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Abstract

Divisible Load Theory (DLT) considers the scheduling of
arbitrarily partitionable loads in distributed systems. The
underlying assumption of DLT is that the processors are
obedient (i.e., they do not “cheat” the protocol), which is
unrealistic when the processors are owned by autonomous,
self-interested organizations that have no a priori motiva-
tion for cooperation and which strive to maximize their own
welfare. In this scenario, they will manipulate the algo-
rithm if it is beneficial to do so. In this paper we propose
a strategyproof mechanism for scheduling divisible loads in
bus networks without control processors. We augment DLT
with incentives so that it is to the benefit of a processor to
truthfully report its processing capacity and to process its
assignment at full capacity. The mechanism provides incen-
tives to processors for reporting deviants and issues fines to
deviants, which results in abated willingness to deviate.

1. Introduction

Scheduling has important implications for the perfor-
mance of distributed systems. Deficient scheduling leads
to poorly utilized resources, inefficiencies, and suboptimal
performance. In this paper we focus on the problem of
scheduling divisible loads. Divisible load problems are
characterized by large data sets where each element within
the set requires an identical type of processing. The set
can be partitioned into any number of independent fractions
where each fraction requires scheduling.

Scheduling divisible loads is the subject of Divisible
Load Theory (DLT) which was extensively studied in [3]
where influences such as network architectures (e.g., linear,
tree, etc.), task arrangements, and optimality conditions are
explored. The underlying assumption in DLT is that the
processors are obedient, i.e., under no circumstances will

the processors “cheat”. The assumption is unrealistic as the
nodes may be owned by autonomous, self-interested enti-
ties that have no a priori motivation for cooperation and
they are tempted to manipulate the algorithms in hope of
increased benefits. In this environment, the processors are
modeled as strategic agents. New protocols for DLT must
account for this behavior. Mechanism design theory [17]
— a subfield of economics that has recently garnered in-
terest in computer science — provides the framework for
solving such problems involving self-interested parties. The
theory addresses incentive compatibility. Rational agents
(self-interested, utility-maximizing) are provided incentives
which induce a behavior that maximizes the social welfare.
A mechanism produces an output based on agents’ inputs.
Each agent is characterized by its private values. An agent
reports to the mechanism values that may not be equal to
its private values. We are interested in strategyproof mecha-
nisms in which the participants maximize their own utilities
only if they report their true values to the mechanism.

In our previous work [9], we showed how DLT can be
augmented with incentives. More specifically we designed
a strategyproof mechanism called DLS-BL for scheduling
divisible loads in bus networks with a control processor.
In such systems the mechanism is executed by the con-
trol processor that is assumed to be trusted. The mech-
anism provides incentives to processors for participating.
The agents maximize their profits by reporting their true
values to the mechanism and executing their assignments
as reported. DLS-BL is a Compensation-and-Bonus type
mechanism [16].

In this paper we extend our research to include bus
networks without control processors. These networks are
harder to address due to the lack of the trusted control pro-
cessor. We obtain the mechanism by having all the proces-
sors implement the DLS-BL mechanism. This results in a
strategyproof mechanism as long as the processors cannot
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deviate from it. Since the processors are strategic, they will
implement their own algorithm if it is beneficial to do so.
To compensate for this situation, processors are provided
incentives to monitor one another. In essence, processors
are paid to fink. When a processor deviates from the al-
gorithm, others immediately inform against it. The deviant
is fined and the informers are rewarded with the collected
sum.

