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Abstract

In this paper we consider the problem of decontami-
nating a network, i.e., protecting it from unwanted and
dangerous intrusions. Initially all nodes are contam-
inated and a team of agents is deployed to clean the
entire network. When an agent transits on a node, it
can clean it, when the node is left unguarded, however,
it will be recontaminated as soon as at least one of its
neighbour is contaminated. We study the problem in
asynchronous chordal ring networks with n nodes and
chord lengths d1 = 1, d2, ..., dk, and in tori.

We consider two variations of the model: one where
an agent has only local knowledge, the other in which it
has “visibility”, i.e., it can “see” the state of its neigh-
bouring nodes.

We first show that, when the largest chord dk is not
too large (dk ≤ √

n), the number of agents necessary
to perform the task in chordal rings does not depend
on the size of the network but only on the length of
the longest chord. We also show a lower bound on the
number of agents for the torus topology. We then pro-
pose tight strategies for decontamination. We analyse
the number of moves and the time complexity of the
decontamination algorithms showing that the visibil-
ity assumption allows us to decrease substantially both
complexity measures. Another advantage of the “vis-
ibility model” is that agents move independently and
autonomously without requiring any coordination.

1. Introduction

Problem and Framework. In networked environ-
ments supporting mobile agents, security is a pressing
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concern and to tackle security issues is becoming more
and more complex due to the growing potential threats
a network can be faced with. A particularly impor-
tant security concern is to protect a network from un-
wanted, and possibly dangerous intrusions. At an ab-
stract level, an intruder is an alien process that moves
on the network to sites unoccupied by the system’s
agents “contaminating” the nodes it passes by. The
concern for the severe damage intruders can cause has
motivated a large amount of research, especially on de-
tection (e.g., see [1, 11, 21]). Rather than being inter-
ested in the detection of the presence of an intruder,
we are interested instead in designing strategies for “de-
contaminating” a possibly infected network, by deploy-
ing a team of “cleaning agents”. In fact, we consider
a networked environment where nodes are hosts and
links represent connections between hosts. We assume
the nodes of the network are initially contaminated and
we want to deploy a team of agents to clean (or decon-
taminate) the whole network. The cleaning of a node
occurs when an agent transit on the node; however, as
soon as a node without an agent on it has a contam-
inated neighbour, it will become contaminated again.
We are interested in monotone decontamination strate-
gies, i.e., we want that once a node is clean, it remains
clean until the whole network is decontaminated.

More precisely, a team of agents is initially located
at a node (the homebase) and agents can move from
node to neighbouring node. At any point in time each
node of the network can be in one of three possible
states: clean, contaminated, guarded. Initially all nodes
are contaminated except for the homebase (which is
guarded). A node is guarded when it contains at least
one agent. We say that a node is clean when an agent
passes by it and all its neighbouring nodes are clean or
guarded, contaminated otherwise. The solution of the
problem is given by devising a strategy for the agents
to move in the network in such a way that at the end
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all the nodes are clean.
The system is asynchronous, that is, every action the

agents perform (i.e., computing, moving), takes a finite
but otherwise unpredictable amount of time. In this
setting efficiency is measured in terms of the number
of agents to be involved, traffic (i.e., number of moves
the agents have to perform), and time (or steps). We
consider two variations of the model and accordingly
propose lower bounds on the number of agents neces-
sary for decontamination and tight strategies. In the
first model (we call it Local model), the only knowl-
edge that an agent has is the information available at
its current location (port labels, state of the node); in
the second model (Visibility model) agents can “see”
also the state of their neighbouring nodes.

Network decontamination could be fairly simple in
some specific topologies, where the determination of
the minimum number of agents required for the task
could be easy. This is the case, for example, of the ring,
where two agents starting from the same node can move
in opposite direction and easily clean the whole network
(with one agent the task would be obviously impossi-
ble). Determining the optimal number of agents and
a tight strategy is however in general an NP-complete
problem.

