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Abstract 

Efficient multisite job scheduling facilitates the 
cooperation of multi-domain massively parallel 
processor systems in a computing grid environment. 
However, co-allocation, heterogeneity, adaptability, 
and scalability emerge as tough challenges for the 
design of multisite job scheduling models and 
algorithms. This paper presents a new multisite job 
scheduling schema based on the multisite job 
scheduling model and the performance model for a 
heterogeneous grid environment. There are three key 
components: resource selection, reservation, and 
backfilling. The optimal and greedy-heuristic adaptive 
resource selection strategies are introduced. The 
conservative and easy backfilling are incorporated into 
the backfilling procedure. Experiments indicate that 
the scheduler and the algorithm are effective and 
perform better than a non-adaptive algorithm. 

1. Introduction 

In the last few years, the trends in parallel 
processing system design and deployment have been to 
move away from single isolated powerful 
supercomputers to cooperative networked distributed 
systems, so called the grid [1]. The name grid has been 
chosen as an analogy to the electric power grid where 
several power plants provide numerous consumers 
with electric power that the consumer is not aware of 
its origin. Similar, it is the goal of the grid to allow 
scientists and engineers to solve their large-scale 
challenging applications [2].

Currently, grid systems are classified as 
computational, data, and service grids [3]. The 
computational grid category denotes systems that have 
a higher aggregate computational capacity available for 
applications than the capacity of any constituent 

resource in the system. Clearly, a computational grid is 
mainly of interest for large computational jobs or jobs 
using a large data set as smaller jobs would usually run 
locally. It has the potential to provide low average 
response time for computational jobs and high utility 
for computational resources. This potential can be 
realized, however, only if the resources are managed 
effectively, and especially the computational jobs are 
scheduled well. 

Recent advances in creating the grid resource 
management infrastructure (e.g., Globus, Legion, 
Condor-G, and UNICORE), facilitate the deployment 
of the grid scheduler to schedule jobs onto multiple 
heterogeneous sites, and promote the investigation of 
the grid scheduling algorithms. Research into 
scheduling for the grid environment can be broadly 
classified into two categories: 1) application-level 
scheduling: the focus is on approaches to optimize the 
performance of a single job in a grid environment, and 
2) job-level scheduling: the focus is on the 
performance optimization across a collection of 
independent jobs. In this paper, we put the emphasis 
upon the second branch----independent parallel job 
scheduling in a real-world computational grid scenario. 

Parallel Job scheduling is a complex problem, even 
in a single parallel computer. However, grid computing 
systems, compared to the classical parallel computers, 
pose several technical challenges that introduce an 
additional degree of complexity to the scheduling 
problem while amplifying the existing ones. Therefore, 
it is necessary to point out the intrinsic nature of grid 
job scheduling that is different from parallel computer 
scheduling as follows: 

1) Co-allocation or multisite scheduling: a 
computational grid is typically composed of several 
sites from geographically distributed organizations 
(such as TeraGrid [4], E-science [5] and DAS [6]). 
Parallel jobs should be scheduled to spread to more 
than one sites in order to run simultaneously on several 
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sites without considering the resource limitation from 
one single site. The grid scheduling algorithm should 
be capable of coordinating these resources from 
different sites; 

2) Heterogeneity: in a real-world grid scenario, 
hardware and software resources from different sites 
may have a rich diversity. Heterogeneous scheduling 
issues are highlighted which simply do not occur in 
"single-chassis" sequential or parallel machines; 

3) Adaptability: though co-allocation can decrease 
the response time and the utilization, the makespan of 
some communication-intensive multisite applications 
is increased sharply because of the low bandwidth and 
high latency between the sites. Thus, the scheduling 
algorithm must adapt to the network performance and 
determine which parallel jobs should be mapped to 
single sites or multiple sites; 

4) Scalability: the scheduler for a single parallel 
machine has a limited number of resources to control. 
In comparison, the grid is intended to span over a very 
large number of systems. Therefore, the scheduling 
algorithms should avoid the explosion in 
computational complexity. 