Related work. The divisible load scheduling problem was
studied extensively in recent years resulting in a cohesive
theory called Divisible Load Theory (DLT). A reference
book on DLT is [3]. Two recent surveys on DLT are [4]
and [19]. Scheduling divisible loads in grids has been in-
vestigated in [21]. Scheduling divisible loads where the net-
work and processing parameters are unknown is examined
in [8]. A multiround divisible load scheduling algorithm
is presented in [20]. New results and open research prob-
lems in DLT are presented in [2]. All these works assumed
that the participants in the load scheduling algorithms are
obedient and follow the algorithm. Recently, several re-
searchers considered the mechanism design theory to solve
several computational problems that involve self-interested
participants. These problems include resource allocation
and task scheduling [15], routing [5] and multicast trans-
mission [6]. In their seminal paper, Nisan and Ronen [16]
considered for the first time the mechanism design prob-
lem in a computational setting. They proposed and stud-
ied a VCG (Vickrey-Clarke-Groves) type mechanism for
the shortest path in graphs where edges belong to self in-
terested agents. They also provided a mechanism for solv-
ing the problem of scheduling tasks on unrelated machines.
A general framework for designing strategyproof mecha-
nisms for one parameter agent was proposed by Archer and
Tardos [1]. Grosu and Chronopoulos [10] derived a strat-
egyproof mechanism that gives the overall optimal solu-
tion for the static load balancing problem in distributed sys-
tems. A strategyproof mechanism with verification com-
bining incentives and DLT was proposed by Grosu and Car-
roll [9]. The results and the challenges of designing dis-
tributed mechanisms are surveyed in [7]. The strategyproof
computing paradigm proposed in [13] considers the self-
interest and incentives of participants in distributed comput-
ing systems. Ng et al. [14] proposed a strategyproof system
for dynamic resource allocation in data staging. Mitchell
and Teague [12] extended the distributed mechanism in [6]
devising a new model where the agents themselves imple-
ment the mechanism, thus allowing them to deviate from
the algorithm.

Our contributions. The main contribution of this paper is
the design of a strategyproof mechanism with verification
for solving the divisible load scheduling problem in bus
networks without control processors. The mechanisms pro-
vide incentives to processors for monitoring one another.

When processors deviate from the algorithm, others inform
against it resulting in the cheater being penalized and the
informers rewarded. A minimally-trusted third party is au-
thorized to collect fines and to distribute the sum among the
processors. We define the mechanism and prove its proper-
ties.

Organization. The paper is structured as follows. In Sec-
tion 2 we describe the divisible load scheduling problem in
the context of systems with bus networks. In Section 3 we
discuss the mechanism design foundations. In Section 4 we
present our proposed mechanism. In Section 5 we prove the
mechanism’s properties. In Section 6 we draw conclusions
and present future directions.

2. Divisible Load Scheduling Problem
We consider a distributed system consisting of m proces-

sors, (P1, . . . ,Pm), interconnected by a bus network. Proces-
sor Pi (i = 1, . . . ,m) is characterized by wi, which is the time
it takes to process a unit load. The processor is assigned αi

units of load and it takes time αiwi to compute the assign-
ment. The cost incurred by Pi to process αi units of load is
αiwi, which corresponds to a linear cost model. There is a
load-originating processor responsible for distributing the
load to the other processors. The load-originating proces-
sor transmits αi units of load to Pi in time αiz, where z is
the time it takes to communicate a unit load from the load-
originating processor to any other processor. We denote by
α = (α1, . . . ,αm) the load allocation. Processor Pi finishes
in time Ti(α), which is the total time taken to receive and
process the assignment.

Depending on the existence of a control processor we
have two classes of systems: bus network with control
processor (CP) and bus network without control processor
(NCP) [3]. Furthermore the bus network without control
processor class can be divided into two subclasses depend-
ing on the existence of a front end: bus network without
control processor, with front end (NCP-FE), and bus net-
work without control processor, without front end (NCP-
NFE). In the following we discuss these types of systems in
the context of DLT.

Bus network with control processor (CP). There is an in-
dependent load-originating processor P0. The processor P0

does not have any processing capacity and can only com-
municate with one processor at a time (i.e., the one-port
model). Figure 1 shows a diagram representing the exe-
cution on this system. From the diagram, it is obvious that
the finishing time Ti(α) is given by

Ti(α) = z
i

∑
j=1

α j +αiwi. (1)

We do not discuss this system further. This was the sub-
ject of our previous work [9] in which we designed a strat-



Time

Communicationα3zα2z αmz

αmwm Computation

. . .

