
SIMULATING A PR-MESH ON AN LARPBS 

Mathura Gopalan1, Anu G. Bourgeois1, and José Alberto Fernández-Zepeda2

1Department of Computer Science 

Georgia State University 
Atlanta, GA 30302-3994 

abourgeois@cs.gsu.edu 

2Department of Computer Science 

CICESE 
Ensenada, B. C. 22860, Mexico 

fernan@cicese.mx 

     

Abstract

The unidirectional nature of propagation and 
predictable delays are two characteristics of optically 
pipelined buses that have made them popular in recent 
years. Many models have been proposed that use 
reconfigurable optically pipelined buses.  In this paper 
we establish a relationship between a one dimensional 
and a two dimensional model of this type. This 
simulation shows that the challenge is to map the 
processors so that those belonging to a two-
dimensional bus segment are contiguous and in the 
same order on the simulating one-dimensional model. 
We focus on the Linear Array with a Reconfigurable 
Pipelined Bus System (LARPBS) and its two 
dimensional counterpart the Pipelined Reconfigurable 
Mesh (PR-Mesh). 

1. Introduction 
Due to the properties such as unidirectional nature of 
propagation and predictable delays, optically pipelined 
buses have been gaining attention. These 
characteristics enable pipelining messages along a 
single bus and thus reduce the number of buses needed 
for communication. Reconfigurable architectures are 
capable of changing both their component structure and 
functionalities at every step of computation. When the 
reconfiguration is fast and causes little to no overhead 
it is referred to as Dynamic Reconfiguration [1]. The 
reason why dynamic reconfiguration is advantageous is 
because it can utilize the resources much more 
effectively by adapting the functionality of the 
hardware to the current task that has to be done.  
 Many different reconfigurable models using 
pipelined optical buses have been proposed in the 
literature. Some of the one dimensional models include 
the Linear Array with a Reconfigurable Pipelined Bus 
System (LARPBS) [2], the Pipelined Optical Bus 
(POB) [3], the Linear Array with Reconfigurable 

Optical Buses (LAROB) [14] and the Linear Pipelined 
Bus (LPB) [4]. Some of the two dimensional (or multi-
dimensional) models include the Pipelined 
Reconfigurable Mesh (PR-Mesh) [5], the Array with 
Reconfigurable Optical Buses (AROB) [6], Array 
Processors with Pipelined Buses (APPB) [7], the Array 
Processors with Pipelined Buses using Switches 
(APPBS) [8], the Array with Synchronous Optical 
Switches (ASOS) [9] and the Reconfigurable Array 
with Spanning Optical Buses (RASOB) [10].  
 The commonality among the models is that they 
pipeline and propagate messages on a unidirectional 
path. The differences arise due to the presence or 
absence of hardware. It has already been proven that 
even in the presence of some physical differences, the 
models can still be functionally equivalent [11].  
 In establishing the computational complexity of 
the models, the translation of algorithms for models is 
possible. By establishing equivalence between models 
A and B, the algorithm developed for A can be mapped 
to B with a constant overhead (although a polynomial 
increase in the number of processors may occur). The 
algorithm is modified for the simulating model by 
using the changes that helped in establishing the 
equivalence between the models. If model B is a more 
feasible model then we have the ease of designing 
algorithms for model A, but have the cost and 
practicality of implementation on model B.
 In this paper, we focus on simulating a two-
dimensional PR-Mesh on a one-dimensional LARPBS. 
The major difference between the models is the 
number of bus configurations that are possible. Also, 
processors on the PR-Mesh may belong to multiple 
buses, while those on the LARPBS can only belong to 
one. We will show that this transformation does not 
increase the communication volume. Specifically, the 

goal of this paper is to simulate an M × M processor 

PR-Mesh on an N processor LARPBS where N = M
2
.