In this paper we consider mostly chordal ring net-
works. Chordal rings are a particular case of circulant
graphs, and are also known in the literature as dis-
tributed loop networks. A chordal ring is a ring aug-
mented by additional chords (each node has the same
chord structure) that act as “shortcuts” of the external
ring. Chordal rings constitute a common topology for
interconnection networks and have been widely studied
in the literature to analyse their fault-tolerant proper-
ties (for a survey see [5]). Subclasses of chordal rings
have been studied under a variety of scenarios and for
a large number of problems ranging from routing (e.g.,
[13])), election (e.g., [2])), broadcast (e.g., [15])).

Related Works. It is easy to see that the decon-
tamination problem can be equivalently formulated in
terms of an intruder capture problem, where an in-
truder moves arbitrarily fast in a network and a team
of searching agents is deployed to capture it. The in-
truder capturing problem has been extensively stud-
ied in the literature under the name of graph search
in a model where the searchers may be placed and
removed from any node of the graph, i.e., they are
allowed to ‘jump” while they perform the searching
task. This problem was first introduced by Breish [6]

As the system is asynchronous, we will measure ideal time,
i.e., assuming - for the purpose of time complexity only - that it
takes one unit of time for an agent to traverse a link.

and Parson [18, 19], and after that several variations
of the problem have been studied: among them, node
search and edge search (see, e.g., [7, 12, 14, 16, 17, 20]),
where the aim is to find a strategy that minimizes the
number of searchers and leads the graph to a state in
which all nodes (or nodes and edges) are simultane-
ously decontaminated. The size of the searching team
is called node-search number ns(G) ( or edge-search
number es(G))) and the determination of the optimal
size is an NP -complete problem in general.

Graph search, intruder detection, and decontamina-
tion are equivalent problems. The main difference in
our setting is that the agents cannot be removed from
the network: they can only move from a node to a
neighbouring node; this assumption is obviously mo-
tivated by the fact that we are considering software
agents that are able to move only on the edges of the
network. In fact, we consider the contiguous, mono-
tone, decontamination first introduced in [3] where: 1)
the removal of agents is not allowed, 2) at any time
of the search strategy, the set of clean nodes forms a
connected subnetwork, and 3) a clean node cannot be
recontaminated. The contiguous assumption consider-
ably changes the nature of the problem and the clas-
sical results on node and edge search do not generally
apply. Moreover, the problem is harder than the non-
contiguous one as in [4] it has been proved that the con-
tiguous searching number is always greater or equal to
the non-contiguous searching number, the relationship
between the search numbers in the two models has been
also studied in outerplanar graphs [10]. Finding the
contiguous searching number is still an NP -complete
problem for general graphs; some specific topologies
have been studied, for example it has been shown that
it can be solved in linear time in trees [3], moreover,
optimal strategies have been studied in hypercubes and
meshes [8, 9], some heuristic algorithms have been dis-
cussed in sensor networks [22].

Our Results. As mentioned above, for some topolo-
gies an efficient decontamination is easy to perform
and finding the optimal number of agents is a trivial
task. In general however, the problem is NP-complete.
The ring is an extreme case, where decontamination is
trivial. Adding extra chords to the ring highly com-
plicates the decontamination problem and clearly only
two agents are not sufficient anymore to clean the net-
work. One interesting question that we address in this
paper is whether, with the addition of the chords, the
minimum number of agents is still constant, or it de-
pends on the size of the network, or on the structure
of the chords. Interestingly we show that, when the
longest chord is not too long, none of these hypothesis



is correct; in fact, the smallest number of agents needed
for the decontamination solely depends on the length
of the longest chord. After we derive the lower bound
on the number of agents we describe and analyse two
optimal strategies for two variations of the model.

