
A Multiprocessor Architecture for the Massively Parallel Model GCA

Wolfgang Heenes, Rolf Hoffmann, and Johannes Jendrsczok

TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Hochschulstraße 10, D-64289 Darmstadt, Germany

Phone +49 6151 16 {5312, 3606}, Fax +49 6151 16 5410
{heenes, hoffmann, jendrsczok}@ra.informatik.tu-darmstadt.de

Abstract

The GCA (Global Cellular Automata) model con-
sists of a collection of cells which change their states
synchronously depending on the states of their neigh-
bors like in the classical CA model. In differentiation to
the CA model the neighbors are not fixed and local, they
are variable and global. The GCA model is applicable
to a wide range of parallel algorithms. In this paper
a multiprocessor architecture for the massively paral-
lel GCA model is presented. In contrast to a special
purpose implementation of a GCA algorithm the mul-
tiprocessor system allows the implementation in a flexi-
ble way through programming. The architecture mainly
consists of a number of cell processors and a network.
The cell processors are dedicated RISC processors, the
network is a crossbar implemented with multiplexers.
Only read-accesses through the network are necessary
in the GCA model leading to a simplified structure. A
system with 32 processors was implemented as a pro-
totype on a FPGA. The analysis and implementation
results have shown that the performance of the system
scales very well with the number of processors.

1. Introduction

The GCA (Global Cellular Automata) model [8] is
an extension of the classical CA (Cellular Automata)
model [9]. In the CA model the cells are arranged in
a fixed grid with fixed connections to their local neigh-
bors. Each cell computes its next state by the applica-
tion of a local rule depending on its own state and the
states of its neighbors. The data accesses to the neigh-
bors states are read-only and therefore no write con-
flicts can occur. The rule can be applied to all cells in
parallel and therefore the model is inherently massively

parallel. The CA model is suited to all kind of appli-
cations with local communication, like physical fields,
lattice-gas models, models of growth, moving particles,
fluid flow, routing problems, picture processing, genetic
algorithms, and cellular neural networks.

The GCA model is a generalisation of the CA model
which is also massively parallel. It is not restricted
to the local communication because any cell can be a
neighbor. Furthermore the links to the neighbors are
not fixed; they can be changed by the local rule from
generation to generation. Thereby the range of parallel
applications is much wider for the GCA model. Typical
applications besides the CA applications are graph al-
gorithms, hypercube algorithms, logic simulation [10],
numerical algorithms, communication networks, neu-
ronal networks, games, and graphics.

The state of a GCA cell consists of a data part and
one or more pointers (Fig. 1). The pointers are used
to dynamically establish links to global neighbors. We
call the GCA model one handed if only one neighbor
can be addressed, two handed if two neighbors can be
addressed and so on. In our investigations about GCA
algorithms we found out that most of them can be de-
scribed with only one link.

The aim of our research is the hardware and soft-
ware support of this model. There are mainly three
possibilities for an implementation.

1. Fully Parallel Architecture. A specific GCA
algorithm is directly mapped into the hardware us-
ing registers, operators and hardwired links which
may also be switched if necessary. The advantage
of such an implementation is a very high perfor-
mance [3], but the problem size is limited by the
hardware resources and the flexibility to apply dif-
ferent rules is low.

2. Partially Parallel Architecture with Mem-
ory Banks. This architecture [5, 7] offers also a

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. The operation principle of the GCA

high performance, is scalable and can cope with a
large number of cells. The flexibility to cope with
different rules is restricted.

3. Multiprocessor Architecture. This architec-
ture [4] is not as powerful as the above two ones,
but it has the advantage that it can be tailored
to any GCA problem by programming. It allows
also integrating standard or other computational
models.

In this contribution we are presenting a multiprocessor
architecture for the GCA model which was also imple-
mented in FPGA logic.

2. A Multiprocessor Architecture

2.1. Design Goals

• The system shall consist of a master processor, p
cell processors with local memories and an inter-
connection network (Fig. 2).

• Each cell processor can hold a part of the GCA
cell field of the application.

• A cell processor can modify only its own cells in
its local memory.