1-4244-0054-6/06/$20.00  ©2006 IEEE



To accomplish this, we will present the simulation as a 
few different scenarios.  
 Case 1a. Each PR-Mesh processor connects to at 
most one bus and each bus has at most one bend. The 
bends signify the change in the directionality of the bus 
from the x-axis to the y-axis or vice versa.  
 Case 1b. Each PR-Mesh processor connects to at 
most one bus and each bus has multiple bends. The 
challenge in this scenario is to preserve the ordering of 
the processors in spite of the multiple changes in 
direction of each bus.  
 Case 2a. Each PR-Mesh processor connects to 
multiple buses and each bus has a single bend. When 
processors are connected to multiple buses the 
simulation becomes more complex. Therefore a 
processor may need to communicate with groups of 
processors in different subarray of the simulating 
LARPBS.  
 Case 2b. Each PR-Mesh processor connects to 
multiple buses and each of those buses has multiple 
bends.  
 The organization of the paper is as follows: In 
Section 2, we describe the LARPBS and the PR-Mesh 
models. In Section 3, we present an overview of the 
simulation of a PR-Mesh on an LARPBS. Section 4 
describes the simulations for the various cases. 
Sections 5 and 6 provide the conclusions and future 
work. 

2.  Model Descriptions 
As we are focusing on simulating the PR-Mesh on an 
LARPBS, the following section discusses these 
architectures in detail. 

2.1 LARPBS Model 
The Linear Array with a Reconfigurable Pipelined Bus 
System (LARPBS) [2] is a one dimensional parallel 
processing optical model. It is an N-processor array 

P1,P2,…,PN, linearly connected by an optical pipelined 
bus that makes a U–turn around the processors. The 
bus connecting the processor is assumed to have the 
same length of fiber between successive processors, 
thus propagation delays between consecutive 
processors are the same. A bus cycle is the end-to-end 
propagation delay on the bus. The time complexity of 
an algorithm is determined in terms of steps, where a 
single time step comprises one bus cycle and one local 
computation.

The optical bus of an LARPBS possesses three 
distinct waveguides. The data waveguide is used for 
sending data and the select and reference waveguides 
are used for sending address information. The top part 

of the bus is used for transmitting and the bottom for 
receiving. Each processor connects to the bus through 
directional couplers, one for transmitting and the other 
for receiving. The reference and data waveguides have 
an extra segment of fiber between every pair of 
consecutive processors on the receiving side. This 
segment introduces a fixed propagation delay of unit 
time in these two waveguides. In addition, the select 
bus has switch-controlled conditional delays between 

every pair of consecutive processors Pi−1 and Pi on the 

transmitting segment of the waveguide and is 
controlled by processor Pi.
 The coincident pulse technique helps in addressing 
by manipulating the relative time delay of select and 
reference pulses on separate buses so that they will 
coincide at the desired receiver. If they coincide, a 
double height pulse indicates to the processor to read 
the corresponding data frame. There is a separate set of 
optical segment switches present on each waveguide of 
the bus that help to split the LARPBS into two 
independent structures. If the switches at processor Pi

are set, the bus is split into two separate buses, one 

connecting processors P1, P2,… Pi and the other 

connecting processors Pi+1, Pi+2,… Pn.

2.2 PR-Mesh Model 
The Pipelined Reconfigurable Mesh (PR-Mesh) [5] is a 
multi dimensional version of the LARPBS. The PR-
Mesh is a k-dimensional mesh of processors, each 
having 2k ports. A processor can locally manipulate 
each of its ports so as to connect to at most one other 
port, to form linear buses. The PR-Mesh can appear as 
a directional network since both the transmitting and 
receiving segments are directional. The two 

dimensional PR-Mesh consists of an R × C mesh of 
processors, in which the four ports of the processors 
are joined to eight bus segments using the directional 
couplers.  Figure 1 shows a detailed representation of a 

2×2 PR-Mesh. The four big circles represent 
processors. In this figure, vertical and horizontal 
straight lines represent transmitting and receiving 
segments in both directions. The T/R symbol and the 
arrows on the lines denote the direction of 
transmission/reception of data. Each processor has four 
ports denoted by North (N), East (E), West (W) and 
South (S). The directional couplers are shown in thick 
dark lines. Each processor controls 48 external 
switches (shown as small circles) used for bus 
interconnections. The set of external switches are 
divided into four quadrants (shown in dotted rectangle 
boxes for the bottom right processor). The black 
switches labeled E1, E2, W1, and W2 enable forming 



row buses and switches N1, N2, S1, and S2 enable 
forming column buses, for each of the quadrants. The 
white switches labeled F1, F2, F3, F4 for each 
quadrant allow forming two dimensional buses that run 
in two directions, for example North-West, South-East 
and so on. Essentially, they enable fusing horizontal 
and vertical segments together so that the bus can bend 
from the x-axis to the y-axis or vice versa in any 
direction. 