Based on the above essences of the grid, this paper 
concentrates on the heterogeneous multisite job 
scheduling in real-world computational grid systems - 
a homogeneous cluster of processors at each site and 
different sites have different performance 
characteristics. We propose a multisite scheduling 
scheme which has been extended from the practically 
effective, backfilling-based parallel job scheduling 
strategies. A novel adaptive, multisite, and scalable 
scheduling algorithm is introduced and performance 
evaluations which include the average response time, 
average wait time, and utility are provided. 

The organization of this paper is as follows. We 
introduce related works and clarify our motivation in 
section 2. Section 3 presents the multisite computing 
system model and multisite job performance model. 
The adaptive multisite scheduling schema and 
algorithms are discussed in detail in section 4. Section 
5 defines the performance metrics used for evaluation. 
Initial performance comparison under different 
scenarios is presented in section 6. Finally, we 
conclude this paper and give a discussion in section 7. 

2. Related works and our motivation 

In this section, we will introduce recent advances in 
computational grid scheduling. First, in section 2.1 job-
level scheduling is described in detail. Our motivation 
for adaptive, heterogeneous, multisite grid job 
scheduling is clarified in section 2.2. 

2.1 Job-level grid scheduling 

Considerable research has been conducted over the 
last decade on the topic of job scheduling for parallel 
systems. Much of this research has been presented at 
the annual Workshops on Job Scheduling Strategies for 
Parallel Processing [7] and the International 
Heterogeneous Computing Workshop [8]. Moreover, 
Feitelson, Rudolph and Schwiegelshohn have written a 
couple of surveys [9. 10] to report the current art and 
state for parallel job scheduling on the supercomputer. 
Recent trends for parallel job scheduling in 
workstation clusters and the computational grid are 
summarized in [11], where the grid job scheduling is 
classified into singlesite (non-co-allocation) and 
multisite (co-allocation). Section 2.2,1 presents some 
remarkable works on singlesite grid job scheduling. 
Also, some important researches on multisite grid job 
scheduling are introduced in section 2.2.2. 

2.2.1. Singlesite job scheduling. As a continuation of 
metacomputing ideas, singlesite job scheduling permits 
the jobs to run on the sites from different domains, but 
it is not allowed for a single job to share the machines 
by crossing the site boundaries. Abawajy and 
Dandamudi [12] propose an on-line dynamic scheduling 
policy that manages multiple job streams on 
multicluster computing systems with the objectives of 
improving the mean response time and system 
utilization. Also, Sabin, Kettimuthu, Rajan and 
Sadayappan [13] present the idea of multiple 
simultaneous requests for allocating jobs to the 
heterogeneous environment. The basic idea is to 
submit each job to multiple sites, and cancel redundant 
submissions when one of the sites is able to start the 
job. 

More recently, Ernemann, Hamscher and Yahyapour 
[14] perform simulations to evaluate the effects of a 
global grid constituted by the compute centers located 
in different time zones with a simple two-step job 
scheduling strategy (Bestfit and Backfilling). Their 
results show that the average weighted response time 
of all submitted jobs decrease up to about 30% for a 
global grid with different time zone distributions 
comparing with closed Grids in a single country. Also, 
the benefits of load sharing of parallel jobs in the 
homogeneous and heterogeneous grid are investigated 
and a simple scheduling heuristic to select the target 
machines of migrated jobs is provided [15]. In addition 
some works on the usage of the genetic algorithm to 
improve the quality of the grid scheduling are 
discussed in [16, 17].



2.2.2. Multisite job scheduling. The described 
restriction of singlesite job scheduling is lifted in a 
multisite scenario and a job can be executed in more 
than one site in parallel. In [18, 19], the authors analyzed 
the problem of executing a parallel application on a 
multi-cluster environment. They presented some 
simulations where multisite execution was beneficial 
compared with job-sharing, even for an additional 
communication overhead of about 25%. Later, the 
same authors improved the previous scheduling 
process by applying constraints for the fragmentation 
of jobs [20]. Finally, they presented results showing that 
the use of partitioned configuration did not necessarily 
imply a performance drawback [21].

