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Abstract 

While it is possible to accurately predict the execution 

time of a given iteration of an adaptive application, it is 

not generally possible to predict the data-dependent 
adaptive behavior the application will take and therefore 

to predict the total execution time for a given execution. 

To remedy this situation we have developed an executable 

performance model that can be utilized dynamically at 

runtime directly from the application of interest. In this 

manner, the application itself can rapidly predict the 
expected execution time for its next iteration based on 

current information on the data layout and level of 

adaptivity. This enables the application itself to 

determine: if an optimum level of performance is being 

achieved (i.e. by comparing measured and predicted 

times); when to perform a checkpoint (if the next iteration 
will exceed a predefined time limit between checkpoints); 

or when to terminate (if the next iteration will exceed the 

application's system time allocation for instance). The 

dynamic model is shown to have high accuracy over a 

number of test cases, even in the presence of interference 
(system activities that are not a part of application 

activities). 

1. Introduction 

Performance modeling is an important tool that can be 

used by a performance analyst to provide insight into the 

achievable performance of a system and/or an application. 

It is only through knowledge of the workload for the 

system that a meaningful performance comparison can be 

made. It has been recognized that performance modeling 

can be used throughout the life-cycle of a system, or of an 

application, from first design through to maintenance [7] 

including procurement and system installation. 

Recent work at Los Alamos National Laboratory 

(LANL) has demonstrated the use of performance 

modeling in many situations, for instance: in the early 

design of systems; during the procurement of new 

systems; in exploring possible optimizations in 

applications prior to implementation [6]; and in verifying 

the performance of ASCI Q system during installation [9] 

– which lead to optimizing the performance of the system 

by a factor of two [14]. Models have also been used to 

compare the performance of large-scale systems including 

several of the highest peak-rated terascale systems such as 

the Earth Simulator and ASCI Q [8]. 

One of the large-scale applications used in these 

studies is SAGE (SAIC's Adaptive Grid Eulerian 

hydrocode). It is a multi-dimensional (1-D, 2-D, & 3-D), 

multi-material, Eulerian hydrodynamics code with 

adaptive mesh refinement (AMR). SAGE has been 

applied to a variety of problems in many areas of science 

and engineering including water shock, energy coupling, 

cratering and ground shock, stemming and containment, 

and hydrodynamic instability problems. SAGE is 

representative of part of the ASC (Accelerated Strategic 

Computing) workload at Los Alamos that routinely runs 

on thousands of processors. An overview of SAGE and its 

sister code, RAGE, is given in [4]. 

A performance model of SAGE has been previously 

developed and validated on a number of systems [6]. 

What makes SAGE interesting for our current work is its 

adaptivity. That is, as the application progresses from 

cycle to cycle, individual spatial cells can be divided or 

combined to provide greater calculation resolution in 

areas of interest. Unfortunately, the adaptation taken over 

the course of an execution cannot be predicted from initial 

conditions. This means that it is not generally possible to 

predict the total execution time (i.e. for all cycles) of 

SAGE. So, the question we seek to answer is, “Can the 

time for the next cycle be dynamically predicted?'”. 

There are a number of uses for this type of dynamic 

modeling (e.g. [1,10]). One is to make runtime decisions 

about the execution of the application. For example, the 

predicted time could be used to decide when to 

checkpoint (e.g. [3,19]). That is, if the next cycle will 

exceed a predefined limit of accumulated time plus the 

optimal checkpoint interval, then a checkpoint should be 

done before the next cycle. Alternatively, the predicted 

time could be used to dynamically determine the number 

of cycles for a particular execution. For example, in a 

batch system, it can be determined (to a relatively high 
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degree of accuracy) whether or not another cycle can be 

completed before the time allocation runs out. This could 

be particularly useful if the scheduler is not very forgiving 

of programs that run over their time limits. 

Equally important is in determining if the predicted 

performance is actually being realized. For instance, is the 

machine working at an optimum level or is it being 

perturbed by external factors (e.g. operating-system noise 

[14] or a transient hardware failure such as an un-seated 

cable in the network). A dynamic performance model is 

able to identify when the expected performance is not 

being achieved.  

Dynamic performance models are also useful for 

scheduling in grid environments (e.g. [2]) perhaps in 

conjunction with network monitoring tools (e.g. [18]). 

This approach allows long-running applications to be re-

allocated as resources wax and wane. The models 

previously used in these applications are often very high-

level or statistical in nature (e.g. [16,17]). Our approach is 

to apply the detailed analytical modeling approach 

developed at LANL to these interesting applications of 

performance analysis. 

In order to provide dynamic predictions, one must 

have an executable version of the performance model. To 

accomplish this we utilize a modified version of a 

performance specification language called CHIP
3
S [13]. 