Figure 1   The structure of a PR-Mesh. 

Processors can function as a disconnected processor, 
head (one closest to the U-turn), tail (one farthest from 
the U-turn) or simply an intermediate processor 
(processors that are neither head nor tail) on a bus. 
Figure 2 represents the possible roles of the processors 
(Black    circles    represent switches that are set to fuse 
connections and intersections without circles have open 
connections.) Figure 3 shows the corresponding PR-
Mesh for Figure 2 processors. A PR-Mesh processor 
can be the head of the segment for up to two directional 
buses. The head of a bus will set some of its F* ports 
(where F* represents any of its fusing ports F1, F2, F3
and F4) in any of its quadrants. This fusing causes a U-
turn in the bus, thereby connecting the transmitting to 
the receiving segment. Processors on a column bus fuse 
their N1, N2, S1 and S2 ports. Fusing vertical segments 
together in the same direction makes the bus continue 
along the same vertical direction. Processors may be on 
one or both of its column buses. Processors that are the 
tail of a bus fuse switches in only one quadrant thereby 
stopping the progress of the bus along the same 
direction. Processors on a row bus fuse their E1, E2, 
W1 and W2 ports making the bus progress in the same 
horizontal direction.
 Processors that are not connected to any bus open 
all their switches. Since the PR-Mesh is a two 

dimensional model, it has the capability to change 
directions of a bus from horizontal to vertical or vice 
versa. This is called a bend in the bus. To achieve a 
bend, the diagonally opposite ports in the same 
quadrant are fused. A pivot-processor is the processor 
at which the bus bends and fuses a horizontal to a 
vertical segment. A bus can bend in eight possible 
ways. 

Figure 2   Roles of PR-Mesh Processors

3. Overview of the Simulation  
Before presenting the simulation of the PR-Mesh on a 
LARPBS, we describe how to map processors from a PR-
Mesh to an LARPBS model. For this, a simple row-major 
arrangement of processors on the PR-Mesh based on their 
indices is sufficient for the initial linear arrangement of 
processors in the LARPBS. We now discuss some of the 
main procedures of the simulation.  

Identification and Ranking of Components: A
component is a set of processor ports that are connected 
to the same bus on the PR-Mesh. The simulation is 
performed for a two dimensional PR-Mesh and hence 
buses can be on x-axis alone or y-axis alone or can span 
both axis. The idea is to rank all the components and map 
each of them as a separate sub-array in the LARPBS. The 
algorithm treats processors that do not belong to any bus 
as a single component.  

Identification of Component-Members: The component-
members of a specific component refer to the set of 
processors that have at least one port that belongs to that 
component. Since each processor on the PR-Mesh can 
have ports connected to multiple buses, the simulation 
algorithm must determine which ports belong to which 
components.  

Ranking Component-Members: This procedure ranks the 
processors for each specific component. This will allow 



us to map processors of a bus from the PR-Mesh to a set 
of contiguous processors in the LARPBS.

Switch and Port Configurations of Component 

Members: As the processors are mapped from the PR-
Mesh to LARPBS in row major order, the processors 
retain their port as well as switch configurations. For 
example, processors with delay switches in cross position 
will retain that configuration.

4. Simulation of PR-Mesh on LARPBS 
We now present the simulation by considering simpler to 
more complex bus configuration patterns. The four cases 
are as described at the end of Section 1.

4.1 CASE - 1(a) 

This case involves simulating an M × M processor PR-

Mesh on an N-processor LARPBS, where N=M2. Our 
assumptions are that each PR-Mesh processor can be 
connected to only one bus and that bus bends only 
once. The main aim here is to successfully identify and 
rank different buses as well as the processors that 
appear on each bus. Then perform a one-to-one 
mapping between PR-Mesh and LARPBS processors. 
We describe the pseudocode of the simulation below. 