Let C(〈d1 = 1, d2, ..., dk〉) be a chordal ring network
with n nodes and link structure 〈d1 = 1, d2, ..., dk〉,
where di < di+1 and dk ≤ �n

2 �. We first show that,
when 4 ≤ dk ≤ √

n, the minimum number of agents re-
quired is 2·dk in the Local model, and it is 2·dk+1 in the
Visibility model. As a corollary of the lower bounds,
we also derive a lower bound for the torus topology
(which was unknown) and a simple optimal strategy.
We then describe two decontamination algorithms for
the chordal ring for the two models, which are optimal
in terms of the number of agents.

One of our goals is to understand the power of visi-
bility by determining whether such an assumption can
indeed improve the performances of solutions to the
problem, and how. In this respect, we have observed
that with our strategies the visibility assumption allows
to drastically decrease both the time and the number of
moves (provided that the longest chord does not exceed√

n).

2. Lower Bounds for Decontamination

Chordal Rings. A circulant graph with n nodes and
link structure 〈d1, d2, ..., dk〉, di < di+1, and dk ≤
�n

2 �, is a graph on n nodes x0, x1, ..., xn−1 where each
node xi is adjacent to all the nodes x(i+dj) mod n and
x(i−dj) mod n for 1 ≤ j ≤ k. A chordal ring is any
circulant graph with d1 = 1, i.e., it is an augmented
ring and will be denoted by C(〈d1 = 1, d2, ..., dk〉). The
links of the chordal ring are labeled with chordal sense
of direction, i.e., associated to link (xi, xj) at xi is the
distance (j − i) mod n between xi and xj along the
ring connection.

As the topology is fully symmetric, we can assume
that the agents start from any node: the homebase.
Let x0, . . . xn−1 be the nodes of the external ring and
w.l.g, let x0 be the homebase.

In the following we consider the chordal ring as ar-
ranged in rows of size dk where the last node of a row
is connected to the first node of the following row and
the last node is connected to the first. Depending on
the size of the chordal ring, the last row could be in-
complete. Observe that in this “matrix”, going down
a column corresponds to using the longest chord dk.

The following lower bound holds in chordal rings
where, in the arrangement described above, the number
of columns is not smaller than the number of rows; in
other words, we assume that dk ≤ n

dk
.

Theorem 1. In the Visibility model, any solu-
tion of the contiguous decontamination chordal ring
C(〈d1 = 1, d2, ..., dk〉) with n nodes and 4 ≤ dk ≤ √

n,
requires at least 2 · dk searchers.

Proof Let f be the number of clean (or guarded)
nodes. Let us consider a subgraph P (〈1, dk〉) = (V, E′)
of the chordal ring C = (V, E) (E′ ⊆ E) containing
only the chords at distance 1 and dk. Let us observe
the placement of the f clean nodes in P . By definition,
we know that at any point in time the clean nodes must
be connected in C; however, in P they might form dis-
connected blocks. Clearly, the ‘perimeter” (i.e., the
clean nodes of the blocks in contact with contaminated
nodes) of these blocks in P must be guarded to avoid
recontamination from the neighbouring contaminated
nodes (through chords 1 and dk). First notice that,
following a simple geometric reasoning, the number of
agents X needed to cover the perimeters of the clean
blocks is greater than or equal to the number that it
would be required if these blocks were to be attached
(i.e., forming a single block) (see Figure 1). Second, it
is easy to show that the perimeter of a single block is
minimized when it is as close as possible to a rhombus
as shown in Figure 2. Let us now compute the number
of agents X needed to cover the perimeter of the rhom-
bus; for any other possible shape, X will be a larger
number.

Given a rhombus of side l, the perimeter is 4l − 4
and the area (composed of cleaned or guarded nodes) is
f = l2+(l−1)2. Thus, the number of agents X needed
to cover the perimeter of any shape is at least 4l − 4.
From f = l2 + (l − 1)2 we derive that l = 1+

√
2f−1
2 ;

substituting l we have X ≥ 2
√

2f − 1 − 2 .
Consider now a moment during the cleaning when

there are f = l2 + (l − 1)2 ≥ d2
k+2dk+2

2 clean nodes.

