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Abstract

Reconfigurable hardware devices, such as FPGAs, are
increasingly used in embedded systems. To utilize these de-
vices for real-time work loads, scheduling techniques are
required that generate predictable task timings.

In this paper, we present a partitioning-EDF (earliest
deadline first) approach to find such schedules. The FPGA
area is partitioned along one dimension into slots. The tasks
are partitioned into groups. Then, each group is scheduled
to exactly one slot using the EDF rule. We show that the
problem of finding an optimal partitioning is related to the
well-known 2-dimensional level bin-packing problem. We
extend a previously reported ILP model to solve our par-
titioning problem to optimality. By a simulation study we
demonstrate that the partitioning-EDF approach is able to
find feasible schedules for most task sets with a system uti-
lization of up to 70%. Additionally, we allow a task to be
realized in alternative implementations. A simulation study
reveals that the scheduling performance increases consid-
erably if three instead of one task variants are considered.
Finally, we model and study the impact of the device recon-
figuration time on the scheduling performance.

1 Introduction and Related Work

Reconfigurable hardware devices, such as the field-
programmable gate array (FPGA), are general-purpose de-
vices that can be programmed after fabrication. The major
resource offered by an FPGA is an array of configurable
logic blocks which allows the realization of arbitrary digital
circuits. FPGAs are increasingly used in embedded systems
as they can deliver a unique trade-off between processor-
based solutions and application-specific circuits with re-
spect to performance, cost, and energy efficiency.

SRAM-based FPGA variants can be re-programmed ar-

bitrarily often, even at runtime. Runtime reconfiguration [4]
opens up the way to multitasking digital circuits on FPGAs.
To manage the reconfigurable resources and the execution
of circuits, also denoted as hardware tasks, a runtime sys-
tem is required. A preemptive runtime system is able to
stop a hardware task, save its context, and later on restore
the context and resume the task. Concepts and implementa-
tions of preemptive runtime systems for FPGAs have been
described in, e.g., [5, 13, 11].

The algorithmic challenge in developing a runtime sys-
tem is to design effective and efficient algorithms for the
scheduling and placement of hardware tasks. Such prob-
lems have been studied in, e.g., [1, 15, 8, 13, 10, 3, 9] and
also under real time constaints in, e.g., [7, 14]. Most au-
thors assume a 2-dimensional area model where tasks are
modeled as relocatable rectangles which can be placed any-
where on the FPGA device by partial reconfiguration.
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Figure 1. One-dimensional Execution Model

In this work, we develop and investigate a method for
scheduling periodic real-time tasks onto a partially re-
configured device using a one-dimensional area model as
shown in Fig. 1. The device resource is partitioned into
slots that can accommodate hardware tasks. At any time, at
most one hardware task is allocated to a slot. Compared to
two-dimensional area models, the one-dimensional model
potentially leads to a lower device utilization. However,
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there are two key advantages. First, the one-dimensional
model is supported by commercial devices that are able to
reconfigure the device in vertical frames, e.g., Xilinx Vir-
tex. Second, task communication and I/O can be realized
by a communication system running across the slot struc-
ture [17, 16], either within the device or externally [2].

The contributions of this paper are twofold. First,
we adapt the EDF (earliest deadline first) partitioning ap-
proach known from multiprocessor scheduling to the one-
dimensional, slot-based FPGA execution model. Second,
we allow for variants of tasks differing in area and speed
characteristics, e.g., fast but resource-consuming imple-
mentations and slower but resource-sparing versions. This
is a common design option for reconfigurable hardware
cores. As a result, we can offer a scheduling strategy to-
gether with a feasibility test for periodic task sets on recon-
figurable hardware systems.

Section 2 presents the resource and execution models
used in this work and defines basic terms and metrics. In
Section 3, we propose an EDF partitioned scheduling ap-
proach respecting implementation variants for tasks, pose
several scheduling-related questions, and establish the rela-
tionship between our scheduling problem and bin-packing
problems. Section 4 introduces the binary integer linear
program (BIP) to find the optimal partitioning. The per-
formance of our scheduling approach and the benefits of
having implementation variants for tasks are evaluated in
Section 5. In Section 6, we study and evaluate the impact of
the reconfiguration time overhead on the scheduling perfor-
mance. Section 7 concludes the paper and points to future
work.