0 1 2 3

6 7

8 9 11

12 14

4 5

15

10

13

0 1 2 8 7 15114 3149 131210654

(a)

(b)

0 1 2 3

6 7

8 9 11

12 14

4 5

15

10

13

0 1 2 3

6 7

8 9 11

12 14

4 5

15

10

13

0 1 2 8 7 15114 3149 131210654 0 1 2 8 7 15114 3149 131210654

(a)

(b)

Figure 3   Simulation of PR-Mesh on LARPBS  

 Figure 3 (a) shows the bus configuration on the PR-
Mesh and (b) shows the final assignment of the PR-Mesh 
processors on the LARPBS. The first step in the 
algorithm is to rank the buses that exist on the PR-Mesh. 
 We achieve this by computing a prefix sum on the 
heads and disconnected processors. 
In the next few stages, the algorithm identifies the 
processors that lie across the same bus. First, the 
algorithm finds processors that lie on the horizontal part 
of the bus and then temporarily ranks them.  
 This is done by arranging processors in row major 
order. All processors whose East-West ports are not 
connected set their segment switches. Each processor 

who segmented in the previous step sends their index to 
its left/right neighbor processor. The left neighbor is the 
processor sending its index Pi–1, and right neighbor is 
processor sending its index Pi+1. All disconnected 
processors also do the same. 

Pseudocode for CASE 1-(a) 

 If a processor receives a message, it sets its segment 
switch. A receiving processor now knows that the 
processor on its left/right had set its segment switch since 
it did not lie on a row bus, therefore it cannot also lie on 
the row bus that the receiving processor lies on. Same is 
done for recognizing processors along column segment 
but the indices of left and right neighbor processors are Pi

– M and Pi + M. This is a temporary ranking as neither 

remaining processors along the bus nor the direction of 
the head processor is known. Once the horizontal 
segments of the processors are identified by arranging 
processors in row-major format, the pivot processor now 
knows the number of processors along a row segment and 
if the head of the segment lies in this segment.  
 Processors along the column of the bus can be 
found by arranging processors in column-major order 
and finding the number of processors along this 
segment. The ranks have to be readjusted as the 
direction of the bus is now known. This is done by 
rearranging the processors in row major order and 

Begin 
Perform Bus Ranking 

         Compress heads of segments and disconnected 
processors 
          Compute the prefix sum on these processors 

 Identify Row Segments  
Arrange processors in row major order 

 Group processors lying on same bus  
 Rank processors in along row segments 

                  Pivot nodes hold total number of processors  
 Identify Column Segments  

 Arrange processors in column major order 
 Group processors lying on same bus  
 Rank processors in along column segments 

 Pivot nodes hold total number of processors     
Re-Rank Processors  
        If pivot node gets bus rank from column segment  
 Processors in the column segment retain rank 

 Processor in row segments adjust ranks 
        If pivot node gets bus rank from row segment 

Processors in the row segment retain rank 
Processor in column segments adjust ranks  

 Compute Slot start value 
        Compress heads of segments and disconnected 
processors 
        Compute prefix sum on total number of processors 
      Broadcast slot start values to all processors on the bus 

         Each processor compute new index 
         Arrange each processor based on new index 
End

Begin 
Perform Bus Ranking 

         Compress heads of segments and disconnected 
processors 
          Compute the prefix sum on these processors 

 Identify Row Segments  
Arrange processors in row major order 

 Group processors lying on same bus  
 Rank processors in along row segments 

                  Pivot nodes hold total number of processors  
 Identify Column Segments  

 Arrange processors in column major order 
 Group processors lying on same bus  
 Rank processors in along column segments 

 Pivot nodes hold total number of processors     
Re-Rank Processors  
        If pivot node gets bus rank from column segment  
 Processors in the column segment retain rank 

 Processor in row segments adjust ranks 
        If pivot node gets bus rank from row segment 

Processors in the row segment retain rank 
Processor in column segments adjust ranks  

 Compute Slot start value 
        Compress heads of segments and disconnected 
processors 
        Compute prefix sum on total number of processors 
      Broadcast slot start values to all processors on the bus 

         Each processor compute new index 
         Arrange each processor based on new index 
End



broadcasting the number of processors that are present 
between the head of the segment and pivot processors 
so processors along the pivot-tail of the segment need 
to re-adjust their ranks. The final step of the algorithm 
is finding which slot is to be occupied by which bus by 
computing the prefix sum along each bus as they are 
ranked. 