This holds as long as n ≥ d2
k ≥ d2

k+2dk+2
2 , i.e., dk ≥ 4.
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Figure 1. Black nodes are guarded, white
nodes are contaminated, grey nodes are
clean.
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Figure 2. Block that, for a given area, has
minimum perimeter.

From f ≥ d2
k+2dk+2

2 , it follows that the number of

required agents is X ≥ 2
√

2(d2
k+2dk+2

2 ) − 1 − 2 = 2dk.

We now show that, when the agents do not have
visibility, an additional agent is required to perform
the decontamination.

Theorem 2. In the Local model, any solution of the
contiguous decontamination problem in a chordal ring
C(〈d1 = 1, d2, ..., dk〉) with n nodes and 4 ≤ dk ≤ √

n
requires at least 2 · dk + 1 searchers.

Proof In Theorem 1 we have shown that, at some
point, the “perimeter” of the clean area is 2dk. Let us
assume that the decontamination has reached such a
point; i.e., there are 2 · dk agents covering the perime-
ter and let as assume that this number of agents suffices
for the decontamination. Since n is big enough com-
pared to 2dk (n ≥ √

dk), it is easy to see that, regard-
less of the shape of the clean area, at least one of the
agents (say agent a) has more than one contaminated
neighbour. At least an agent has to move to continue
the cleaning. Since the agents have only local knowl-
edge and cannot communicate with each other, let an
adversary choose agent a for the next movement. We
have a contradiction because the clean area will now
be contaminated.

Tori. Following the same lines as the arguments of
Theorems 1 and 2, we obtain a lower bound also for
the torus, which was not known. The torus is a very
common interconnection network; it is the product of
two rings and it can be seen as a grid where the last
node of a row is connected to the first of the same row,
and last node of a column is connected to the first of

the same column. Let T (m, n) denote a torus with m
rows and n columns, we have that:

Theorem 3. The solution of the contiguous decontam-
ination problem in a torus T (m, n), with m, n ≥ 4, re-
quires 2 · min{m, n} searchers in the Visibility model,
and 2 · min{m, n} + 1 searchers in the Local model .

Proof The argument follows the same lines as the
argument of Theorems 1 and 2. In this case, however,
the “matrix” representation corresponds to the actual
torus and there are no additional chords. The mini-
mum perimeter - occurring if the shape of the block
were to be a rhombus - would analogously be 4

√
f − 4

and the area f = l2 + (l − 1)2, thus the number of
required agents would be X ≥ 2

√
2f − 1 − 2 .

Assume z = min{m, n} and consider a moment during
the cleaning when there are f = l2 +(l−1)2 ≥ z2+2z+2

2
clean nodes. This holds as long as m × n ≥ z2 ≥
z2+2z+2

2 , i.e., z = min{m, n} ≥ 4.

From f ≥ z2+2z+2
2 , it follows that the number of

required agents is X ≥ 2
√

2( z2+2z+2
2 ) − 1 − 2 = 2z =

2min{m, n}, and the number of required agents is at
least 2 min{m, n}.
If there is no visibility (Local model) an additional agent
is required following the same reasoning of Theorem 2.

3. Optimal Decontamination Strategies

3.1. Chordal Rings

In this section we propose two algorithms respec-
tively for the capture of the intruder in a chordal ring
of size n in the Local and in the Visibility models.

In the following discussion, we will assume that
operation among indices are modulo n ( i.e., i + dj

means (i + dj) mod n). We call clockwise neighbors
(respectively, counterclockwise neighbors) of xi, the
set of neighbors {xi+1, xi+d2 , ..., xi+dk

} (respectively,
{xi−1, xi−d2 , ..., xi−dk

}). We call window of size s is a
sequence of s nodes in consecutive clockwise positions
along the ring.