This is intended to provide predictions through a discrete 

event simulation of the performance characteristics of the 

application code. For our current work, since a high level 

model is known a priori, we can express the model 

directly in the specification language. This greatly 

increases the efficiency of the evaluation and therefore the 

viability of runtime use. 

The rest of this paper is organized as follows. In 

Section 2 we briefly describe key features of the model 

and its implementation. In Section 3 we validate the 

dynamic model using a 64 node HP AlphaServer system 

and a 32 node Itanium-2 cluster. The techniques 

developed here for dynamic performance prediction are 

shown to have reasonable accuracy in all test cases. In 

Section 4 we further test the accuracy of the performance 

model under dynamic conditions and use the model to 

determine optimal checkpoint intervals. 

2. Dynamic Model Implementation 

A performance model can be implemented in a number 

of ways including a straightforward coding in which all 

the analytical details of the performance model form the 

basis for the evaluation, and inputs represent 

characteristics of the system (e.g. communication 

performance, node size, topology etc.) as well as 

characteristics of the current data-set being processed 

(e.g. number of cells, level of adaption etc.). These inputs 

are dynamic and, in the case of the application parameters 

change from cycle to cycle.  

In this work we implemented the performance model 

of SAGE using a performance specification language 

(PSL). A modified version of the CHIP
3
S language was 

utilized for this purpose [13]. A CHIP
3
S model consists of 

a hardware specification (i.e., a system model) and a 

parallel template which implements a task graph

representation of the application. The nodes of the task 

graph are then specified by an application model. This 

results with several input files that together form a 

program that can then be compiled and executed to 

produce performance predictions. Importantly for this 

work is that the executable may be linked with, and hence 

used by, another application using a runtime evaluation 

interface. 

By default a CHIP
3
S application model is a mapping 

from the source code to a performance domain. The 

evaluation system can then take this model specification 

and predict the performance of the individual tasks. 

Although it is perhaps useful to facilitate modeling of 

single-processor performance, we wish to focus primarily 

on interactions of multiple-processors (and minimize the 

evaluation process). In this case, it is more expedient to 

measure the single-processor performance, and predict the 

performance of the parallel application. 

In fact, our approach to performance modeling does 

not currently address the modeling of single-processor 

performance. In most cases it is sufficient to benchmark 

the single-processor time and use the benchmark 

measurement in the model. In the case of strong scaling, 

where the problem size is fixed, the time per element will 

change as the number of elements assigned to each 

processor changes largely due to memory hierarchy 

effects. That is, the greatest performance will be seen 

when each processor's sub-grid fits in cache. In this case a 

simple piecewise model obtained from benchmark 

measurements is required to capture the single-processor 

performance of the application [11]. 

SAGE, however, normally operates in a weak scaling 

mode. That is, a equal number of cells is mapped to each 

processor. In this manner, more processors are used to 

increase the fidelity of the simulation rather than decrease 

the execution time. In general, this would allow a single 

value to be used to model the single-processor 

performance (since the amount of work per processor 

remains constant). However, the adaptive nature of SAGE 

means that the number of cells changes throughout the 

execution of the application. Although the input-deck 

specifies a number of cells per processor at the beginning 

of the execution, the number of cells will typically 

increase as the mesh is adapted. 

To account for this fact, we provide two different 

modes of operation for the dynamic model: 



online mode: timers in the application are used to extract 

a time-per-cell (effectively a grind-time) and by using 

a window over previous cycles, a prediction of the 

run-time for the next cycle can be made using 

knowledge of the number of cells being processed. 

offline mode: uses a detailed analytical model of the 

application and pre-measured computation 

characteristics (application dependent) and 

communication characteristics (application in-

dependent). Thus time-per-cell input is pre-measured. 

The online model works well when the goal is to make 

dynamic decisions at runtime based on current system 

performance. However, it is not a good approach to take 

when verifying the health of the system (i.e., "Are we 

getting the best, expected, performance?"). The time-per-

cell input to the offline model can be obtained by varying 

the number of cells on a single processor benchmark. One 

way to accomplish this is to run a number of cycles on a 

single processor with adaption turned on. This will give 

several performance values which can described by a 

piecewise linear (or logarithmic) curve (e.g., Figure 1). In 

this manner, a baseline single processor performance can 

be obtained that (with high confidence) represents the best 

achievable performance. 

The prediction accuracy of both the online and offline 

models is compared in Section 3. In section 4 the 

effectiveness of both models is examined on a system 

which may be perturbed by un-expected activities. 