2 The Scheduling Problem

2.1 Task and Resource Models

We consider the scheduling of a set of n periodic tasks
� = {Γ1, Γ2, . . . Γn} onto a reconfigurable device H . The
instances Γi,j of task Γi are released with period Pi. Each
task instance is associated with an absolute deadline di,j .
We assume that the relative deadline of Γi equals its period.

Each task Γi exists in one or more implementation vari-
ants Γi = {T 1

i , T 2
i , . . .}. Each variant T k

i ∈ Γi is specified
by a worst-case computation time Ck

i and the amount of
required reconfigurable logic resources Ak

i .
Table 1 shows an example task set with four periodic

tasks �∗ = Γ1, Γ2, Γ3, Γ4. The first two tasks have two
implementation variants.

2.2 Execution Model

The considered reconfigurable hardware device H offers
a certain amount of computational resources A(H), i.e., the

Γi T k
i Pi Ck

i Ak
i UT (T k

i ) US(T k
i )

Γ1 T 1
1 12 3 6 1/4 3/2

T 2
1 6 3 1/2 3/2

Γ2 T 1
2 4 2 4 1/2 2

T 2
2 1 8 1/4 2

Γ3 T 1
3 6 5 3 5/6 5/2

Γ4 T 1
4 12 2 2 1/6 1/3

Table 1. Example task set with variants �∗

configurable logic blocks of an FPGA. These resources are
also referred to as the area of the device. In order to per-
form the requested execution of a task instance Γi,j , one
of the task’s implementation variants T k

i has to be loaded
(configured) onto the device and executed for Ck

i time units.
During this execution, an amount Ak

i of the device area is
occupied.

2.3 Feasible Schedule

Generally spoken, we would like to schedule and exe-
cute a set of periodic tasks on the reconfigurable device
such that each task instance meets its deadline. Let Γ de-
note the unified set of all implementations of all tasks, i.e.,
Γ = {Γ1 ∪ Γ2 ∪ · · · ∪ Γn}. A schedule for a set of peri-
odic tasks � is given by function R : R+ → P(Γ). R(t)
denotes the set of task implementations from Γ running at
time t. A schedule is called feasible, if for each request ri,j

of task Γi one of its implementations T k
i ∈ Γi is scheduled

for execution for at least Ck
i time units within the interval

given by the release time and deadline of Γi.
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Figure 2. Preemptive (global) schedule

As an example, Fig. 2 displays a possible schedule for
the task set shown in Table 1. The upper part of Fig. 2 indi-
cates the release times and deadlines of the tasks. The lower
part illustrates which instances of the tasks are executed,
and how they share the device area over time. The schedule
shown can easily be proven feasible, because every task in-
stance meets its deadline for the entire hyper-period of the
task set (which amounts to 12 time units). The hyper-period



is the least common multiple of all task periods. A feasible
schedule defined over the hyper-period can be repeated an
infinite number of times.

We are interested in finding answers to following ques-
tions:

1. Given a task set �, can we execute it on a reconfig-
urable device H with area A(H), such that all dead-
lines are met?

2. What is the size of the smallest device on which � can
be feasibly executed?

3. How does this feasible schedule R look like?

2.4 Utilization Metrics

We define two utilization metrics to measure the com-
putational load generated by the task implementations of a
task set. The time-utilization given by

UT (T k
i ) =

Ck
i

Pi
(1)

is the fraction of time a certain task implementation T k
i oc-

cupies the device in order to complete its execution. The
cumulative time-utilization for a set of task-variants Γ̃ ⊆ Γ
is defined as UT (Γ̃) =

∑
T k

i ∈Γ̃ UT (T k
i ). Obviously, a set

of task implementations Γ̃ cannot be executed sequentially
if UT (Γ̃) > 1. Since a running task usually does not occupy
the entire device, we define a system-utilization metric that
captures the degree by which the device is utilized by T k

i :

US(T k
i ) = UT (T k

i ) · Ak
i (2)

In order to measure the load generated by a task set �,
we now define the total system-utilization of a task set by
summing up the system utilization factors of all tasks. If
a task has several alternative implementations, we account
the one with the minimal system-utilization:

US(�) =
∑
Γi∈�

min
T k

i ∈Γi

(
US(T k

i )
)

(3)

Thus, US(�) is the minimum amount of combined area
and time required by the task set. If US(�) > A(H) · 1,
no feasible schedule exists since the system is utilized more
than 100%. We use the US metric in our simulation study,
in order to rate the performance of the proposed scheduling
algorithm.

