code [13]. As for TRACE, the trace file

for REMO was generated by executing the application

on four SMP nodes with four processes, one per

processor of a node [13].

The benchmark code SWEEP3D [15] represents the

core of a real ASCI (Accelerated Strategic Computing

Initiative) application. It solves a 1-group time-

independent discrete ordinates 3D Cartesian geometry

neutron transport problem. SWEEP3D is a hybrid

MPI/OpenMP application. Unlike the others, this

application was executed by 64 processes on a 64-

processor (eight-node) cluster at the High Performance

Computing Center of the University of Houston [16].

5.2. Results of Analysis

The multi-step methodology presented in Section 4.2

allows users to determine physical locations of

processes and threads, i.e., whether they are located on

the same node. Table 1 shows the locations of the

processes and threads on four nodes for the TRACE and

REMO applications, and on seven nodes for SWEEP3D.

This information is generated in Step S2 of the

methodology. Additionally, the aggregate

communication time between any two processes is

computed. This information is used in Step S3 to create a

distance matrix, identify clusters of communicating

process pairs, and help identify processes that may be

associated with communication bottlenecks. The

clustering is generated by using the distance matrix

D(a,b), where a and b are processes, built following the

procedure presented in Section 4.2.

Figure 3 shows the resulting clusters of communicating

process pairs for the TRACE application. Figures 4 and

5 show the same information for the REMO and

SWEEP3D applications, respectively. The dendrograms

in the three figures quantify the closeness of process

pairs, which is directly related to the amount of time two

processes spend communicating: the larger the aggregate

communication time, the smaller the distance and the

more the processes belong in a communication cluster.

The dendrogram in Figure 3 indicates that for the

TRACE application the process pairs of interest are (2,

11) and (0, 8) (see pairs in rectangles). For the REMO

application, note that process pair (3, 7) is the heaviest

communicating pair. For SWEEP3D, the results of the

clustering, pictured in Figure 5, show several process

pairs of interest and two major clusters: processes 50, 56,

57, 59, 60, 61, 62, and 63 form one cluster, while the

other cluster is formed by the remaining processes.

Process pairs of interest, identified through this data

clustering, are those that should be further analyzed to

identify possible reasons for their higher communication

times. This final step of the proposed methodology

allows users to further investigate and visualize: (1)

execution time versus message size, (2) execution time

versus communication time, and (3) message size versus

communication time for process pairs of interest.

TRACE. The plot representation of execution time

versus message size for the process pair of interest (2,

11) in TRACE gives insight into when messages of a

particular size are transmitted. As Figure 6 shows, for

this process pair there are two message sizes: 128 bytes

and 3,456 bytes, which are homogeneously distributed

during the entire execution time. This observation

suggests an analysis to determine if it is possible to

decrease communication time by packaging sets of small

messages into larger ones.

TRACE REMO SWEEP3D

events 19712210 11063530 3255168

#machines 1 1 1

nodes 4 4 7

#processes 16 4 64

threads 16 16 64N
o
d
e

P
ro
c
ess

T
h
rea
d

N
o
d
e

P
ro
c
ess

T
h
rea
d

N
o
d
e

P
ro
c
ess

T
h
rea
d

0 0 0

1 1 1
0 0-20 0-20

2 2 2
0

3 3

0 0

3
1 21-32 21-32

4 4 4

5 5 5
2 33-40 33-40

6 6 6
1

7 7

1 1

7
3 41-48 41-48

8 8 8

9 9 9
4 49-56 49-56

10 10
1

0
2

11 11

2 2

1

1

5 57-60 57-60

12 12
1

2

13 13
1

3

14 14
1

4

M
a
ch
in
e,
N
o
d
e,
P
ro
c
e
ss
,
a
n
d
T
h
r
ea
d
Id
en
ti
fi
ca
ti
o
n

3

15 15

3 3

1

5

6 61-63 61-63

Table 1: Location of nodes, processes, and
threads using the multi-step methodology.

Graphing message size versus communication time

gives a summary of the different communication times

associated with each message size. One would expect

that for a particular process pair the communication time

for a fixed message size would not vary much. Although

only two message sizes are exchanged between

processes 2 and 11, there is a variety of communication

times associated with each message size. This could be

due to contention for system resources or initialization

overhead. For example, as shown in Figure 7, which

plots communication time against message size, the

largest communication time of all the messages

transmitted between processes 2 and 11 is 0.05 seconds,

and this is associated with the first message exchanged

between the two processes.

REMO. Figure 8 depicts the different sizes of

messages exchanged between the pair of interest (3, 7)

during the execution of the REMO application. There are

11 different message sizes exchanged between processes

3 and 7. By inspecting this figure, one can speculate that

the gaps in the graph separate the initialization,

computation, and finalization phases of the program.

Figure 9 shows the different communication times

associated with each message size. From this figure, it

can be concluded that communication time does not

depend on message size. In fact, small and large

messages have similar communication times. For

instance, some 7,040-byte messages take about the same

time as a 164,032-byte message. This graph shows that

the 6,864-byte, 70,400-byte, and 140,800-byte messages

have the most consistent communication times, while the

7,040-byte, 60,352-byte, and 164,032-byte messages

have communication times that fluctuate the most. This

behavior deserves more investigation; program

modifications targeted at reducing these communication

times could enhance performance.

SWEEP3D. The communication trace data associated

with two heavy communicating process pairs, (21, 22)

and (52, 60), is analyzed for SWEEP3D in Figure 10.

This application uses only one message size to exchange

data between processes; therefore, a message size

comparison analysis is not meaningful. However, as

shown below, an analysis of execution time vs.

communication time can provide important insights.