3. Model Validation 

It is not our goal here to validate the SAGE 

performance model itself as it has been previously 

validated on many systems [6]. Rather, our overall goal is 

to demonstrate how a performance model can be used 

dynamically at runtime. To that end, we do need to 

validate the executable version of the model and show 

that it can be used with a minimum perturbation to the 

existing code. We do this using three input-decks 

(timing_a, timing_b, and timing_c) for SAGE, that are 

often used to access its performance for a large number of 

cycles, on several different system configurations. A 

summary of the input-decks is given in Table 1 in terms 

of the initial number of cells assigned to each processor 

(which can change due to adaption), and the type of 

calculation performed (hydro and/or heat). 

Table 1. SAGE input-decks 

 Timing_a Timing_b Timing_c 

Initial cells per PE 4,000 4,000 80,000 

Hydo Y Y Y 

Heat N Y Y 

For our experiments, we utilize up to 16 processors of 

a 32 node Itanium-2 Cluster (IA64) and a 64 node 

AlphaServer ES40 Cluster. The Itanium-2 cluster consists 

of two processors per node running at 1.3GHz each with a 

256K L1 cache, 3MB L2 cache, and 2GB main memory. 

The AlphaServer cluster consists of four processors per 

node running at 833MHz each with an 8MB L2 cache and 

2GB main memory. The nodes in both clusters are 

interconnected using the Quadrics QSnet-I high speed 

network with Elan3 switching technology.  

The MPI uni-directional bandwidth and latency 

characteristics measured from a micro-benchmark for 

inter-node communications are listed in Table 2. The 

performance is considered as a set of tuples in which the 

latency characterizes the message start-up component and 

the time per byte characterizes the bandwidth component 

for given message sizes. It should be noted that even 

though the same network is used in both clusters, the 

communication performance can vary due to differences 

in the node design. Bi-directional MPI characteristics as 

well as NIC contention are actually used in the model of 

SAGE [6].  

The measured performance as well as a piece-wise 

performance model for single-processor and single-node 

performance for one of the input-decks (timing_a) is 

shown in Figure 1(a) for an AlphaServer ES40 node, and 

in Figure 1(b) for an Itanium-2 node. 

It is worth noting that we obtained single-node models 

for several cases on each system. This is done in order to 

capture memory contention effects. The maximum 

memory contention will be seen when all processors 

within a node are used. Since, it is possible to use 1-, or 2- 

processors-per-node (and 4 on the AlphaServer), we 

provide models for each case. However, we use all 

processors within a node when the processor-count 

exceeds the node-size. 

Measured and predicted times versus cycle number (up 

to 200 cycles) are shown in Figure 2 for the AlphaServer  

cluster and in Figure 3 for the Itanium Cluster. Note that 

only 1 and 16 processor runs are shown. On each graph 

the three curves depict: measured time, online predicted 

time (using internal application timers for the single-

processor time), and offline predicted time (using the 

piece-wise logarithmic models as shown in Figure 1).  

Table 2. Uni-directional MPI communication 
characteristics (QSnet-1) 

 Message 

Size (B) 

Latency 

( s) 

Time per 

byte (ns) 

AlphaServer 

ES40 Cluster 

 32 

>32 & <512 

 512 

5.6

5.9

8.1

0.0

18.7

5.0

Itanium-2 

Cluster 

 32 

>32 & <512 

 512 

5.0

7.6

11.0

0.0

8.9

4.6
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Figure 1. Time per cell vs. cell count (timing_a) 

The average errors across all cases when using the 

online and offline model are summarized in Table 2 for 

the AlpaServer cluster and in Table 3 for the Itanium-2 

cluster. More configurations than shown in Figures 2-3 

are considered in this summary. In general, the predicted 

time tracks the measured time very well. The average 

error varies from 3.4% to 11.0%. It is also worth noting 

that the predictions change in discrete steps, although this 

distinction diminishes as the processor-count increases. 

This is due to the fact that the predicted time changes 

when adaption takes place. In fact, it can be inferred from 

the model predictions precisely when adaption occurred. 

4. Model Run-time Use 

Once we are confident in the capability of the model, it 

can be used to explore diverse performance scenarios. For 

the following  experiments  the  first input-deck to  SAGE 

Table 3. Average prediction error, AlphaServer 

 timing_a (%) timing_b (%) timing_c (%) 

PEs online offline online offline online offline 

1 5.6 5.0 3.4 4.2 3.6 4.8 

2 5.5 3.4 4.9 3.0 4.3 4.6 

4 5.4 3.4 4.6 3.7 6.4 5.1 

8 4.7 4.7 3.9 5.5 5.65 6.6 

16 4.5 9.1 3.9 7.7 5.4 10.6 

Table 4. Average prediction error, Itanium-2 

 timing_a (%) timing_b (%) timing_c (%) 

PEs online offline online offline online offline 

1 5.9 11.0 3.8 5.9 4.9 5.0 

2 8.0 9.6 6.7 7.2 5.7 5.9 

4 8.3 5.3 6.8 3.5 8.3 6.2 

8 8.1 4.7 6.0 3.3 7.45 7.6 

16 8.4 8.6 5.8 6.0 10.2 8.4 

(timing_a) is used on 16 Itanium-2 processors (8 nodes), 

although the results are applicable to other configurations.  