Decontamination with a Coordinator. The first
strategy we present is for the Local model, where a spe-
cial agent is designated as a coordinator. The main
idea is that the searching agents are coordinated by
this special agent that, moving back and forth, allows
them to visit all nodes and safely protects the system
from the recontamination.



Cleaning strategy. In this strategy we employ 2dk

identical agents and a coordinator. We assume that
the coordinator can communicate with an agent when
they reside on the same node.

The cleaning must be preceded by a deployment
stage after which the agents have to occupy 2dk con-
secutive nodes. The simplest way to deploy the agents
is for the coordinator to lead them to their respective
starting position by moving along the external ring.
During the deployment the agents also clean the 2dk

nodes and no recontamination occurs (i.e., the deploy-
ment is monotone). After the deployment, nodes x0

to x2dk−1 are guarded by one agent, and the coordina-
tor moves to node xdk

, which is then guarded by two
agents. During the cleaning stage, node x0 to xdk−1

are still guarded by one agent each, forming a window
of dk agents. This window of agents shields the clean
nodes from recontamination from one direction of the
ring while the agents of the other window are moved
by the coordinator (one at a time) along their longest
chord to clean the next window in the ring.

Algorithm 1 Clean with a coordinator.

Initially, nodes x0 . . . x2dk−1 are guarded by an
agent each and the coordinator is at xdk

.

1.1 The cleaning starts at xdk
and proceeds in the

clockwise direction until xn−1−dk
is reached.

Let xi (dk ≤ i ≤ n − 1 − dk) be the node with
an agent and the coordinator on it. The two
agents move along link dk of xi, and only when
they both arrive at node xi+dk

, one is left to
guard xi+dk

and the coordinator first goes back
to xi and then moves along link 1 of xi to arrive
at node xi+1. The agent on any node xj where
i �= j has to wait on xj for the coordinator to
arrive.

1.2 When two agents are on node xn−dk
, one

agent terminates and the coordinator goes to
notify all the agents on node xn−dk+1 to xdk−1

to terminate.

Note that in Step 1.2., when two agents are on node
xn−dk

all nodes from xn−dk
to xn are guarded. Note

also that as the system is asynchronous, in the different
phases the coordinator has to make sure every agent
reaches its position before the new step can start.

Correctness and Complexity. We first prove that
our cleaning strategy is correct; i.e., that all nodes will
be cleaned and that once a node has been cleaned, it
will never be recontaminated.

Theorem 4. Algorithm 1 cleans all the nodes of the
chordal ring and a clean node will never be recontami-
nated.

Proof We first prove that a clean node will not be
recontaminated. By induction.
The cleaning starts at node xdk

. Except the neighbor
x2dk

of xdk
, which is not guarded by an agent yet, all

the other neighbors are guarded. By the strategy, the
two agents on it move to x2dk

, the only contaminated
neighbor. Then one agent is left to guard this neighbor
and the other goes back to xdk

. So all neighbors of xdk

are guarded; when the agent from x2dk
comes back to

xdk
and then moves to xdk+1, node xdk

becomes clean
and no recontamination can occur.
Assume nodes xdk

to xi−1 where dk ≤ i−1 ≤ n−2−dk

are clean and the cleaning is at node xi. We show that
xi becomes clean and no recontamination can occur.
By the first step of the strategy and by the induc-
tion hypothesis, node x0 to xi−1 are clean or guarded.
So the counterclockwise neighbors of xi are all either
guarded or clean. Moreover, we know nodes from xi

to xi−1+dk
are guarded. So the clockwise neighbors of

xi are guarded except xi+dk
. By the strategy, when

the two agents move to the only contaminated neigh-
bor xi+dk

, no recontamination can occur. One agent
is left to guard xi+dk

. So all neighbors of xi are either
guarded or clean; when the agent goes back to xi and
then moves to xi+1, no agent is left to guard xi and xi

becomes clean. No recontamination can occur to xi.
At step 1.2, when the agent from xn−1−dk

arrives at
xn−dk

, all the nodes from xn−dk
to xdk−1 are guarded

and the others are clean from step 1.1. There is no
contaminated node anymore and it is impossible to re-
contaminate a clean node. Since a clean node will never
be recontaminated, by cleaning strategy after step 1.2,
all agents terminate and all the nodes become clean.