Complexity Analysis: 

We now describe the complexity analysis of the 
simulation algorithm. Compression algorithm takes 
O(1) time [2]. For processors to compute their 
temporary ranks along a row or column bus takes O(1)
time. Arranging the processors in row major order as 
well as column major order to identify processors 
along each row and column segment takes O(1) time 
[2]. All communication between processors takes O(1)
time. All the internal functions that the processors 
perform, for example adjusting their ranks once the 
other processors along the bus have been identified, 
finding number of processors along their segments, etc. 
takes O(1) time. The prefix sum is computed for the 
head of the segments. For integers with bounded 
magnitude, the algorithm for prefix sum computation 
takes O(log log N) time using N processors [12]. 
Permutation routing  over the LARPBS takes O(1) time 
[11]. 
 Hence the complexity of the algorithm is O(log log 
N). Note that the efficiency of the simulation lies in the 
prefix sum computation. 

4.2 CASE 1- (b) 

Our assumptions for this case are that each PR-Mesh 
processor is connected to only one bus and each bus 
bends more than once. Figure 4 shows an example of 
this assumption. The initial steps of the simulation are 
the same as the previous section. The ranking of 
processors is different since there are many bends in 
the bus. We provide a detailed explanation of the prefix 
sum computation using a binary tree-like method. Note 
that after forming row and column segments, each 
pivot processor becomes aware of the number of 
processors ahead and behind it and also of the next 
pivot processor that it might need to communicate with 
in order to find the number of processors in that 
segment.  

Figure 4   Buses with Multiple Bends 

 We now need to determine the directionality of the 
bus and pass this on to other processors. Pivot 
processors are the processors that achieve this task.
Ranking the processors in their segments can be done 
only after learning the number of processors ahead of 
them. We describe the pseudocode of the simulation 
below. 

Pseudocode for CASE 1-(b) 

 Ranking now becomes a prefix sum computation 
on the number of processors held in each segment. The 
traditional binary tree method cannot be used here for 

Begin 
Perform Bus Ranking 

               Compress heads of segments and disconnected 
processors. 

                Compute the prefix sum on these processors 
Identify Row Segments 

Arrange processors in row major order 
Group processors lying on same bus  
Pivot nodes hold total number of processors in 

row segment 
Identify Column Segments  

             Arrange processors in column major order 
             Group processors lying on same bus  

             Pivot nodes hold total number of processors in  
column segment 

Rank Processors  
       Repeat on pivot nodes until prefix sum is computed 

 { 

   Perform ranking using binary prefix sum 
algorithm  
   Pivot processor send index to pivot ahead of  
    it 

   Pivot receiving index send prefix sum 
  Pivot receiving index also send next pivot index
   Pivots newly learning index of head of 
    segment 

   Send their index to head 
 } 
 After ranking tail send rank to head  
 Compute Slot start value 

         Compress heads of segments and disconnected 
processors 
         Compute prefix sum on total number of processors 
         Broadcast slot start value to all pivots on the bus 
         Pivots broadcast slot start to processors in their 

segment 
         Each processor compute new index 
      Arrange each processor based on new index 
End



the prefix sum computation because the indices of the 
processors are not structured. In other words, 
processors are not necessarily communicating with 
those spaced 2i apart, so the processors are unaware of 
who to communicate with in the next stage of the 
computation. Hence, all the segment switches are now 
set straight. During the formation of row/column 
segments each pivot node must provide the index as 
well as the sum computed so far to the processor 
communicating with it. 
 As a final step, the communicating processor also 
provides the id of the next pivot processor to 
communicate with. This is continued until the prefix 
sums are computed. In addition, each pivot node that 
newly learns the identity of the head of the segment 
must send its index to the head of the bus. 
 The head of the segment becomes aware of all the 
pivot nodes at the end of the prefix sum computation. 
This becomes vital because after the processors are 
ranked, the next step is to find the slot that this bus 
needs to occupy depending on the rank. This is 
continued until the last step in which the final nodes 
posses the prefix sum of all the pivot nodes in front of 
it. Prefix sum is then used compute the rank of the 
other processors on the same bus. Once the ranking is 
completed, the rest of simulation is similar to the 
previous section.