• Each cell processor has only read access to the
other (external) cell processors, write accesses
need not to be implemented due to the GCA
model.

• The local GCA rule shall be programmable by pro-
cessor instructions.

• The processor instructions shall support the ac-
cesses to the cells in the local memory the read
accesses to external cells stored in the other pro-
cessors.

The tasks of the master are

• initializing the cell processors with program and
data.

• central control and synchronization.

• optionally supplying the cell processors with gen-
eral parameters, counters or identical instructions.

The network interconnects the master and the cell
processors. Depending on the type of the GCA al-
gorithm the communication pattern between the cells
can be simple (regular and symmetric) or complex (ir-
regular and not symmetric). Therefore the network
complexity depends on the complexity of the commu-
nication patterns which is needed for the class of GCA
algorithms to be implemented. For many GCA algo-
rithms [2] the communication pattern is rather simple
which simplifies the design of the network. Simple or
specialized networks can be implemented with multi-
plexers or fixed connections, complex networks have to
be able to manage concurrent read accesses to arbitrary
external memory locations. As in the GCA model a cell
is not allowed to modify the contents of another cell,
the network design is simplified because write accesses
need not to be implemented.

2.2. Evaluation of the General Architecture

In order to get a feeling about the performance of
such a GCA multiprocessor architecture a mathemati-
cal model was developed. The model takes into account
the probabilities for internal (local) and external mem-
ory accesses and allows predictions upon the time for
the computation of a cell rule depending of the number
of processors.

• The number of cell values to be computed in one
generation is N . Each cell has L (global) neigh-
bors.

Figure 2. General System Architecture

• The number of cell processors is p.

• Each cell processor processes n = N/p cells, where
N can be divided by p without remainder.

The time to compute one generation (n cells in par-
allel) is T = n·tRule, where tRule is the time to compute
the local rule on a cell processor. The time tRule con-
sists of the following parts:

• tReadSelf(internal) = t0
The time to read the cell data from the local/in-
ternal memory.

• tReadNeighbor

The time to read the cell data of a neighbor. In
the case the neighbor cell is in the internal memory
the time shall be tReadNeighbor(internal) = t0. In
the other case if the neighbor is in an external
memory (memory of another cell processor) the
time shall be defined as tReadNeighbor(external) =
e(p) · t0 meaning that it takes e(p) times longer
than an internal access. Also the external access
may increase with the number of processors p in a
certain way.

• tCompute = c · t0
The time to compute the local rule.

• tWriteSelf(internal) = t0
The time to store the resulting cell value in the
internal memory.

The probability to hit a neighbor cell in the internal
memory is

P (ReadNeighbor(internal)) =
n

N
,

if the probability to access an arbitrary cell is equally
distributed. Then the probability to access a neighbor
which is located on another cell processor (external ac-
cess) is

(1 − P (ReadNeighbor(internal))).

The average time to access a neighbor cell is then

tReadNeighbor = tReadNeighbor(internal)

·P (ReadNeighbor(internal))
+ tReadNeighbor(external)

·(1 − P (ReadNeighbor(internal))).

The time T to compute one generation with access
to L neighbors will be

T = (tReadSelf(internal)

+(tReadNeighbor(internal)

·P (ReadNeighbor(internal))
+ tReadNeighbor(external)

·(1 − P (ReadNeighbor(internal)))) · L
+ tCompute + tWriteSelf(internal)) · N

p
.

With P (ReadNeighbor(internal)) = 1
p we get the

following result

T = (1 + (
1
p

+ e(p) · (1 − 1
p
)) · L + c + 1) · t0 · N

p
.

Now the relative speed-up shall be evaluated. If only
one processor is available, no external references are
necessary and the formula for T can be simplified to

T = (2 + L + c) · t0 · N.

In the other extreme case the number of cells is equal
to the number of processors, the time to compute one
generation is

T = (2 + e(p) · L + c) · t0.

In the normal case, the number of cells is greater
than the number of processors and the cells can
be equally distributed to the processors, the relative
speed-up will be

S(p) =
(2 + L + c) · p

(2 + (1
p + e(p) · (1 − 1

p)) · L + c)
.