For example, for the process pair of interest (21, 22),

which communicates within the same node, the

execution time versus communication time data allows

the performance analyst to see that large communication

times for this process pair occur during program

execution. In contrast, as shown in Figure 11, for the

process pair (52, 60), which communicates between two

different nodes, communication times are comparatively

short. The hierarchical clustering applied to the

SWEEP3D trace data helps to identify such anomalies,

and the methodology facilitates investigation of these

apparent performance inconsistencies by identifying call

paths that initiated the related communication events and

the sizes of the corresponding messages. This

investigation can help focus tuning efforts on the code

regions that potentially exhibit performance problems.

From these examples, it can be seen that the multi-step

methodology helps users answer questions such as:

Which message sizes should be used when

communicating between process pairs, i.e., should

multiple smaller messages or one large message be

transmitted? Using the methodology, one can figure out

when during a program execution certain message sizes

are used, i.e. in the beginning, middle, or end of the

program.

6. Conclusions

This paper indicates that hierarchical clustering of

communication performance data may be a method that

can facilitate the processing of large amounts of

performance data collected during a parallel program’s

execution; it deserves further investigation. Hierarchical

clustering is a key component of the systematic, multi-

step methodology that was presented and used in this

paper to investigate the communication performance of

three real-world applications, TRACE, REMO, and

SWEEP3D. In particular, the methodology allows users

to identify processes that might experience

communication problems, the physical locations of the

processes, the sizes of communications in which they are

involved, and the associated communication times.

With peta-scale systems looming in the near future,

statistical techniques such as these likely will play an

important role in performance analyses that will help

zero-in on communication and computation performance

problems or bottlenecks. Accordingly, our current and

future research includes further investigation of

statistical techniques, including factor analysis and

principal components analysis, for these purposes.

Acknowledgements

We wish to thank the Department of Defense, in particular,

the PET program, and IBM, in the form of an IBM SUR grant,

for support of this research. This work was carried out in the

PET Computational Environments functional area under

Department of Defense Contract No. N62306-01-D-7110/0070.

References

[1] B. Miller, et al. The Paradyn parallel performance

measurement tools. IEEE Computer, 28(11) 37–46, Nov.

1995.

[2] B. Mohr and F. Wolf. KOJAK - A tool set for automatic

performance analysis of parallel programs. In Proceedings of

the 2003 Euro-Par Conference, pages 1301–1304.

[3] B. Mohr, D. Brown, and A. Malony. TAU: a portable

parallel program analysis environment for pC++: a portable

data-parallel programming system for scalable parallel

computers. In Proceedings of CONPAR 94 - VAPP VI, Sept.

1994.

[4] M. Maxwell, P. Teller, L. Salayandia, and S. Moore.

Accuracy of performance monitoring hardware. In

Proceedings of the LACSI Symposium, Oct. 2002.

[5] D. Ahn and J. Vetter. Scalable analysis techniques for

microprocessor performance counter metrics. In Proceedings

of SC2002, Nov. 2002.

[6] J. Vetter and M. McCracken. Statistical scalability analysis

of communication operations in distributed applications. In

Proceedings of ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPOPP), 2001.

[7] J. Vetter and F. Mueller. Communication characteristics of

large-scale scientific applications for contemporary cluster

architectures. In Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPS), 2002.

[8] F. Wolf and B. Mohr. EPILOG binary trace-data format.

Technical Report FZJZAM-IB-2004-06, Forschungszentrum

Jülich, May 2004.

[9] Structured trace format.

http://www.intel.com/software/products/cluster/tcollector/ove

rview.htm.

[10] F. Wolf. EARL - API documentation. ICL Technical

Report, ICL-UT-04-03, University of Tennessee-Knoxville,

Oct. 2004.

[11] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient

pattern search in large traces through successive refinement.

In Proceedings of the European Conference on Parallel

Computing (Euro-Par), Aug.-Sept. 2004.

[12] Forschungszentrum Jülich. Solute transport in

heterogeneous soil-aquifer systems. http://www.kfa-

juelich.de/icg/icg4/Groups/Pollutgeosys/trace_e.html.

[13] F. Wolf. Automatic performance analysis on parallel

computers with SMP nodes. Ph.D. dissertation, RWTH

Aachen, Forschungszentrum Jülich, ISBN 3-00-010003-2,

http://www.fz-juelich.de/nic-series/volume17/, Feb. 2003.

[14] E T. Diehl and V. Geulzow. Performance of the

parallelized regional climate model REMO. In Proceedings

of the Eighth ECMWF (European Centre for Medium-Range

Weather Forecasts) Workshop on the Use of Parallel

Processors in Meteorology, Nov. 1998, pages 181–191.

[15] Accelerated Strategic Computing Initiative [ASCI], The

ASCI SWEEP3D benchmark code.

http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/a

sci_sweep3d.html.

[16] University of Houston. Galaxy cluster at the University of

Houston. http://www.suncoe.uh.edu/galaxy/.

Figure 3: Clusters of process pairs for TRACE. Figure 4: Clusters of process pairs for REMO.

Figure 5: Clusters of process pairs for SWEEP3D.

Figure 6: Execution time vs. message size
for process pair (2, 11) in TRACE.

Figure 7: Communication time vs. message size
for process pair (2, 11) in TRACE.

Figure 8: Execution time vs. message size
for process pair (3, 7) in REMO.

Figure 9: Communication time vs. message size
for process pair (3, 7) in REMO.

Figure 10: Communication time vs. execution
time for process pair (21, 22) in SWEEP3D.

Figure 11: Communication time vs. execution time
for process pair (52, 60) in SWEEP3D.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