Complexity: While the rest of the simulation is similar 
to the previous case, the complexity has increased due 
to ranking the processors by the binary tree like 
method. The complexity is now O(log log N + log b)
where b denotes the number of bends in the bus. It is 
also prudent at this stage to compute the worst case 
value of b. The architecture of the PR-Mesh allows the 
buses to bend at every opportunity and form a 
meandering structure. The bus can be bent twice by a 
single processor.  Hence the number of bends is 
bounded by O(N2) bends. But it should be noted that it 
is highly unlikely that the bus is bent so many times. 
The number of bends will typically be much less than 
the worst case as defined. In simpler terms, b << O(N2). 
Hence the worst case complexity of simulating a PR-
Mesh model on an LARPBS is O(log log N + log N)
for case1(b). 

Overview of Simulation Involving Multiple Buses: 

Simulating processors that are on multiple buses is 
much more complicated due to the fact that within a 
single bus cycle, a processor might have to function as 
members of different sub arrays in the LAPRBS which 
is not possible. There has to be an increase in the 

number of processors so that they can be 
accommodated on as many as four buses.
 The approach of allowing an increase in the 
number of processors in the simulating model was 
utilized in the simulation of the Cycle Free Linear 
Reconfigurable Mesh (CFLR-Mesh) by the LR-Mesh 
[13-14]. In the simulation of a two dimensional PR-
Mesh on an LARPBS the increase in the number of 
processors is constant instead of a polynomial increase.  
 We introduce a notation prior to presenting the 
results of the simulation [14]. For a model Z, let F= Z 
(T, Constant (N)) denote the class of problems solved 
by the model Z in O(T) steps with a constant increase 
in the number of processors. Here the LARPBS is the 
model represented by Z and the two parameters of F
are to be found. From the configuration of the PR-
Mesh, it is known that at the most, each processor can 
be on four buses and hence the value of the constant is 
four. The equation is now modified as F= Z (T, 4 (N)).
Next the time needed for the simulation is to be 
computed. 

Preprocessing Step: The first step in the simulation is 
the indexing of processors and then arrangement or 
mapping on the LARPBS. The four copies of processor 
Pi have indices Pia, Pib, Pic and Pid, respectively. 
Processor with index Pia, is deemed as the “master 
processor” and holds the port and switch 
configurations of Processor Pi. The other three 
processors are the slave processors at the beginning of 
the simulation. All processors with indices Pix are 
sorted in ascending lexicographic order.
 During pre-processing, if processor Pia determines 
it is connected to multiple buses, then processor Pia

simulates the bus segment with transmission from east 
to west. It makes processor Pib simulate the bus 
segment with transmission from west to east, Pic bus 
segment with transmission from north to south, and Pid

bus segment with transmission from south to north. 
 The respective port and switch configurations are 
passed on to these processors in constant time. After 
this step, the processors can independently and need 
not pass on any information to the master processor. 
An additional point to be noted is that when a 
processor is a head of multiple buses those buses 
should be ranked consecutively. At this point, we have 
separated each processor that is on multiple buses into 
independent segments.

4.3 CASE 2 - (a) 

Here the main problem involves the elimination of 
duplicate processors that are present in certain 



segments. We first identify row and column segments 
of buses by arranging all Pia processors together in 
increasing order of i such that they form Group-a.
Form Group-b, Group-c and Group-d similarly in row 
major order. Processors in Group-c and Group-d are 
then arranged in column major format. The processors 
along row or column buses are identified using the 
same procedure as in previous cases. In order to 
perform ranking, all processors straighten their 
segment switches to form a single LARPBS.   