3 Partitioned Scheduling

Related work in multiprocessor scheduling differentiates
between non-partitioned and partitioned scheduling. In a

non-partitioned or global schedule the different instances
of a periodic task can execute on different processors and
preempted task instances might even be migrated to other
processors before resuming execution. In contrast, in a par-
titioned schedule all instances of a task execute on the same
processor. While we studied non-partitioned scheduling in
[7, 6], this work applies the concept of a partitioned sched-
ule to our reconfigurable hardware execution model:

Definition 1 (partitioned schedule). A schedule R for a
periodic task set � is said to be partitioned by χ with selec-
tion f , if the following three statements hold:

1. f(i) is a function that selects exactly one implemen-
tation variant T

f(i)
i for each task Γi. The set of

all selected implementations is denoted by Γ|f =
{T f(1)

1 , T
f(2)
2 , . . .}.

2. χ = {G1, G2, . . . , Gm} is a partitioning of Γ|f . That
is, χ is a set of disjunct subsets of Γ|f , called parti-
tion blocks, such that the union of all partition blocks
results in Γ|f .

3. At any point in time, at most one task implementation
of each partition block is executed on the reconfig-
urable device.

Each partition block is exclusively assigned a certain
area of the reconfigurable device. The area requirement of a
partition block A(Gj) is determined by its largest task; the
required overall device area A(χ) is given by the cumulated
area over all partitions:

A(Gj) = max
T k

i ∈Gj

(Ak
i ), A(χ) =

∑
Gj∈χ

A(Gj) (4)

Since each partition block presents an independent task
system of its own, we can easily formulate a test whether a
given partitioned schedule is feasible by applying the basic
results from single-processor EDF (earliest deadline first)
theory:
Lemma 1 (EDF feasibly partitioned schedule). Given a
periodic task set �, let f be a selection function and R be
a schedule of the selected task variants Γ|f with partition-
ing χ, such that the tasks of each partition Gi ∈ χ are
scheduled separately by EDF. The schedule is feasible on
the reconfigurable device H if:

• A(χ) ≤ A(H), i.e., all partitions fit onto the device,
and

• ∀Gi ∈ χ : UT (Gi) ≤ 1, i.e., all partitions have a time
utilization of less than 100%.

Fig. 3 illustrates an EDF partitioned schedule on the ex-
ample of the task set Γ∗ shown in Table 1. In this example,
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Figure 3. Example of a Partitioned EDF Sched-
ule

the first variant for each task has been selected, i.e., Γ∗
|f =

{T 1
1 , T 1

2 , T 1
3 , T 1

4 }, and two partition-blocks have been gen-
erated, e.g., χ = {G1 = {T 1

1 , T 1
3 , T 1

4 }, G2 = {T 1
2 }}. The

left-hand side of Fig. 3 presents the partitioning χ and illus-
trates the division of the device area. The according parti-
tioned EDF schedule R is shown on the right-hand side of
Fig. 3. Since both partition blocks have a time utilization of
less than 100%, the schedule is feasible:

UT (G1) = 1/2 + 1/4 + 1/6 ≤ 1, UT (G2) = 5/6 ≤ 1

Based on Lemma 1 we are able to define an optimization
problem in order to answer our scheduling questions from
Section 2.3. To this end, we formulate the problem of find-
ing the least resource-consuming EDF Feasibly Partitioned
Schedule (EFPS):

Definition 2 (EFPS Problem). Given a periodic task set
�, find:

• a function f that selects a variant for each task and

• a partitioning χ of the selected variants Γ|f ,

• subject to UT (Gi) ≤ 1 : ∀Gi ∈ χ,

• minimize A(χ).