Another important research about co-allocation or 
multisite site scheduling is presented in [22-31]. Bucur 
and Epema [22-24] assess the influence on the mean 
response time of the job structure and size, the sizes of 
the clusters in the system, the ratio of the speeds of 
local and wide-area communications, and of the 
presence of a single or of multiple queues in the 
system. Also, they evaluated different scheduling 
policies for co-allocation, with unordered requests, in 
multicluster systems with space sharing for rigid multi-
component jobs [25-28]. Furthermore, they use the 
measure-based trace to evaluate the performance of the 
scheduling policies, design a dynamic co-allocation 
service and implement multiple components for a real-
world wide-area computer system consisting of five 
clusters [29-31]. Some other works are performed under 
different assumptions and constraints. A new 
scheduling model that permits job migrations is 
considered to share the dynamic grid environment [32-

34]. Snell, Clement, Jackson and Gregory [35] propose 
advanced reservation strategies for co-allocation. 

2.3 Our motivation 

Most of the scheduling algorithms described above 
cover only part of the nature of the grid mentioned in 
section 1. For example, many singlesite scheduling 
algorithms in section 2.2.1 are extended from the 
traditional heterogeneous computing systems in the 
same domain, which neglects the possibility of co-
allocation or multisite computing jobs across the 
boundary of sites [12-17]. Although many papers in 
multisite job scheduling have addressed the co-
allocation problem indeed, all the sites from different 
domains are assumed to be homogenous without taking 
the heterogeneity in a real-world grid scenario into 
consideration [18-31]. Moreover, less attention is paid on 
the adaptability and some algorithms lack scalability 
[16, 17]. Our motivation is to design grid job scheduling 

algorithms which allow co-allocation, and are adaptive 
and scalable in a heterogeneous computational grid. 

3 Models for multisite job scheduling 

In this section, we introduce our model of a multisite 
computing system for the computational grid. The 
section is organized as follows. Section 3.1 shows our 
model of multisite computing system and the 
constraints for its components. In section 3.2, the 
performance models for jobs across the multisite are 
discussed. 

3.1 Models for multisite computing systems 

Models for multisite computing systems can be 
divided into four parts: sites, jobs and job queue, local 
scheduler, and grid scheduler as showed in figure 1. 

Fig.1. Model for multisite computing system 

3.2 Multisite job performance model 

An accurate performance prediction model is the 
foundation of scheduling algorithms’ design and 
evaluation. In this subsection, we introduce the 
multisite job performance model in a heterogeneous 
computational grid. 

Assume the number of sites is N. Let Ti represent the 
predicated execution time of parallel jobs on the local, 
single site i, which is normally provided by grid users; 
Ti ->j denotes the time when the job is submitted at the 

site i but runs at the remote, single site j; Ti -> j k…..m

means the job is submitted at the site i but executes 
simultaneously at sits j, k….m, where 1 i, j, k, m N.

The heterogeneity of different sites is denoted by a 
heterogeneous factor hi, where 0<hi. The penalty of 
multisite execution is denoted by a multisite factor p (j,

k…m), where 1 p (j, k…m). The heterogeneity and penalty 
of multisite execution in a real system scenario highly 
depend on the architecture of the sites, nodes’ 



performance, job communication patterns, and the 
network configuration between the sites. In our model, 
we do not consider these effects. All mentioned 
heterogeneity and multisite penalty are summarized in 
the heterogeneous and multisite factor, respectively. 