Fig. 3 shows the speed-up for the common case L=1
(one neighbor). The parameter e(p) describes the cost
of an external access relative to an internal access. In
the case the external access cost is not a constant, the
function e(p) = 1 + h · p (fixed cost plus incremental
cost) was assumed as an example. The real cost of
external accesses will depend on how efficient the in-
terconnection network can handle the communication
pattern desired by the GCA algorithm.

3. FPGA Prototype Implementation

A prototype of the multiprocessor architecture was
designed and implemented for a FPGA (Altera Cy-
clone II) [1]. The system consists of p cell processors
without a dedicated master. One of the cell processors
takes over the tasks of the master. The cell processors
are RISC processors. The processor design is simple
compared to standard microprocessor because the re-
sources or the FPGA were limited. The goal was to

20 40 60 80 100 120

20

40

60

80

100

120

Processors

R
el

at
iv

 S
pe

ed
−

U
p

e=1

e=2

e=5

e=1 + p / 8

Figure 3. Speed-Up

build a prototype system in order to study the prin-
cipal behaviour of such an implementation. Therefore
the processors are not optimized, e. g. the execution
of the instructions is not pipelined.

The components of a cell processor are:

• Program Memory. The size is 256 words of 24
bits. The program is loaded into it during the
initialization phase.

• Data Memory. The size is 256 words of 16 bits.
It consists of two parts, each with 128 words. The
two parts are necessary, because the old genera-
tion of cells has to be available whilst the new
generation is computed. Beside the cells data also
arbitrary local variables are stored in this memory.

• Register File. The size is 16 words of 16 bits.
The registers R8..RE are general purpose, the reg-
isters R0..R7 and RF are special purpose.

• Dedicated Registers:

– R0 = S: status register

– R1 = PC: program counter

– R2 = CD: actual cell data

– R3 = ECA: pointer to an external cell in an-
other processor

– R4 = ECD: cell data of the addressed exter-
nal cell

– R5 = MD: data to/from the data memory

– R6 = MA: address to data memory

Figure 4. Cell Processor

– R7 = C: register which is loaded with con-
stants from program memory

– RF = CID: actual address/position of the cell

• ALU. The ALU is connected to arbitrary registers
and to the status register.

• Program Address Logic. The program address
logic computes the next program address.

• Control Unit. The Control Unit interprets the
master control information and the local instruc-
tion.

3.1. Instruction Set of the Cell Processor

The instructions are 24 bits wide (Tab. 1). The
instructions operate only on registers, therefore we call
this type of architecture VRISC (very much reduced
instruction set computer). The instruction fields are:

• T: Instruction type

• OPC: ALU operation

• Rd: Register address destination

• Rs1, Rs2: Register address source

• L: Target address (label)

• K: Constant

• C: Selection of a condition

All instructions are only executed if the selected con-
dition is true. A condition (C) is a selected bit from
the status register S. Available conditions among oth-
ers are Carry=ST(8), Zero=ST(9), Negative=ST(10),
Overflow=ST(11), False=ST(0), True=ST(1).

T OPC Rd Rs1 Rs2 C
0 dop Rz Rx Ry i Rz := Rx dop Ry
1 mop Rz Rx i Rz := mop Rx
9 K i R7 := constant
11 Rx Ry i compare
2 L i jmp L
3 R5 R6 i R5 := MEM(R6)
4 R6 R5 i MEM(R6) := R5
5 R4 R3 i R4 := ext.(R3)
10 i nop
12 i end

23..16 15..8 7..0

Table 1. Instructions

Instruction typ 0 is a dyadic operation on registers.
Operators are AND, OR, ADD and MUL. Instruction
1 is a monadic operation on registers. Monadic oper-
ations are SHIFT, NOT, MOV and logical reduction.
Instruction 9 loads a 16-bit constant K into the reg-
ister R7. Instruction 11 compares two registers and
sets the condition bits of the status register. Instruc-
tion 2 conditionally sets the program counter to the
target address L. Instruction 3 reads data from the ad-
dress R6 of the local memory MEM into the register
R5. Instruction 4 writes data into the local memory.
Instruction 5 reads data from an external memory loca-
tion R3 to the register R4. There are also some special
instructions for synchronization of the cell processors
(WAIT, READY, GO).