Solving the EFPS problem answers directly question two
of Section 2.3: The smallest device that allows to feasibly
execute � is of size A(H) := A(χ). The according deci-
sion problem in question one of Section 2.3 is also solved,
as given � and a device H , � can be feasibly scheduled if
A(H) ≥ A(χ). From the resulting partitioning χ, we can
easily derive the scheduling function R which answers our
third question.

3.1 Relation to 2-Dimensional Packing Problems

Let us assume for a moment, that each task comes in
only one implementation variant, i.e., Γi = {T 1

i } for all
i. For this special case, the EFPS problem becomes equiv-
alent to the Two-Dimensional Level Strip-Packing Problem

(2LSP)[12], which is a variant of the Two-Dimensional Strip
Packing (2SP) problem. In 2SP, a set of rectangular items
is packed into a strip of given width but infinite height such
that height of the required strip is minimized. The packing
must be non-overlapping, orthogonal, and without rotation.
In the 2LSP variation of 2SP, the rectangular items have to
be packed in rows forming levels. The bottom of the first
level is the bottom of the empty strip. The bottom of each
other level is determined by a horizontal cut line on top of
the highest item in the previous level. Within a level, items
are not allowed to be packed on top of each other.

In Definition 2, the tasks variants T k
i can be modeled as

rectangular items where the time utilization factor UT (T k
i )

corresponds to the rectangle width and the area A(T k
i ) cor-

responds to the rectangle height. The width of the strip is set
to one, according to the maximal time utilization of an EDF
schedule. Each slot of the reconfigurable device – and the
set of tasks Gi assigned to it – corresponds to one level of
the packing. Finally, the required device area corresponds
to the height of the stripe.

For the 2LSP problem, a Binary Integer Programming
(BIP) model was proposed in [12]. When a task comes in
several implementations, the packing problem has to be ex-
tended to include a set of possible rectangles for each item.
In the following section we will extend the BIP model of
[12] accordingly.

4 Optimal Partitioning by ILP

In this section we develop an extension of the BIP model
for the 2-dimensional level strip-packing problem presented
in [12]. Our extension is able to deal with implementation
variants for tasks. Instead of modeling each task with a
rectangle, we apply the BIP model on the set of rectangles
corresponding to all task variants. The BIP constraints are
modified, such that one and only one variant of each task is
packed.

According to the model of [12], we make the following
basic assumptions:

Order of task variants: We sort and renumber the set of
variants Γ, according to non-increasing area. Let Γ̄
denote the sorted set:

Γ = {T 1
1 , T 2

1 , T 3
1 , . . . , T 1

2 , T 2
2 , . . . , T 1

n , . . . } (5)
Γ̄ = {T̄1, T̄2, T̄3, . . .}, (6)
A(T̄j) ≥ A(T̄j+1), j = 1, . . . , |Γ̄| − 1

The index function δ(i, k) maps the index of a vari-
ant T k

i in Γ to the according task variant in Γ̄, i.e.,
T̄δ(i,k) = T k

i .



Order of partition blocks: The task implementation T̄l

having the largest area within a partition block is said
to initialize the partition block. The index l is also used
to index the partition block, i.e., if the largest task in a
partition block is T̄l the partition block is denoted as
Gl.

It follows, that a partitioning χ has m = |Γ| potential
partition blocks G1 . . . Gm (some may be empty), and
that the partition blocks are sorted by non-increasing
areas, i.e., A(Gl) ≥ A(Gl+1). Further, the area of
a partition block is equal to the area of the task that
initializes the partition block, i.e., A(Gl) = A(T̄l).

For any task implementation T̄j ∈ Γ̄, we can therefore
differentiate the following cases:

• T̄j is not packed in any Gl since another implementa-
tion variant of the task is packed.

• T̄j initializes a partition block, i.e., Tj ∈ Gj .

• T̄j is packed into a partition block with greater area,
forcing the partition block index to be smaller than j.