When a job is submitted at the site i and transferred 
to the remote site j, the transport of data requires 
additional time ttrans(i, j)= s/bi, j + li, j, where s is the data 
size, bi, j and li, j are network bandwidth and latency, 
respectively. Now the performance prediction model of 
Ti ->j is presented as follows: 

Ti->j= Ti•hj/hi+ ttrans(i, j)            (1) 
Consider the job models of the multisite scenerio in 

section 3.2.2, all the tasks of a job are terminated at the 

same time. Thus, the predicted execution time Ti -> j

k…..m should be determined by the worst performance 

site as follows: 
  Ti->(j, k…m)= Ti•p(j, k…m)•max(hj, hk,...., hm)/hi + 

max(ttrans(i, j), ttrans(i, k),...., ttrans(i, m))                             (2) 

4 Multisite scheduling algorithms 

This section introduces the scheme of multisite 
scheduling algorithms. We will discuss the complexity 
of the algorithms in a future paper. 

4.1  Multisite scheduling algorithm scheme 

In the online scheduling scenario of grid jobs, most 
job-level grid scheduling algorithms use the First-
Come-First-Served (FCFS) policy as the basic 
scheduling scheme. FCFS provides some kinds of 
fairness, is easy to implement, and requires very little 
computational effort [36]. Thus, we employ the FCFS 
priority strategy in our global job queue. However, 
FCFS can result in poor scheduling quality such as low 
system utilization [37] when job requests with large 
node requirements are submitted. Backfilling [38, 39] is 
proposed to improve the system utilization and by 
identifying idle nodes and moving forward smaller 
jobs that fit into those nodes, without delaying any job 
with future reservations. Therefore, we use Backfilling 
to reinforce the FCFS scheme. 

Though we use the FCFS plus Backfilling in the 
scheduling scheme as a traditional parallel 
supercomputer has done, there are two remarkably 
different challenges on the design of heterogeneous, 
multisite job scheduling algorithms: a) The 
heterogeneity of the sites makes the scheduling 
decision more complex. If all the nodes of the sites are 
homogeneous, the execution time of a job in the 
submitted single site remains best compared with 
transporting the job to a remote single site or multisite 

because of the transportation and synchronization 
penalty. However, the penalty resulting from network 
communications can be remedied when the remote 
sites or multisite have better computing ability than the 
submitted sites. Therefore, the execution time of a job 
may decreases when the job executes on the remote 
sites or multisite in a heterogeneous grid. b) Multisite 
reservation makes it possible to reduce the execution 
time of a job. Traditionally, the scheduler reserves 
nodes only if the quantity of node requests can not be 
satisfied. In the heterogeneous, multisite grid, a job can 
be reserved in order to acquire better execution time 
even if it can run immediately. Based on the above 
consideration, we present a multisite scheduling 
algorithm scheme as follows: 

Algorithm 1. Multisite scheduling algorithm 
scheme 

Input:     (1) Job queue (2) Sites aggregate 
Output:  (1) Mapping results 
Variables: t∆           inter-schedule interval 

Currentjob    first unmapped job in the job 
queue 

Status        indicate two kinds results of 
resource selection, instant and reservation execution 

1.  (Initialization) If the job queue is empty, then 
wait t∆  interval and recheck the status of the job 

queue; Otherwise, collect the sites’ state from the local 
schedulers and the job requests from the job queue. 

2.  (Mapping) For each unmapped job request in the 
current job queue 

(a) CurrentJob  the first unmapped job in the 
current job queue 

(b) Status ResourceSelection (CurrentJob)
//return the mapped status and resources for current job 

(c) If the mapped Status suggests CurrentJob should 
run immediately in the single site or multisite, inform 
the local schedulers to transport and execute the job; 
otherwise, call the function Reserve (CurrentJob) and 
Backfill (CurrentJob) sequentially. 

(d) Update the information for job queue and sits 
status 

3.  (Return) Return the mapping results and go back 
to step 1. 

4.1.1. Resource selection. In this section, we propose 
two adaptive, multisite resource selection sub-
algorithms – optimal and greedy adaptive multisite 
resource selection.  

The common ideas of these two algorithms is as 
follows: First, if the node requests of a current job 
can’t be satisfied or the predicted job execution time of 
immediate running is longer than by reservation, the 
current job is reserved. Second, both are adaptive to 
different resources whether it is local, remote single 



site, or multisite. To the end, better resource allocation 
and mapping is selected and returned. 