We now compute the number of moves performed
by the agents during the cleaning.

Theorem 5. The total number of moves performed by
the agents is 4n − 6dk − 1.

Proof For cleaning a node xi, four moves are
performed by the agents. It takes one move for each
of the two agents to arrive to xi+dk

, one move back to
xi and then one move to xi+1. So totally, 4(n − 2dk)
moves are performed in the cleaning stage. It takes
2dk − 1 moves for the agent from xn−dk

to notify
agents on xn−dk

to xdk−1 to terminate. So totally, the
number of moves for the entire process is 4(n− 2dk) +
2dk − 1 = 4n − 6dk − 1.

We now consider the ideal time complexity of the clean-
ing strategy.



Theorem 6. The cleaning strategy takes 3n− 4dk − 1
time units.

Proof The cleaning process is carried out sequen-
tially by the coordinator agent on each node. The time
required is then equal to the number of moves of the
coordinator, which is 3(n− 2dk) + 2dk − 1. So totally,
it takes 3(n − 2dk) + 2dk − 1 = 3n − 4dk − 1.
Finally, it directly follows from the strategy that:

Theorem 7. Our strategy employs 2dk + 1 agents.

Decontamination with Visibility. In this section
we consider the decontamination problem in the Vis-
ibility model: we assume that an agent located at a
node can “see” whether its neighboring nodes are clean
or guarded or contaminated. This capability could be
easily achieved if the agents have communication power
and send a message (e.g., a single bit) to their neigh-
bouring nodes after cleaning a node or guarding a node.
The interesting aspect of this model is that this extra
capability enables agents to correctly act without the
need of being coordinated. We also assume that agents
have distinct Ids, otherwise they cannot perform any
meaningful computation starting from the same home-
base (symmetry could not be broken).

Cleaning strategy. The idea of the algorithm is
quite simple and all the agents follow the same local
rule: as soon as an agent sees that all its neighbours
are clean except for one, it moves there. Before starting
the algorithm, however, a deployment phase is needed
during which the agents move to occupy 2dk consecu-
tive nodes. As for the Local model, we want that they
deploy in a monotone way, that is during the deploy-
ment they also start cleaning the nodes without allow-
ing any recontamination. For example, we can assume
they move along the external ring occupying one node
each like in the deploy for the Local model.

Algorithm 2 Clean with visibility.

Initially all agents are in x0 and they start the de-
ployment to occupy xn−(dk−1), . . . , xdk

.
- When an agent on a node xi “sees” that node
xi has only one contaminated neighbor, the agent
moves to clean the contaminated neighbor; when
the agent “sees” that all the neighbors are clean or
guarded, it terminates; otherwise, it waits on the
node.

Notice that the execution of the cleaning algorithm
could actually start before the deployment is com-
pleted. In fact, as soon as an agent sees it has only
one contaminated neighbour, it can start the cleaning.

Correctness and Complexity. We first prove that
our strategy is correct, i.e., that the network is clean
and once a node has been cleaned, it will never be
recontaminated.

Lemma 1. In a chordal ring network with n nodes
and link structure 〈d1 = 1, d2, ..., dk〉, di < di+1, and
dk ≤ �n

2 �, within a window of size 2dk, there are at
most 2(dk − dk−1) nodes which have only one neighbor
outside this window. These nodes are consecutive along
the external ring.