The assumptions made are without loss of generality but
reduce the search space considerably, since a task imple-
mentation T k

i cannot be assigned to an arbitrary partition
block Gl. When modelling the BIP, we use the binary deci-
sion variable xl,j to indicate that task variant T̄j is packed
into partition block Gl:

xl,j =

{
1 if T̄j ∈ Gl

0 if T̄j /∈ Gl

l = {1, . . . , |Γ|}, j = {1, . . . , |Γ| : i ≥ l} (7)

If xl,j = 1 and j = l, the partition block Gl is said to
be initialized and its largest task is T̄l. If xl,l = 0, Gl is
uninitialized and empty. The resulting ILP has three main
components:

1. The cost function accumulates the area required by
all non-empty partition blocks, hence minimizing the
overall area A(χ).

2. A set of constraints ensures that for each task Γi ex-
actly one variant T k

i is packed into one of the partition
blocks. For task Γi this can be expressed by the term:

⎛
⎝δ(i,1)∑

l=1

xl,δ(i,1)

⎞
⎠ +

⎛
⎝δ(i,2)∑

l=1

xl,δ(i,2)

⎞
⎠ + · · ·+

+

⎛
⎝δ(i,k)∑

l=1

xl,δ(i,k)

⎞
⎠+ · · ·+

⎛
⎝δ(i,m)∑

l=1

xl,δ(i,m)

⎞
⎠ = 1

(8)

The first term of Eq. 8 equals one, if T 1
i is packed into

some partition block, the second term checks whether
variant T 2

i is packed into some partition block, and so
on. Note, that by convention a variant Ti,k can only
be packed into G1, . . . , Gδ(i,k). Therefore, the upper
bounds of the sum indices are given by δ(i, k).

3. Another set of constraints enforces EDF schedulabil-
ity. Each non-empty partition block must have a time
utilization less or equal than 1, i.e., UT (Gl) ≤ 1.

The final ILP can be written as:

min
|Γ|∑
l=1

A(T̄l) · xl,l

|Γi|∑
k=1

⎛
⎝δ(i,k)∑

l=1

xl,δ(i,k)

⎞
⎠ = 1 i ∈ {1, . . . , n}

n∑
j=l

UT (T̄j) · xl,j ≤ 1 · xl,l, l ∈ {1, . . . , |Γ|}

(9)
Let n be the number of tasks in � and |Γ| be the cumu-

lative number of variants over all tasks. The corresponding
ILP contains |Γ| · (|Γ| + 1)/2 binary variables and n + |Γ|
constraints.

To illustrate the BIP model, we consider again the exam-
ple task set of Table 1. The four tasks of �∗ have a total of
six task implementations (the set Γ) which get sorted and re-
numbered according to non-increasing areas. The resulting
set Γ̄ is given by:

Γ̄ = {T̄1 := T 2
2 , T̄2 := T 1

1 , T̄3 := T 1
2 , T̄4 := T 2

1 ,

T̄5 := T 1
3 , T̄6 := T 1

4 } (10)

Fig. 4 shows the optimal partitioning χ, which con-
sists of the two partition blocks G3 = {T 2

1 , T 1
2 } and

G5 = {T 1
3 , T 1

4 }. Since |Γ| = 6, the BIP model contains
6 · (6 + 1)/2 = 21 binary variables. The configuration of
the decision variables xl,j is shown in Table 2.

The required overall device area is 7 units. For compar-
ison, if each task comes only in one variant (the first one),
the optimal partitioning would require 9 units of device area
(see Fig. 3). The benefit of having task variants comes at
the price of a higher model complexity. To quantify the
scheduling performance of the ILP considering task vari-
ants, we will present simulation results in the next section.

5 Performance Evaluation

Introducing implementation variants for tasks makes it
more likely, that an EFPS exists for a reconfigurable de-
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Figure 4. Optimal partitioning of �∗

l xl,1 xl,2 xl,3 xl,4 xl,5 xl,6

1 0 0 0 0 0 0
2 - 0 0 0 0 0
3 - - 1 1 0 0
4 - - - 0 0 0
5 - - - - 1 1
6 - - - - - 0

Table 2. The configuration of decision vari-
ables

vice of given size. However, finding such a schedule
becomes computationally more complex since the design
space grows rapidly with the number of implementation
variants. In order to evaluate the benefit we gain by in-
troducing implementation variants we present a simulation
study.