However, the difference between the algorithms is 
remarkable. Optimal resource selection enumerates all 
the resource combinations for best job performance but 
lacks scalability while the greedy resource selection 
employs the greedy heuristic based on the node 
performance. It is more scalable subject to some kinds 
of performance penalty. 

Algorithm 2. Optimal adaptive multisite resource 
selection algorithm 

Input:   (1) CurrentJob (2) Sites status 
Output:(1) Status of instant or reservation execution 

(2) Mapping results of the best resource 
allocation 

Variables: Ti->j    predicted execution time when job 
submitted at site i but run at site j

Ti->(j, k…m) predicted execution time when 
job submitted at site i but run at site j, k,...m

T ‘
i->j    predicted execution time when 

job submitted at site i but run at site j by reservation 
T ’

i->(j, k…m) predicted execution time when 
job submitted at site i but run at site j, k,..m by 
reservation 

Ti, available  the earliest available time of site i
1.  (Check resources limitation) If the node    request 

of Currentjob exceeds the total node number from all 
sits, then drop the job and procedure return. Otherwise, 
if the node request of Currentjob exceeds all the idle 
node number, then Status  reservation flag and 
procedure return; else, go to step 2 

2. (Compute instant execution time) Enumerate all 
the combination on single sites or multisite. 

(a) For each single site which the idle nodes are 
larger than the Currentjob’s request, computing Ti->j 

      (b) For all the multisite combination that the idle 
nodes are larger than the Currentjob’s request, 
computing Ti->(j, k…m)

3. (Compute reservation execution time) Enumerate 
all the combination in single sites or multisite by 
reserve. 

(a) For each site, compute Ti, available

(b) For each single site which the total nodes are 
larger than the Currentjob’s request, T ‘

i->j Ti, available

+ Ti->j

(c) For all the multisite combination which the total 
nodes are larger than the Currentjob’s request, T ’

i->(j,

k…m) Ti->(j, k…m) + max(Tj, available, Tk, available, Tm, available)
4. (Return) If the shortest predicted execution time 

belongs to the Ti->j or Ti->(j, k…m), then Status  instant 
flag and return the resource allocation; Otherwise, 
Status  reservation flag and return. 

4.1.2. Job reservation and backfilling. The job 
reservation procedure also can be classified into 

optimal and greedy. Both algorithms are almost 
identical with the step 3 of the algorithm 2, so that we 
do not present the algorithms in detail. Actually, in a 
real-implementation the multisite job scheduling 
requires more advanced resource reservation than in 
traditional supercomputing. Traditional parallel 
computers are normally in the same domain with 
identical management policies. Nevertheless, in a 
multisite grid scenario, the different resources belong 
to different owners and do not have a common 
management infrastructure. Also, it lacks cooperation 
between the local schedulers and grid scheduler, and 
there is little knowledge about each others policies, 
priorities, or workload. As a consequence of these 
conditions, it is hard to realize the intention of multisite 
co-allocation. Advanced reservation that reserves the 
resources on different sites may circumvent this 
problem [39]. Once a job is reserved, there are two 
common variations to backfilling - easy and 
conservative [38, 39].

5 Performance Metrics 

We use the following metrics to evaluate the 
performance of multisite scheduling algorithms: 

1. Average Weighted Response Time (AWRT): 

, ,( )j j end j submit

j Jobs

j

j Jobs

Cost T T

AWRT
Cost

∈

∈

× −
=

∑
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            (3) 

2. Average Weighted Wait Time (AWWT): 
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j Jobs

j

j Jobs
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∈

∈

× −
=

∑
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           (4) 

In equations (3) and (4), Tj, end, Tj, start and Tj, submit

represent the end time, start time, and submitted time 
of job j, respectively. The resource consumption of a 
job Costj = Wi • (Tj, end – Tj, start) is defined as the 
product of the job’s runtime and the number of 
requested resources, where Wi represents the number of 
requested resources. The average weighted response 
time is the sum of all weighted response times divided 
by the number of all jobs. The wait time of each job is 
the difference between the start time and the 
submission time. The weights are defined the same 
way as for the average weighted response time. AWRT 
and AWWT have been used to evaluate the quality of 
scheduling algorithms from the system’s and user’s 
viewpoint by many other researchers [14, 18-21, 33].