Figure 5 Mirror Pivots Elimination

 Since the bus has only one bend, the bus is divided 
into two parts with a mirror image of the same pivot 
processor in both the segments as seen in Figure 5. One 
of the two mirror pivots will be in a segment where the 
identity of the head of the segment is known. So the 
pivot processor that knows the identity of the head of 
the segment and rank of the bus contacts the mirror 
pivot to rank processors in the other segment.
 Note that all processors know the id as well as the 
index (when arranged in terms of groups) of the 
processor simulating its pivot. Thus multiple one-to-
one communications can take place in a single step. 
Only one of the two mirror pivot processors is ranked 
and it is the communicating processor while the other 
one becomes idle after passing on the information. 
 The adjustment of the ranks is similar to case 1(a). 
After this step, all disconnected and idle processors are 
ranked and pushed to one end of the LARPBS. The rest 
of the simulation proceeds as case 1(a). The time 
complexity for this case is the same as case 1(a). 

4.4 CASE 2 - (b) 

We can summarize the problem of simulating this 
scenario into two main steps. Namely, the 
identification and elimination of mirror pivots to 
concatenate the separate bus segments into one and 
ranking processors on the bus. After completing the fist 
step the processors are now on single bus with multiple 

bends the rest of the simulation is done as discussed in 
Case 1(b). 

Pseudocode for CASE 2-(a) 

The first step is similar to the previous case 
except that there is more than one pair of such mirror 
pivots. To eliminate all, the processors straighten their 
segment switches to form a single LARPBS. The pivot 
processor that knows the identity of the head of the 
segment and rank of the bus contacts the mirror pivot 
to rank processors in the other segment. Since the 
direction of the transmission is known, the mirror-pivot 
farther in the direction of transmission is always 
chosen for ranking and the eliminated pivot informs the 
chosen one of the number of processors in its segment 
and also the identity of the pivot that it needs to 
communicate with in the next steps. After this step all 
the segments have been joined together and now the 
simulation for the ranking is similar to Case 1(b). Once 
ranking has been completed, the rest of the simulation 
is the same as Case 2(a) for ranking the idle and 
disconnected processors and finally computing the 

Begin 
     Perform Bus Ranking 

Compress heads of a segments and disconnected 

processors. 
 Compute the prefix sum on these processors 
    Identify Row Segments  

Arrange processors in row major order 
Group processors lying on same bus  
Rank processors in along row segments 

Pivot nodes hold total number of processors in row 
segment 

   Identify Column Segments  
Arrange processors in column major order 
Group processors lying on same bus  
Rank processors in along column segments 
Pivot nodes hold total number of processors in column 

segment 
Elimination of Mirror Pivots 

If pivot node gets bus rank from column segment  
    Preserve and rank pivot in column segment 
    Eliminate pivot in row segment 
If pivot node gets bus rank from row segment      

     Preserve and rank pivot in row segment 
     Eliminate pivot in column segment 

Re-Rank Processors  
               If pivot node gets bus rank from column segment  

Processors in the column segment retain rank 
Processor in row segments adjust ranks  

              If pivot node gets bus rank from row segment  
Processors in the row segment retain rank 

 Processor in column segments adjust ranks 
Compute Slot start value 
             Compress heads of segments and disconnected   
            processors 

            Compute prefix sum on total number of processors 
            Broadcast slot start values to all processors on the bus 
           Each processor compute new index 
           Arrange each processor based on new index 
End



slots to be occupied. The time complexity for this case 
is the same as case 1(b). 

5. Conclusions
From the simulation it is established that a two 

dimensional M × M PR-Mesh can be simulated on an N

or 4N processor LARPBS (where N = M2). The cases 
considered for the simulation differ based on the 
varying complexity of bus structures. Since the number 
of processors needed for the simulation differ based on 
the complexity of the bus structure and so does the 
time taken to perform the simulation, choosing an 
appropriate case will yield better and efficient 
simulation performance.  
 This simulation is first of its kind to establish a 
relationship between a one dimensional and a two 
dimensional optical model. It is also shown that the 
move in fact, has caused no overhead in the volume of 
communication. The complexity in reconfigurable 
architecture is either due to the functionalities provided 
by the models or the complexity of the bus structure. In 
this case the functionalities provided by both models 
are the same. The complexity of the PR-Mesh is due to 
the latter aspect. In order to handle the bus complexity, 
the number of processors was increased. This is due to 
the fact that each bus is represented as a separate sub-
array in the LARPBS, so a processor that is a part of 
multiple buses may have to communicate with 
processors in different subarray with in a single bus 
cycle.  