To create a benchmark of task sets without and with vari-
ants, we used the following procedure: First, we generated
periodic task sets � (with only one variant per task) with
various system utilizations by composing randomly gener-
ated task implementations. For each task Γ1 = {T 1

i }, the
area A1

i was chosen according to a uniform distribution in
[0.1, 0.5] and the computation time and period were cho-
sen1 such that UT (T 1

i ) is uniformly distributed in [0.1, 0.5].
Such a setup creates task sets of up to 15 tasks. Based on
these task sets, we created task sets with variants using the
following methods:

3 variants per task: To the existing variant T 1
i of each

task, we added one variant T 2
i with half the compu-

tation time but doubled area requirement, i.e., T 2
i =

1First UT (T 1
i ) was chosen from [0.1, 0.5], then C1

i was chosen from
{1,...,30} and the period was set to P 1

i = round (C1
i /UT (T 1

i )).

(P 1
i , 1

2C1
i , 2 · A1

i ), and another variant with doubled
computation time but only half the area requirement,
i.e., T 3

i = (P 1
i , 2 · C1

i , 1
2 · A1

i ).

up to 5 variants per task: For each task the number of
variants was randomly chosen from 1 to 5. Each vari-
ant T k

i was created choosing a form factor q from the
continuous interval [1, 4] and a sign s from {−1, +1}.
The computation time and area were set to Ck

i =
C1

i · qs and Ak
i = A1

i · q−s, respectively. Note, that
each variant still has the same system utilization as the
initial variant: US(T k

i ) = Ck
i /Pi · Ak

i = C1
i qs/Pi ·

A1
i q

−s = US(T 1
i )
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Figure 5. Relative success rate with and with-
out implementation variants

Fig. 5 shows the relative scheduling success rates, de-
pending on the task sets system utilization, when scheduled
onto a device H of size A(H) = 1. For an average system
utilization of 0.7, the optimally partitioned EDF schedule
produced feasible solutions for about 80% of the task sets
in the reference case (with only one variant per task). In-
troducing two additional implementation variants for each
task yields an enormous advantage - even task sets with av-
erage system utilization of 0.87 could be scheduled with an
80% success rate. If some tasks have more and some tasks
have less variants, we can also observe a great improvement
over the reference case. 80% of the task sets with average
US � 0.83 could be successfully scheduled.

To solve the BIP model, we employed the lp solve li-
brary version 4.0 on a 2.8 GHz Pentium 4 machine. We
were able to optimally solve most problem instances with a
size of |Γ| up to 30 in less than 15 seconds. That is, we could
compute the schedule for 30 tasks with only one implemen-
tation variant, or for 10 tasks with three variants each. In
particular, from the 1000 task sets generated for the evalua-
tion in Fig. 5, only 28 exceeded the 15 second time limit.



6 Accounting for Reconfiguration Overhead

Up to know, we have neglected the overheads due to con-
text switching and running the scheduling routines in our
analysis. This is common practice in microprocessor-based
real time systems, but only justified when the time overhead
is small compared to the tasks’ computation times. In the
following, we analyze the overheads for reconfigurable sys-
tems in more detail.

In an EDF schedule, a task preemption can only occur
when other tasks are released. For periodic task sets we
know in advance how many task releases can appear within
a certain period and thus we can derive the worst-case num-
ber of preemptions Ni of an instance of a periodic task Γi

by other tasks of �:

Ni =
∑

Γj∈�

⌊
Pi

Pj

⌋
− 1 (11)

6.1 Reconfiguration Overhead in a Partitioned
Schedule

In our execution model, the tasks in each partition
block Gi are scheduled separately by EDF and the con-
text switches in a partition block are realized by partial
reconfiguration. Hence, tasks executing in other partition
blocks do not need to be interrupted. Let Gl be the par-
tition block which contains the selected implementation of
Γi. The maximum number of preemptions of a task Γi is
given by:

Ni =
∑

T k
j ∈Gl

⌊
Pi

Pj

⌋
− 1 (12)

Equation 12 is identical to Equation 11, but the number
of preemptions Ni for each task may be smaller.