3.2. Some Implementation Details

The prototyping platform was a Cyclone FPGA
with the Quartus synthesis software from Altera. The
Cyclone II FPGA contains 68,416 logic elements (LE)
and 1,152,000 RAM bits. The implementation lan-
guage was Verilog HDL. The cell processor system with
p = 32 processors was implemented with 56% of the

available logic elements and 28% of the RAM bits (Tab.
2). The maximum clock frequency was around 85 MHz.

In the current prototype implementation every in-
struction needs six cycles for execution. The optimiz-
ing of the cell processor is under work, e. g. minimizing
the number execution cycles, pipelining and the exten-
sion of the instruction set.

p total LEs memory register max.
LE for bits bits clock

network (MHz)
1 843 0 10,240 355 96.45
4 3,573 192 40,960 1,424 91.27
8 7,553 768 81,920 2,844 90.63
16 16,625 2,816 163,840 5,692 89.69
32 38,367 11,264 327,680 11,392 84.65

Table 2. Ressources and clock rate

The communication network was implemented as a
read-only crossbar consisting of multiplexers. Each
processor has direct access to any other processors.
The cost of the network in terms of logic elements
and the time delay was not of significant relevance for
p = 32 processors.

In order to test cost and delay of the network was
investigated. The network consists of multiplexers. A
one bit multiplexer was synthesized separately. The
number of logic elements shown in the table 3 has to
multiplied with the number of processors and the width
of the external data bus.

The multiprocessor system had been simulated in
JAVA before the synthesis process was started. A
cross assembler is available to facilitate the machine
programming.

multiplexer logic elements stages delay
4 : 1 3 2 5.2 ns
8 : 1 6 3 6.4 ns
16 : 1 11 4 7.5 ns
32 : 1 22 5 10.2 ns
64 : 1 43 6 11.9 ns
128 : 1 86 7 12.7 ns
256 : 1 171 8 16.5 ns
512 : 1 342 9 17.5 ns

Table 3. Cost and delay of multiplexers

4. An Application: Merging of Bitonic
Sequences

The principle of operation of the cell processor sys-
tem will be demonstrated by the parallel merging of
bitonic sequences. The result of merging two bitonic
sequences is a sorted sequence of values. A sequence
is bitonic if the values are increasing to a maximum
and then decreasing. If such a sequence is cyclically
shifted it remains bitonic. Bitonic sequences can be
constructed from an unsorted sequence by applying
nearly the same principle as merging.

In the fully parallel GCA model each cell holds its
own value and compares it with the neighbor’s cell
which is in changing distance which is powers of two.
If the own value has not the desired relation (e. g. as-
cending order) it will change its own value to the value
of the neighbor. If a pointer points to higher indexed
cell the minimum is computed, otherwise the maxi-
mum. The number of generations is log2(N), where N
is the number of cells.

If the GCA model is sequentially executed on one
processor, n steps are necessary in each generation
leading to a total number of n · log2(N) steps.

The algorithm can be described in the language CDL
[6] which was developed in order facilitate the descrip-
tion of cellular algorithms. A cell state consists of
cell.data and the pointer cell.other. The pointer to the
global neighbor is denoted with other.

Listing 1. CDL Program for Bitonic Merge

var other : celladdress ;

w, a : integer ;

rule begin

if ((cell.own_pos

and cell.other_pos)= 0) then begin

other := [cell.other_pos];

w := *other.data;

a := *cell.data;

if (w < a) then cell.data := w;

end

else begin

other := [cell.other_pos];

w := *other.data;

a := cell.data;

if (a < w) then cell.data := w;

end ;

cell.other_pos := cell.other_pos / 2;

/* Address 64,32,16,8,4,2,1 */

end;

The CDL program (Listing 1) accesses the neighbors
via relative addresses (±m/2) in the first generation,
(±m/4) in the second and so on. The neighbor may
also be accessed via absolute addresses. In this case
the neighbor’s address can be derived from the own

Figure 5. Bitonic Merge with four processors
and 16 cells

address (or space index) of the cell, inverting a bit of
the own address. The bits to be inverted are counted
from the MSB to the LSB, according to the generation
increment. In the prototype implementation absolute
addressing of the neighbors was used.