6 Performance evaluation: adaptive vs. 

non-adaptive 



In this section, we evaluate the performance of 
multisite job scheduling algorithms and several aspects 
which would impact the performance are investigated. 
In particular, we study the performance of the adaptive 
resource selection against the non-adaptive version. 
The non-adaptive algorithm assigns strict priorities for 
site combination selection in order to avoid the penalty 
of job transfer and multisite communication. Namely, 
jobs prefer the submitted local site with the highest 
priority, then remote single sites, and multisites as the 
lowest one. The experimental results in Figures 2 and 3 
show that no matter how small (NISAC 1.0, HIT 1.0, 
UC 1.0) or large (NISAC 1.4, UC 1.0, HIT 0.6) 
heterogeneity difference, adaptive site selection 
significantly outperforms the non-adaptive one. We 
configure the network bandwidth between sites as 
100Kbps, the conservative algorithm is used for 
backfilling and the revised original trace 
(JobWorkload1) is adapted as input. 
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Fig.2. AWRT and AWWT comparisons of 
adaptive and non-adaptive algorithms with 
small heterogeneity difference 
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Fig.3 AWRT and AWWT comparisons of 
adaptive vs. non-adaptive algorithms with 
large heterogeneity difference  

Figures 2 and 3 show the AWRT and AWWT of the 
optimal adaptive, greedy adaptive, and non-adaptive 
algorithms as the multisite factor varies from 1.0 to 1.6 
with small and large heterogeneity difference. We find 
that the AWRT and AWWT of the optimal and greedy 
adaptive algorithms are consistently lower than the 
non-adaptive one because not only for the single site 
and multisite but also when the immediate and 
reservation executions are considered in the adaptive 
algorithm. Also, with the increment of the multisite 
factor the difference becomes larger. The reason is that 
a larger multisite factor provides more possibility of 

reservation execution. When the multisite factor is 1.6 
in Figure 2, the AWRT of the non-adaptive algorithm 
is nearly 100% higher than the optimal one while the 
AWWT is nearly 200% higher. Because the greedy 
adaptive algorithm is a kind of heuristic favoring the 
high performance resources and does not enumerate all 
the resource combinations, its AWRT and AWWT are 
slightly higher than the optimal one. Nevertheless, the 
AWRT and AWWT of the greedy one are still 82% 
and 134% lower than the non-adaptive one. 
Meanwhile, when the multisite factor is 1.6 in Figure 
3, the AWRT of the non-adaptive algorithm is still 
30% higher than the greedy one and 70% higher than 
the optimal one. We will report experimental results of 
the impact of site heterogeneity and network 
performance, as well as easy versus conservative 
backfilling strategies, on the performance of the 
proposed algorithms. 

7 Conclusion and future work 

In this paper we point out that co-allocation, 
heterogeneity, adaptability, and scalability are the 
intrinsic nature of grid job scheduling different from 
parallel computer scheduling. A multisite computing 
(co-allocation) system model is introduced in the real-
world scenario, which allows the jobs to run across site 
boundaries. Optimal and greedy multisite scheduling 
algorithms are proposed to adaptively select and map 
grid jobs to heterogeneous resource combinations. The 
greedy multisite scheduling algorithm scales well 
while the optimal one does not have polynomial time 
complexity. Initial experimental results show that the 
adaptability of an algorithm is very important to its 
performance, as shown by comparing optimal and 
greedy adaptive algorithms with the non-adaptive 
version.  This work is just a first step to exploit the 
nature of grid job scheduling and there are still many 
works remaining for further exploration. For example, 
many systems are connected to the grid, so the 
continuous availability and work must be guaranteed. 
Grid scheduling algorithms can keep parallel jobs 
running even if some components are impacted by a 
network or resource failure.
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