The model is first used to determine the optimal 

checkpoint interval using Young's equation [19]. 

Mδτ 2=      (1) 

where  is the time required to perform a checkpoint and 

M is the mean time between failures.  

In our case, we want the checkpoint interval  to be an 

integral number of cycles. That is, at each cycle, we check 

to see if the predicted time for the next cycle will exceed 

. The optimal checkpoint intervals calculated using this 

approach are shown against the accumulated time in 

Figure 4. For demonstration purposes we have assumed 

M=10 min. Note that this is a much lower value (i.e., 

higher failure rate) than we can reasonably be expected 

for most systems, where M is more likely expressed in 

terms of days. For this analysis we have also chosen  = 

10 sec, largely based on the analysis in [15]. 

It is not surprising that the number of cycles between 

suggested checkpoints decreases as the cycle number 

increases. That is, the first checkpoint occurs after cycle 

27, but the next one follows cycle 43. This is because the 

time per cycle steadily increases, as can be seen in Figure 

3(b) (which is the same run). For this example, we have 

assumed a constant value for . However, as with the 

single-processor time,  will also increase as the number 

of cells-per-processor increases [15]. 

The adaptability of the model is exercised through 

imposing intentional interference. Interference in this case 

is an external activity on the system that impacts on the 

application performance. We accomplish this by 

bypassing the job control system and logging in directly 

to one of the compute nodes in the cluster. A memory 

intensive kernel is then executed on one processor in the 

compute node to perturb, or slow-down, the application.  
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Figure 2. Measured and predicted performance of SAGE on the AlphaServer ES40 cluster on 1 
and 16 processors. 
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As we see in Figure 5(a) the measured time 

approximately doubles after the start of the interference 

from cycle 50 – this is what would be expected since the 

system is now effectively running two jobs rather than 

just one. The interference is shown by the two-value 

curve in the upper part of the graph. As expected the 

offline model continues to predict the non-perturbed 

execution time (using pre-measured timing information). 

The online model, on the other hand, gradually catches up 

with the measured time. The reason that the online model 

does not immediately change is that a large window size 

is used to estimate the time-per-cell. In this case a 

window that extends back to the first cycle is used. 

In Figure 5(b) a similar experiment is undertaken, with 

interference that consists of multiple phases with a delay 

between the phases in which the interference is switched 

on and off. In this case, the online model again gradually 

catches up to the measured time and is not significantly 

affected by the periodic return to the non-perturbed state. 

The measured time oscillates between the online (with 

interference) and offline (without interference) models. 

Finally, we illustrate the effect of the window size on the 

online model in Figure 5(c). Here we have reduced the 

window size such that only the previous cycle is used to 

estimate the current time-per-cell. In this case the online 

model tracks the measured time closely and returns to the 

non-perturbed execution time (and the offline prediction) 

once the interference is terminated. 

These experiments illustrate that an online model will 

adapt to changes in the system, and indeed with a small 

window, will not recognize when the system is not 

achieving a good performance level. The offline model 

conversely can be used to recognize when the system is 

not achieving its optimal performance level and hence be 

used as part of a diagnostic process in order to determine 

what part of the system is not performing as expected. 
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Figure 5. Measured and predicted times 
for a system with interference. 



5. Summary 

In this work we have presented a method by which a 

performance model can be used to dynamically predict 

the individual cycles of an adaptive mesh refinement 

hydrodynamics code. The dynamic model is shown to 

perform with high accuracy and has low overhead. We 

have shown how the dynamic model can be used to 

determine optimal checkpoint intervals and further 

demonstrate the adaptability of the model by introducing 

interference during the application run. 

We believe performance modeling is key to building 

performance engineered applications and architectures. 

The techniques presented here are general and can be 

easily retargeted to use other performance models such as 

our work on structured grid particle transport modeling 

[5], unstructured mesh particle transport [11], and Monte-

Carlo simulation [12]. In particular, an executable model 

could be used at the beginning of these applications to 

determine optimal or near optimal partitioning strategies 

or to configure input parameters. For example, given a set 

number of processors the Monte-Carlo model could be 

used to determine the number of particles to simulate. 
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