The system was implemented for p = 1, 2, 4, 8, 16, 32
processors and N = 128 cells. In each processors are
hold n = N/p cells. In the first processing part only
internal cells are compared (Fig. 5). We call these
generations internal generations (GI). In the second
processing part only external cells are compared. We
call these generations external generations (GE).

The total number of generations is

G = log2(N) = GE + GI = log2(p) + log2(n).

In order to compute the time for the external pro-
cessing, GE has to multiplied with the number n of
internal cells (because they sequential exchanged via
the communication net) and multiplied with a factor

te, representing the time for one external operation (op-
eration with external access) TE = GE · n · te.

In order to compute the time for the internal pro-
cessing, GI has to be multiplied with the number n of
internal cells (because they sequentially activated) and
multiplied with a factor ti, representing the time for
one internal operation TI = GI · n · ti.

Thus the total estimated time T is

T = TE + TI = log2(p) · N

p
· te + log2(

N

p
) · N

p
· ti.

For our implementation (Listing 2) the time was ex-
actly counted in number of instructions

TI = 7 + GI · (17 · n + 7)
TE = (4 + 10 · n) · GE

These formulas include additional constant parts
which correspond to initialization code.

The number of needed instructions and the relative
speed-up for p and N = 128 is shown in the table 4.

processors instructions rel. speed-up
p=1 15288 1.00
p=2 7221 2.12
p=4 3410 4.48
p=8 1615 9.47
p=16 772 19.80
p=32 377 40.55

Table 4. Number of instructions

The table shows a slight super linear speed-up. This
is due to the fact that the code for the external gen-
erations is faster than the code for the internal gener-
ations. Two internal cells which are linked with each
other can simultaneously change their values whilst two
linked internal cells have to be processed one after the
other.

The listing 2 shows the assembler program running
on each cell processor. It consists of one part which
handles the external operations and one part which
handles the internal operations.

Listing 2. Program for the first processor,
case p = 4

0 load_c − begin of part 1
1 r8 = r7 − constant 1 for incrementing
2 load_c 0 − constant 0 for comparing
3 r9 = r7

4 load_c 16 − relative distance for the
5 ra = r7 − first step
6 rf = r9 − address offset, address space 0
7 load_c 32 − address offset, address space 1

8 rc = r7

9 load_c 31 − Label 5: inner counter variable
10 rb = r7

11 r6 = rb add rf − Label 3: load value A to
12 load − register Rd
13 rd = r5

14 r0 = rb and ra − relative distance & address
15 if st(9) jump 22 − jump to label 1
16 r6 = r6 sub ra − address minus the current
17 load − relative distance
18 re = r5 − load value B to register Re
19 cmp rd,re − compare the values of A and B
20 if st(2) rd = re − if greater then exchange
21 jump 28 − jump to label 2
22 r6 = r6 add ra − Label 1: address plus relative
23 load − distance
24 re = r5 − load value B to register Re
25 cmp re,rd − compare the values of A and B
26 if st(2) rd = re − if greater then exchange
27 jump 28 − jump to label 2
28 r6 = rb add rc − Label 2: calculate new address
29 r5 = rd

30 store − store the cell
31 rb = rb sub r8 − inner counter variable minus one
32 if st(a) jump 34 − if zero jump to label 4
33 jump 11 − else jump to label 3
34 r0 = rf − Label 4: exchange offsets
35 rf = rc

36 rc = r0

37 ra = shr ra − calculate the relative distance
38 if st(9) jump 40 − if zero jump to label 6
39 jump 9 − else jump to label 5