Computation

Computation

P0

P1

P2

Pm

α1w1

α2w2

Figure 1. Bus network with control processor
(CP)

egyproof mechanism for scheduling divisible loads in bus
networks with control processor. The focus of this paper is
the design of strategyproof mechanisms for the other two
types of systems.

Bus network without control processor, load-originating
processor with front end (NCP-FE). There is no separate
control processor. The load-originating processor P1 has a
front end permitting it to simultaneously communicate and
compute. Again, we assume the one-port model. A dia-
gram representing the execution on this system is shown in
Figure 2. The finishing time Ti(α) is given by

Ti(α) =

{
α1w1 if i = 1

z∑i
j=1 α j +αiwi if i = 2, . . . ,m

(2)

Notice that P1 does not experience any delay related to com-
municating the load.

Bus network without control processor, load-originating
processor without front end (NCP-NFE). This is similar
to the previous system in that a control processor is not
present. But, the load-originating processor Pm does not
have a front end, thus, it cannot simultaneously compute
and communicate. As usual, we assume the one-port model.
Figure 3 illustrates an execution on this system. We obtain
the finishing time Ti(α)

Ti(α) =

{
z∑i

j=1 α j +αiwi if i = 1, . . . ,m−1

z∑i−1
j=1 α j +αiwi if i = m

(3)

Processor Pm does not commence computing until it has
communicated the loads to all the other processors.

With each of the three systems described above we
associate a different scheduling problem. We call these
problems: BUS-LINEAR-CP, BUS-LINEAR-NCP-FE, and
BUS-LINEAR-NCP-NFE respectively. Each of these prob-
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Figure 2. Bus network without control proces-
sor; load-originating processor with front end
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lems asks for the load allocation α which minimizes the to-
tal execution time (i.e., T (α) = max(T1(b), . . . ,Tm(b))) and
are defined as follows.

min
α

T (α) (4)

such that

αi ≥ 0, i = 1, . . . ,m (5)

and
m

∑
i=1

αi = 1. (6)

The following theorems proved in [3] characterize the
optimal solution for all three problems defined above.

Theorem 2.1. The optimal solution is obtained when all
processors participate and they all finish executing their as-
signed load at the same time, i.e., T1(α) = . . . = Tm(α).



Theorem 2.2. Any load allocation order is optimal for
the BUS-LINEAR-CP, BUS-LINEAR-NCP-FE, and BUS-
LINEAR-NCP-NFE problems.

BUS-LINEAR-NCP-FE Problem. From Figure 2, the recur-
sive equations

αiwi = αi+1z+αi+1wi+1, i = 1, . . . ,m−1 (7)

compute the optimal allocation in the case of bus network
without a control process; processor with front end. Us-
ing (7), the BUS-LINEAR-NCP-FE problem is solvable by
the following algorithm.

Algorithm 2.1. (BUS-LINEAR-NCP-FE Algorithm)

Input: Time to process a unit load: w1, w2, . . . wm;
Time to communicate a unit load: z;

Output: Load fractions: α1, α2, . . . αm;
1. for j = 1, . . . ,m−1 do

k j ← w j
z+w j+1

2. α1 ← 1
1+∑m−1

i=1 ∏i
j=1 k j

3. for i = 2, . . . ,m do
αi = α1 ∏i−1

j=1 k j

BUS-LINEAR-NCP-NFE Problem. This problem is charac-
terized by a different set of recursive equations as follows.

αiwi = ai+1z+αi+1wi+1, i = 1, . . . ,m−2 (8)

αm−1wm−1 = αmwm (9)

Using (8) and (9), the following algorithm that solves the
BUS-LINEAR-NCP-NFE problem is derived.