6. Future Work 
The PR-Mesh is a two dimensional extension of the 
LARPBS hence the natural correspondence between 
them was exploited. However, there are many other 
models that have much richer switch and port 
configurations or functionalities that they provide. 
Hence there should be attempts to study the 
relationships of these models with respect to the 
LARPBS as well as their one dimensional counterparts. 
As the PR-Mesh is a k-dimensional   model, it would 
be prudent to develop a more generalized algorithm for 
any value of k. With an increase in the number of 
dimensions the complexity of the bus structure will 
increase. Some areas of concern are the mapping from 
different dimensions of the PR-Mesh to the LARPBS, 
the placement of ports and how the processors on 
different dimensions are connected.  Similar to this 
simulation, the identification of different buses, 
ranking of the buses, identification, ranking of the 

processors on the different buses needs to be 
determined.  
 Our simulation provides us with a better 
understanding of the overhead required for simulating 
the PR-Mesh on the LARPBS. The overhead involved 
in the simulation is mainly due to the increase in the 
number of processors. 
 Thus in simulations involving higher dimensions 
though a constant or a polynomial increase in the 
number of processors is permissible, it would be a 
challenge to keep the number of processors the same as 
the simulated model and investigate the corresponding 
time complexity. 

References:
[1] R. Vaidynathan and J. L. Trahan, “Dynamic Reconfiguration: 

Architectures and Algorithms”, Kluwer Pub., 2003. 

[2] Y. Pan and K. Li, “Linear array with a reconfigurable 
pipelined bus system: Concepts and applications”, Inform. Sci. vol. 
106, (1998), 237-258. 

[3] S. Q. Zheng and Y. Li, “Pipelined asynchronous time-division 
multiplexing optical bus”, Opt. Eng. vol. 36, (1997), 3392-3400. 

[4] Y. Pan, “Order statistics on optically interconnected 

multiprocessor systems”, Opt. Laser Tech. vol. 26, (1994), 281-287.  

[5] A. G. Bourgeois and J. L. Trahan, “Relating Two-
Dimensional Reconfigurable Meshes with Optically Pipelined 
Buses,” International Journal on Foundations of Computer Science,

vol. 11, (2000), pp. 553-571. 

[6] S. Pavel and S. G. Akl, “On the Power of Arrays with Optical 
Pipelined Buses”, Proc. Int'l. Conf. Par. Distr. Proc.  Techniques 

and Appl.”, (1996), pp. 1443- 1454.  

[7] M. Middendorf and H. ElGindy, “Matrix Multiplication on 
Processor Arrays with Optical Buses”, Informatica, vol. 22, no. 3, 

(1998). 

[8] Z. Guo, “Optically Interconnected Processor Arrays with 
Switching Capability”, Journal of Parallel and Distributed 

Computing vol. 23, (1994), pp. 314-329. 

[9] C. Qiao and R. Melhem, “Time-Division Optical 
Communicationsin Multiprocessor Arrays”, IEEE Trans. Comput., 
vol. 42, (1993), pp. 577-590.  

[10] C. Qiao, “On Designing Communication-Intensive 
Algorithms for a Spanning Optical Bus Based Array”, Parallel 

Processing Letters, vol. 5, (1995), pp. 499-511. 

[11] J. L. Trahan, A. G. Bourgeois, Y. Pan, and R. Vaidyanathan, 
“An Optimal and Scalable Algorithm for Permutation Routing on 
Reconfigurable Linear Arrays with Optically Pipelined Buses”, 
Journal of Parallel and Distributed Computing, vol. 60, (2000), pp. 

1125-1136. 

[12] A. Datta, “Multiple Addition and Prefix Sum on a Linear 
Array with a Reconfigurable Pipelined Bus System”, The Journal of 

Supercomputing, vol. 29, (2004), pp. 303–317. 

[13] J. L. Trahan, A. G. Bourgeois, and R. Vaidyanathan, “Tighter 
and Broader Complexity Results for Reconfigurable Models”, 
Parallel Proccessing Letters, vol. 8, (1998), pp. 271-282. 

[14]  S.Pavel and S.G Akl, “Integer Sorting and routing in arrays 
with reconfigurable optical buses”, Proceedings of International 

Conference of Parallel Processing, pp. III-90-III-94, 1996. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