Proof Let us arbitrarily pick a window W of size
2dk and mark the first node to be xn−(dk−1) and the
last node to be xdk

. We can also see W as two windows
W1 and W2 of size dk and such that W = W1

⋃
W2.

Window W1 covers nodes from xn−(dk−1) to x0 and
W2 covers nodes from x1 to xdk

. Inside W1, nodes
from xn−dk+dk−1+1 to x0 have only one neighbor out-
side W = W1

⋃
W2 in the counterclock direction. Sim-

ilarly, inside W2, nodes from x1 to xdk−dk−1 have only
one neighbor outside of W in the clockwise direction.
So totally, there are at most 2(dk −dk−1) nodes having
only one neighbor outside of W .

Observe now that if n < 4dk − 2dk−1 some of the
nodes that had to be outside the window W , lie on
the opposite subwindow (i.e., from W1 to W2 and vice
versa). Thus, we may obtain the following:

Corollary 1. If n ≥ 4dk − 2dk−1, within a window of
size 2dk there are exactly 2(dk−dk−1) consecutive nodes
which have only one neighbor outside this window.

We now prove the correctness of the strategy.

Theorem 8. Algorithm 2 cleans all the nodes of the
chorded ring and a clean node will never be recontam-
inated.

Proof We have to prove both that the strategy
considers all the nodes of the chordal and that no re-
contamination occurs.
Let us first prove by induction that there is no recon-
tamination, i.e., a clean node may never be a neighbour
of a contaminated node. To prove this we also prove
something else, i.e., that if an agent has left a node xi

reached during the deployment stage to move to a new
node for the cleaning stage, then xi is not a neighbour
of a contaminated node. This second property is in-
cluded in the first but considering it apart will help us
during the proof.
We start the induction considering the initial state dur-
ing which all the agent are placed on the homebase.
There is only one guarded node and all the other nodes
are contaminated, thus the two property hold. Con-
sider the system after a set of moves during which both



properties held and let us now consider a set of agents
that execute a new move. There are two possible cases
depending on the fact that an agent that moves is in
the deployment or in the cleaning stage. If the agent is
in the deployment stage, this holds because the deploy-
ment strategy is monotone. So the case we are really
interested in is the one in which a node moves during
the cleaning stage. Since no recontamination has oc-
curred previously, the move is safe because an agent
moves only if all the neighbours but one are clean or
guarded and it moves towards the contaminated node.
Thus, no recontamination occurs.
Let us now prove that the strategy cleans all the nodes,
i.e., all nodes are eventually reached. After the de-
ployment stage all nodes in a window W of size 2dk

starting from xn−(dk−1) and ending in xdk
are guarded

and thus cleaned by an agent. By lemma 1 we know
that there are 2(dk − dk−1) consecutive nodes which
have only one neighbor outside window W , thus agents
guarding these nodes will eventually move to guard
(dk−dk−1) nodes outside W on the left and (dk−dk−1)
nodes on the right forming a clean window W ′ of size
4dk − 2dk−1. There are now other 2(dk − dk−1) nodes
of W ′ which have only one neighbor outside W ′ (this
time the nodes are not consecutive, but they form two
consecutive blocks of size (dk − dk−1), thus this proce-
dure enlarges the window up to when the whole chordal
ring is covered.
We now consider the time complexity of the cleaning
strategy. The time complexity is the ideal time com-
plexity which is computed by assuming that it takes
one unit of time for an agent to traverse an edge. The
computation starts at x0.

Theorem 9. The cleaning strategy takes at most⌈
n−2dk

2(dk−dk−1)

⌉
time units.

Proof For simplicity, let us assume that the clean-
ing starts after the deployment is completed (as we
have seen before some agents could actually start ear-
lier). We also assume that n > 2dk, otherwise nothing
has to be done after the deployment phase. We can now
divide our computation after the deployment phase
into different sub-phases during which, using lemma 1,
blocks of 2(dk−dk−1) nodes are cleaned until the whole
network is cleaned. Thus, in at most

⌈
n−2dk

2(dk−dk−1)

⌉
time

steps blocks of 2(dk − dk−1) nodes are cleaned (one
in each time step) up to when the whole network is
cleaned.