Algorithm 2.2. (BUS-LINEAR-NCP-NFE Algorithm)

Input: Time to process a unit load: w1, w2, . . . wm;
Time to communicate a unit load: z;

Output: Load fractions: α1, α2, . . . αm;
1. for j = 1, . . . ,m−2 do

k j ← w j
z+w j+1

2. α1 ← 1
1+∑m−2

i=1 ∏i
j=1 k j+

wm−1
wm ∏m−2

j=1 k j

3. for i = 2, . . . ,m−2 do
αi = α1 ∏i−1

j=1 k j

4. αm = wm−1
wm

αm−1

In classical DLT, it is assumed that the load-originating
processor faithfully executes the BUS-LINEAR algorithms
and that the processors truthfully report their wi. If the pro-
cessors are owned by autonomous, self-interested organiza-
tions, the load-originating processor may deviate from the
algorithm or the processors may misreport their processing
capacities in hope of gaining additional profit. In the next
sections we present the design of a mechanism that com-
pensates for strategic processors. The mechanism ensures
that the processors report their true processing capacities
and, due to the lack of a trusted control processor, that the
algorithm is faithfully executed.

3. Mechanism Design Framework
In this section we introduce the main concepts of mech-

anism design theory. We limit our focus to mechanism de-
sign for one parameter agents. Each agent in this mecha-
nism design problem has private data represented by a sin-
gle real value [16]. We define the problem in the following.

A mechanism design problem for one parameter agents
is characterized by

(i) A finite set L of allowed outputs. The output is a vector
α(b) = (α1(b), . . . ,αm(b)) ∈ L, computed according
to the agents’ bids, b = (b1, . . . ,bm). Here, bi is the bid
of agent i.

(ii) Each agent i (i = 1, . . . ,m) has a privately known value
ti called the true value and a publicly known parameter
t̃i ≥ ti called the execution value. The preferences of
agent i are given by a function called valuation Vi(α, t).

(iii) Each agent goal is to maximize its utility. The utility
of agent i is Ui(b, t̃) = Qi(b, t̃)+Vi(α(b), t̃), where Qi

is the payment handed by the mechanism to agent i and
t̃ is the vector of execution values. The payments are
handed to the agents after the mechanism learns t̃.

(iv) The goal of the mechanism is to select an output α that
optimizes a given cost function g(b,α).

Definition 3.1. (Mechanism with Verification) A mecha-
nism with verification is characterized by two functions.

(i) The output function α(b) = (α1(b), . . . ,αm(b)). The
input to this function is the vector of agents’ bids b =
(b1, . . . ,bm) and returns an output α ∈ L.

(ii) The payment function, Q(b, t̃) =
(Q1(b, t̃), . . . ,Qm(b, t̃)), where Qi(b, t̃) is the payment
handed by the mechanism to agent i.

Notation. In the rest of the paper, we denote by b−i the
vector of bids excluding the bid of agent i. The vector b is
represented by (b−i,bi).

The following definition characterizes an important
property of a mechanism, the property that an agent obtains
maximum utility when t̃i = bi = ti independent of the other
agents’ actions.

Definition 3.2. (Strategyproof Mechanism) A mechanism
is called strategyproof if for every agent i of type ti and
for every bids b−i of the other agents, the agent’s utility is
maximized when it declares its real type ti (i.e., truth-telling
is a dominant strategy).

Another important property of a mechanism is the vol-
untary participation, who guarantees that truthful agents ob-
tain non-negative utility. This property is desirable as agents
participate in hope of profit.



Definition 3.3. (Voluntary Participation Mechanism) We
say that a mechanism satisfies the voluntary participation
condition if Ui((b−i, t̃i) ≥ 0 for every agent i, true value ti,
and other agents’ bids b−i (i.e., truthful agents never incur
a loss).

In our previous work [9], we augmented DLT with in-
centives. More specifically we designed the strategyproof
mechanism DLS-BL that solves the problem of schedul-
ing divisible loads in bus networks with control proces-
sor (i.e., BUS-LINEAR-CP problem). DLS-BL mechanism
provides incentives to processors for participating and for
truthfully reporting their processing capacity. Additionally,
DLS-BL satisfies the voluntary participation condition as
truthful processors will never receive non-negative utility.
In the following we describe DLS-BL.