40 load_c 63 − Label 6: begin of part 2
41 r6 = r7 − address = address of the last
42 load_c 2 − value in memory
43 r3 = r7 − cell address = 2
44 load_c 31 − 1st address of the memory space
45 load − Label 7: load value
46 r2 = r5 − cell content = data value
47 load_g − global load
48 cmp r4,r5 − compare cellcontent & local data
49 if st(2) r5 = r4 − if greater then exchange
50 store − store value
51 r6 = r6 sub r8 − address minus one
52 cmp r7, r6 − compare values
53 if st(6) jump 55 − break condition jump to label 8
54 jump 45 − else next step

55 load_c 63 − Label 8: begin of part 3
56 r6 = r7 − address = address of the last
57 load_c 1 − value in memory
58 r3 = r7 − cell address = 1
59 load_c 31 − 1st address of the memory space
60 load − Label 9: load value
61 r2 = r5 − cell content = data value
62 load_g − global load
63 cmp r4,r5 − compare cellcontent & local data
64 if st(2) r5 = r4 − if greater then exchange
65 store − store value
66 r6 = r6 sub r8 − address minus one
67 cmp r7, r6 − compare values
68 if st(6) jump 70 − break condition jump to label 10
69 jump 60 − else next step
70 end − Label 10: end of part 3

5. Conclusion

A programmable multiprocessor architecture for the
massively parallel GCA model was designed and im-
plemented as a prototype in FPGA technology. The
architecture consists of p cell processors with internal
memories and a read-only interconnection network.

Compared to a dedicated implementation the pro-
posed architecture is very flexible because it can be eas-
ily adapted to different GCA algorithms by program-
ming. The speed-up of the prototype increases linear
with the number of processor for the investigated algo-
rithm. Also for other implemented algorithms (vector
reduction, transitive hull) the speed-up was linear. The
implementation of the network is relatively simple be-
cause it consists only of cascaded multiplexers. If the
number of processors gets very high, the cost and time
delay of the network have to be taken into account.

If the external processor offers the external cell
data at the right moment to the demanding proces-
sor, no synchronization overhead downgrades the per-
formance. Therefore the program should reflect the
desired communication pattern of the GCA algorithm
in order to minimize the synchronization overhead.

References

[1] Altera. http://www.altera.com/literature/hb/

cyc2/cyc2_cii5v1.pdf, 2005.
[2] W. Heenes. Globaler Zellularer Automat: Algorith-

men und Architekturen. Masterthesis, Technische Uni-
versität Darmstadt, 2001.

[3] W. Heenes, R. Hoffmann, and S. Kanthak. FPGA Im-
plementations of the Massively Parallel GCA Model.
In International Parallel & Distributed Processing
Symposium (IPDPS), Workshop on Massively Parallel
Processing (WMPP), 2005.

[4] W. Heenes, J. Jendrsczok, and R. Hoffmann. Eine
massivparallele Rechnerarchitektur für das GCA Mod-
ell. In PARS Workshop, Gesellschaft für Informatik
(GI), 2005.

[5] W. Heenes, K.-P. Völkmann, and R. Hoffmann. Ar-
chitekturen für den globalen Zellularautomat. In 19th
PARS Workshop, 2003.

[6] C. Hochberger. CDL - Eine Sprache für die Zel-
lularverarbeitung auf verschiedenen Zielplattformen.
PhD thesis, Technische Universität Darmstadt, 1998.

[7] R. Hoffmann, K.-P. Völkmann, and W. Heenes. GCA:
A massively parallel Model. In International Parallel
& Distributed Processing Symposium (IPDPS), Work-
shop on Massively Parallel Processing (WMPP), 2003.

[8] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, and
W. Heenes. GCA: Global Cellular Automata, A Flex-
ible Parallel Model. In 6th International Conference
on Parallel Computing Technologies (PaCT), 2001.

[9] J. von Neumann. Theory of Self-Reproducing Au-
tomata. University of Illinois Press, Urbana and Lon-
don, 1966.

[10] C. Wiegand, C. Siemers, and H. Richter. Definition
of a configurable architecture for implementation of
global cellular automaton. In 17th International Con-
ference on Architecture of Computing Systems (ARCS
2004), 23-26 March 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