Now we are ready to account for the reconfiguration
overhead by increasing the computation times of all tasks
in Γ. We have to add (1 + Ni) times the required time
for the device reconfiguration2, once for reconfiguring the
task before it starts execution and Ni times when it needs
to resume its execution after preemption (Eq. 13). The time
utilization of the task increases according to Eq. 14.

C̃k
i = Ck

i + (1 + Ni) · treconf (13)

ŨT (T k
i ) = UT (T k

i ) +
(1 + Ni) · treconf

Pi
(14)

2Note, that we have to account the time treconf for a full device recon-
figuration, even if we assume partial reconfiguration. Although the time to
reconfigure a small portion of the device will be shorter than treconf , in
the worst case all partition blocks may request a reconfiguration simulta-
neously.

Obviously, a partitioning χ of a task set � might be fea-
sibly schedulable when neglecting the reconfiguration over-
head, but may become infeasible when considering the in-
creased time utilization of Eq. 14. To decide whether a fea-
sible partitioning χ including reconfiguration overhead ex-
ists, is a difficult problem: The optimal partitioning χ of
tasks depends on the tasks’ time utilization ŨT , but the ac-
tual time utilization of a task depends on the partitioning,
i.e., on the tasks in the same partition block. One might
think about packing rectangles that change their widths dur-
ing the packing process, depending on the other rectangles
currently packed to the same level. We cannot reasonably
account for this cross dependency in our ILP model.

Making the simplifying assumption that the overheads
due to preemption are similar for all partition blocks, the
following two steps seems to be a reasonable heuristic:

1. Given the task set � and device area A(H), compute
the partitioning χ that minimizes the maximal time uti-
lization over all partition blocks:

min
(

max
Gl∈χ

(
UT (Gl)

))
(15)

2. Account for the reconfiguration overhead of each task
according to Eq. 14. If the updated time-utilization fac-
tors for each partition block ŨT (Gl) are still below
one, the partitioned schedule is still feasible.
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Figure 6. Impact of device reconfiguration
time

Fig. 6 shows the relative scheduling success rates for the
task sets with one variant per task, including reconfigura-
tion overheads. The device reconfiguration time is varied
between 0.1, 0.2, 0.5 and 1 times the computation time of
the shortest task.

The results show that the effect of device reconfiguration
can almost be neglected, when the runtime of the shortest



tasks is about one magnitude higher than the device recon-
figuration time. Even at reconfiguration times in the range
of the runtime of the shortest task, a considerable number
of task sets could be feasibly scheduled.

7 Conclusion

In this paper, we considered the problem of scheduling
periodic real-time tasks to a reconfigurable hardware de-
vice operated in a one-dimensional area model. The prob-
lem differs from previous work in that we apply a parti-
tioned scheduling approach and respect arbitrary implemen-
tation variants for hardware tasks. We showed the rela-
tion of the considered problem to two-dimensional packing
problems, namely an extension of the 2-dimensional-level-
strip-packing problem. Based on a previously reported ILP
model for such a packing problem, we developed an ex-
tended ILP model to compute the optimal partitioned sched-
ule for a given task set. In a simulation study, we evalu-
ated the performance of the scheduling approach. The main
characteristics of our approach and the resulting findings
are:

• The one-dimensional area model can be realized with
todays reconfigurable devices and tools.

• The partitioned-EDF scheduling approach achieves an
acceptable device utilization.

• The device utilization increases considerably if tasks
come in several implementation variants.

• The optimal partitioning for medium-sized task sets
(up to 30 task variants) can be computed in reasonable
time.

• The reconfiguration time overhead can be included
into the scheduling method.

We intend to follow several lines for future work. We
will work on heuristics and approximation algorithms in or-
der to find partitioned schedules for larger task sets. Fur-
ther, we plan to compare the partitioning approaches to
other scheduling techniques, such as global EDF schedul-
ing [7, 6]. A more detailed modeling of the reconfiguration
port and context save and restore mechanisms could pos-
sibly lead to improved scheduling guarantees. Finally, we
seek to implement our scheduler in a runtime system proto-
type.
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