We assume a set of m + 1 processors, P =
(P0,P1, . . . ,Pm). A bus interconnects the processors.
We designate P0 as the control processor. As we mentioned
in Section 2, P0 does not have any load processing capacity.
Its sole role is to compute the allocations and to distribute
the loads to the other processors. Processor Pi (i = 1, . . . ,m)
is characterized by its true value wi, i.e., ti = wi, the time to
execute one unit of load. The processor reports its bid bi to
P0. The bid does not have to be equal to the true value, i.e.,
bi �= wi. Once P0 collects all the bids, it computes BUS-
LINEAR-CP algorithm [3] obtaining the load allocation
α(b) = (α1(b), . . . ,αm(b)), where b = (b1, . . . ,bm) is the
vector of the agents’ bids and αi(b) is the allocation for Pi.

The control processor P0 transmits αi units of load to Pi.
Processor Pi processes the assigned load. It may decide to
process the load at a slower rate, with w̃i being the time
to process a unit load, where w̃i ≥ wi. To overcome this
situation, we employ a mechanism with verification. The
execution time w̃i is observed by P0. The control processor
P0 computes and sends the payment Qi to Pi.

The goal of Pi is to maximize its utility

Ui(b, w̃i) = Vi(α(b), w̃)+Qi(b, w̃). (10)

Processor Pi has a valuation function

Vi(α(b), w̃) = −αiw̃i (11)

which is the negation of the time required for Pi to process
αi units of load. Vi can be considered as the cost incurred
by Pi when processing the assigned load. There is a direct
relationship between processing time and cost. Qi(b, w̃) is
the payment to Pi for executing the load. The payment Qi is
defined as

Qi(b, w̃) = Ci(b, w̃)+Bi(b, w̃) (12)

where

Ci(b, w̃) = αiw̃i

is the compensation function for Pi and

Bi(b, w̃) = T−i(α(b−i),b−i)−T (α(b),(b−i, w̃i))

is the bonus function for Pi. The function T−i(α(b−i),b−i)
is the optimal execution time when Pi does not participate.
Thus, the bonus is equivalent to its contribution in reducing
the total execution time. Notice that the compensation is
the negation of the valuation. In effect, the compensation
function reimburses Pi for the work it performs. The bonus
provides incentive to report the true processing capacity. Bi

may not be positive, especially in cases where w̃i < bi (i.e.,
the processor executes the load slower than what it bid). In
[9] we proved the following theorems that characterize the
DLS-BL mechanism.

Theorem 3.1. (Strategyproofness) DLS-BL is a strate-
gyproof mechanism.

Theorem 3.2. (Voluntary Participation) DLS-BL is a vol-
untary participation mechanism

4. The Proposed Mechanism
We propose the mechanism DLS-BL-NCP for schedul-

ing divisible loads on bus networks without control proces-
sors. The system model comprises m strategic processors
interconnected via a bus. No control processor exists. We
assume that the network is obedient and that the network
and communication protocols are tamper-proof. An entity is
tamper-proof [12] if its operation (i.e., the algorithm which
it is executing) is completely controlled by the designers
and not by the entity itself. We further assume that the net-
work has a reliable, atomic mechanism for broadcasting in-
formation. Since the transmission media (i.e., the bus) is
shared among all processors and the distance between any
pair of processors is constant, we believe that the assump-
tion is reasonable. The processor with access to the load
is designated to be the load-originating processor and it is
either P1 or Pm depending on the existence of a front end.
Besides the processors, there are two other entities. The
first is the user who submits jobs to be processed and has
funds to compensate the processors for the work performed
on her behalf. The second entity is the referee. In the stan-
dard mechanism design model, the agents provide inputs to
a central authority which faithfully executes the algorithm.
The agents are able to lie to the central authority, but they
are unable to alter the algorithm. In our mechanism, the
agents themselves implement the mechanism. They will al-
ter the algorithm if it is beneficial to do so. The main role of
the referee is to prosecute cheating processors. The referee
is isolated and remains passive until signaled by a proces-
sor that presumes cheating. If sufficient proof is brought
forth, the referee imposes fines and distributes the proceeds
among the other processors.