Theorem 10. The total number of moves performed
by the agents during the cleaning strategy is at most
n − 2dk.

Proof It directly follows from the strategy that as-
serts that during the cleaning stage an agent moves to
a node only if it “sees” that is it the only contami-
nated neighbour, thus it only moves to contaminated
nodes. Moreover from Theorem 8 we know that the
strategy is correct and all the contaminated nodes will
be cleaned. Thus all contaminated nodes will be vis-
ited exactly once, and after the cleaning phase there are
n− 2dk of them (the remaining nodes are guarded).

3.2. Torus

In this section we mention very briefly the decon-
tamination strategies that match the lower bounds for
the tori. The algorithms are very similar to the ones
for the mesh topology described in [9]. Without loss
of generality, let us assume that the number of rows is
smaller than the number of columns. The idea is to de-
ploy the agents to cover two consecutive columns and
then keep one column of agents to guard from decon-
tamination and have the other column move along the
torus. In the Local model the movement of the agents
must be synchronized by a coordinator so to avoid re-
contamination, in the Visibility model the agents can
safely move autonomously.

The cleaning is identical to the one for the mesh, the
only difference is that in the mesh it was not required
to have a column of agents shielding one part of the
network from recontamination since the cleaning could
start from a border of the mesh. The move and time
complexities are the same as in [9], and are reported in
Table 1 (where we assume, w.l.g., that m = min{m, n}
and we consider the complexity of the cleaning only).

4. Remarks and Open Problems

In this paper we have considered the problem of de-
contamination in chordal rings. We have determined a
lower bound on the number of agents required and two
strategies in two variations of the model. Our results
on the cost of the cleaning strategy are summarized in
Table 2.

Following similar reasonings as the ones of the lower
bounds for the chordal ring, we have obtained lower

Torus Agents Time Moves
Coord. 2m + 1 mn − 2m 2mn− 4m − 1
Visib. 2m n − 2 mn − 2m

Table 1. Results for the Torus.



Ch. Ring Agents Time Moves
Coord. 2dk + 1 4n − 6dk − 1 3n − 4dk − 1

Visib. 2dk

⌈
n−2dk

2(dk−dk−1)

⌉
n − 2dk

Table 2. Results for the Chordal Ring.

bounds also for the Torus (which were not known);
these bounds can be easily matched by simple cleaning
strategies.

We have observed that with our strategies the visi-
bility assumption allows us to drastically decrease the
time and move complexities in both topologies. In par-
ticular, the strategies for the Visibility model are op-
timal both in terms of number of agents and in terms
of number of moves; as for the time complexity, vis-
ibility allows some concurrency. For example, in the
case of the chordal ring the level of concurrency de-
pends on the distance between the longest chord and
the second longest. The higher the distance, the higher
the concurrency is, and thus the improvement in time
complexity. The improvements hold when the longest
chord dk is such that 4 ≤ dk ≤ √

n, otherwise our
strategies are not efficient and the lower bound is not
valid. Consider, for example, the case of C(〈1, 8〉) with
24 nodes. It is easy to see that the decontamination
can be done with 6 agents only (placed in two consecu-
tive “columns” in the matrix representation), while our
bound would prescribe 16. The determination of the
minimum number of agents needed when dk >

√
n and

a matching strategy is an interesting open problem.
Another interesting problem would be to study a

trade-off between time and number of agents. For ex-
ample, if we add one extra agent to our strategy with
coordinator, that is we employ 2dk + 2 agents, we can
reduce the cleaning process time by half. The extra
agent can move in opposite direction to clean the con-
taminated nodes thus two agents would be cleaning
concurrently, in the two directions of the external ring.
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