The referee is different from the control processor con-
sidered in [9]. The control processor is a trusted central au-
thority that possesses the processor parameters, computes
the load allocation, and transmits the work units to the pro-
cessors. In DLT and DLS-BL mechanism, the control pro-
cessor is assumed to be obedient, i.e, it will not cheat or
deviate from the prescribed protocol. The referee, on the
other hand, is used to resolve conflicts and if no conflicts
arise, it does not posses any processor parameters.

Notation. We use the following notation in this section.

• The set of processors is P = (P1, . . . ,Pm) such that
|P| = m.

• The load-originating processor is Plo, where Plo ∈ P.

• Let SKβ be the private key of β. SIGβ(m) is the
secure digital signature of m under SKβ. Sβ(m) =
(m,SIGβ(m)) is the digitally signed message m under
SKβ.

The description of DLS-BL-NCP follows. We assume
the existence of a payment infrastructure and a public key
infrastructure (PKI), to which the participants have access.
DLS-BL-NCP Mechanism

Initialization: Each participant has a public cryptographic
key set. We do not dictate the specific cryptosystem,
but it must minimally support digital signatures. The
public key is registered under the participant’s iden-
tity with the aforementioned PKI. The user prepares
her data by dividing it into small, equal-sized blocks.
Each block B has a unique identifier IB appended to
it and then the aggregate is signed by the user, i.e.,
Suser(B, IB).

Bidding: An all-to-all broadcast occurs in which processor
Pi (i = 1, . . . ,m) communicates its digitally-signed bid
SPi(bi,Pi) to Pj ( j �= i). Commitments are not required
according to our atomic broadcast assumption1. If Pi

does not wish to participate, it does not broadcast a bid
and it receives a utility of 0. Without loss of generality,
we assume that Pi participates.

Pj ( j = 1, . . . ,m) verifies the authenticity and integrity
of SPi(bi,Pi). If the message fails verification, it is dis-
carded. If Pj receives multiple authenticated messages
from Pi, it signals the referee providing the messages
as evidence of cheating. If in fact cheating has oc-
curred, the referee fines Pi an amount F . If the con-
cerns are unfounded, Pj is penalized F . Fine F must be

1Commitments are required when atomic broadcast facilities are not
available. When atomic facilities are not available, a sender distinctly
transmits a message to each recipient. The sender may transmit differ-
ent messages even though broadcasting by definition means sending the
same message to all the recipients. Before broadcasting, the sender publi-
cizes a commitment computed for the message. The recipient checks the
commitment to ensure that it has received the proper message.

large to dissuade cheating and to induce finking. Fur-
thermore, F must be larger than the sum of the com-
pensations, i.e., F � ∑m

j=1 α jw j. All parties are aware
of the magnitude of F . Let Pk be the party that is fined.
The referee rewards F

m−1 to Pi (i = 1, . . . ,m, i �= k) thus
terminating the protocol.

Allocating Load: Every processor computes the allo-
cation (either Algorithm 2.1 or 2.2 respective to
network type) obtaining load allocations α(b) =
(α1(b), . . . ,αm(b)).

Processor Plo transmits α̃i units of load to Pi (i �= lo).
If α̃i �= αi (i.e., the assignment of Pi is incorrect), Pi

signals the referee. Processors Plo and Pi submit their
vector of bids, b, to the referee who verifies the authen-
ticity of the bids and computes the allocation α(b).
Both processors must submit their vector of bids as
Pj, j = 1, lo, may alter its bid in its vector b (i.e.,
(SP1(b1,P1), . . . ,S′Pj

(b′j,Pj), . . . ,SPm(bm,Pm))). If the
vector b submitted by Pj is inconsistent or fails authen-
tication, Pj is fined. It is possible that both Plo and Pi

are penalized. If Pi claims that α̃i > αi, the referee
attempts to substantiate the claim by comparing the
blocks that Pi possesses with the original data set. If
the claim is true, Plo is fined. If the claim is unfounded,
Pi is fined. The case in which α̃i < αi is more difficult
to resolve primarily due to the absence of credible ev-
idence. There are three cases in which α̃i < αi may
occur: (i) Plo communicated to few load units, (ii) the
load unit integrity check failed, or (iii) Pi is lying. In
all cases, the referee acts as an intermediary receiv-
ing load units from Plo, verifying their integrity, and
transmitting them to Pi. If Plo refuses to transmit the
correct number of load units or load unit integrity fails,
Plo is fined. If Pi claims that it did not receive enough
load units, Pi is fined. In all situations where fines are
raised, the protocol is immediately terminated. The
total fine collected is xF , where x is the number of pe-
nalized processors. The referee distributes αiw̃i to the
i−1 processors that have commenced work. The pro-
cedure for determining w̃i is detailed in the following
stages. The remainder is evenly distributed among the
m− x non-deviating processors.

Processing Load: The processors execute their assign-
ments. Processor Pi may process its load at a slower
rate which means a unit load is processed in time w̃i,
where w̃i ≥ wi. We cope with this situation by employ-
ing a strategyproof mechanism with verification. The
goal of a strategyproof mechanism with verification is
to give incentives to agents such that it is beneficial for
them to report their values and process the assigned
loads using their full processing capacity. We assume
that the processors are augmented with a tamper-proof



meter that reports the time executing the assigned load.
The referee has access to the meters and records φi,
the time to execute the load assigned to Pi. Once the
processors complete computing their tasks, the referee
broadcasts (φ1, . . . ,φm) to all.

Computing Payments: Processor Pi (i = 1, . . . ,m) com-
putes w̃ j = φi

αi
( j = 1, . . . ,m). We denote the vector

of execution values by w̃ = (w̃1, . . . , w̃m). Processor Pi

uses (12) to compute payment Q j(b, w̃). We denote
the vector of payments (Q1, . . . ,Qm) by Q. Proces-
sor Pi submits SPi(Pi,Q) to the referee. If there are
multiple contradictory messages from Pi, the referee
fines it. The referee verifies all vectors Q for equality.
If there is inequality among the vectors, the bids are
provided to the referee which computes the payments.
The referee fines F to the x processors who incorrectly
computed the payments or who provided contradictory
messages. The referee distributes xF

m−x to each of the
m− x correct processors. The referee forwards Q to
the payment infrastructure. The bill is presented to the
user who remits payment. More sophisticated methods
such as quorums [11, 18] may not be used to resolve
payments as these methods require a minimum num-
ber of obedient players and in our mechanism, all the
processors are strategic.

This completes the mechanism description. We now ex-
amine the penalties associated with the mechanism. There
are three stages of the mechanism in which we inspect for
algorithm deviation. The offenses are: (i) multiple, incon-
sistent bids broadcasted in the Bidding phase; (ii) incor-
rect load assignments in Allocating Work phase; (iii) incor-
rect payment computation in Computing Payments phase;
(iv) manipulated bid vectors transmitted to the referee; (v)
unsubstantiated claims. All the above result in penalizing
the cheating processors. The penalties are engineered so
that processors that have already performed computation
are compensated.

5. Properties and Complexity
In this section, we study the properties and the complex-

ity of DLS-BL-NCP. The first property we investigate is the
agents’ aversion to deviate from the protocol.

Lemma 5.1. (Utility Maximization) A processor maxi-
mizes its utility by following DLS-BL-NCP.

Proof. (Sketch) A processor can cheat by deviating from the
algorithm and by misreporting its processing capacity. In-
centives are provided for processors to monitor one another.
A processor that deviates will be detected resulting in large
fines that greatly reduce its utility. If the processor misre-
ports its processing capacity, it will experience reduced util-
ity due to the strategyproofness of the DLS-BL mechanism
(Theorem 3.1).

Lemma 5.2. (Fines) A processor receives a fine only if it
has deviated from DLS-BL-NCP.

Proof. (Sketch) Processor Pi is fined either for not execut-
ing the protocol faithfully or another processor Pj produces
contradictory messages signed by Pi. In the first case, Pi

clearly deviates from DLS-BL-NCP. In the second case, Pj

sends the messages either by successfully forging signatures
or by possessing the private key of Pi. We assume that the
forging of signatures is impossible. Processor Pj obtains
the private key either by Pi sharing it or by stealing it from
Pi. It is a violation of the mechanism for a second party
to possess a private key. Thus, Pi is fined for the protocol
deviation.

Corollary 5.1. A processor cannot receive a reward if no
other processor has cheated.

Theorem 5.1. (Compliance) The processors will faithfully
execute the mechanism.

Proof. (Sketch) By Lemma 5.2, it is more profitable for
a processor to report deviation than to deviate itself.
Therefore, all deviations will be reported. Furthermore,
Lemma 5.1 shows that a processor will maximize its util-
ity by faithfully executing the mechanism. Therefore, we
can conclude that the processors will faithfully execute the
prescribed mechanism.

The second property we investigate is strategyproofness.
If a mechanism is strategyproof, an agent maximizes its util-
ity by being truthful.

Theorem 5.2. (Strategyproofness) DLS-BL-NCP is strate-
gyproof.

Proof. The allocation function α and the payment func-
tion Q are identical to the ones used in DLS-BL. By The-
orem 3.1, we know that DLS-BL is a strategyproof mech-
anism. Theorem 5.1 ensures that the processors will not
deviate from the mechanism. Therefore, DLS-BL-NCP is
strategyproof.

We now investigate voluntary participation. A truthful
agent never incurs a loss when partaking in a mechanism
that satisfies the condition.

Theorem 5.3. (Voluntary participation) DLS-BL-NCP sat-
isfies the voluntary participation condition.

Proof. DLS-BL-NCP uses the allocation function α and the
payment function Q of DLS-BL. By Theorem 3.2, the DLS-
BL mechanism satisfies the voluntary participation condi-
tion. Theorem 5.1 states that the processors will not deviate
from the algorithm. Therefore, DLS-BL-NCP satisfies vol-
untary participation.



We examine the communication complexity of DLS-BL-
NCP. We define communication cost as the product between
the number of messages transmitted and the message size.
We do not include the communication necessary for trans-
ferring the load units.

Theorem 5.4. (Communication Complexity) The commu-
nication complexity of DLS-BL-NCP for m processors is
Θ(m2).

Proof. The communication cost is dominated by the Com-
puting Payment phase. Each of m processors transmits a
vector of size m to the referee. Therefore, the complexity is
Θ(m2).

6. Conclusion
In this paper we proposed the strategyproof mechanism

DLS-BL-NCP that schedules divisible loads on bus net-
works without control processors. We base the mechanism
on the DLS-BL mechanism [9]. DLS-BL mechanism is a
strategyproof mechanism that satisfies voluntary participa-
tion. We prevent deviations from the mechanism by pro-
viding incentives to the processors to monitor one another.
When a processor deviates from the mechanism, other pro-
cessors inform against it resulting in the deviant being fined.
The fine is large enough to dissuade all deviations and all
parties know the amount. The collected sum is distributed
among the non-deviating processors. We show that the
DLS-BL-NCP mechanism is strategyproof and it satisfies
the voluntary participation condition.

For future work, we are planning to investigate other net-
work architectures. We are hoping to complete a cohesive
theory that combines DLT with incentives.
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