
Accelerating DTI Tractography using FPGAs

Aditya Kwatra1, Viktor Prasanna1, Manbir Singh2∗

1University of Southern California 2University of Southern California
Dept. of Electrical Engineering Dept. of Radiology and Biomedical Engineering
Los Angeles, CA 90089. USA Los Angeles, CA 90089. USA
{kwatra, prasanna}@usc.edu msingh@usc.edu

Abstract

Diffusion Tensor Imaging (DTI) tractography in
Magnetic Resonance Imaging (MRI) is a computation-
ally intensive procedure, requiring on the order of tens
of minutes to complete tractography of the entire brain.
Tractography computations can be accelerated signifi-
cantly by the use of reconfigurable hardware, such as
Field Programmable Gate Arrays (FPGAs). Such ac-
celeration has the potential to lead to real-time tractog-
raphy, which would greatly facilitate on-site diagnosis
and acquisition of additional scans while the patient is
still inside the scanner. In this paper we report the
development of an FPGA based architecture to acceler-
ate DTI tractography. We identify computationally in-
tensive kernels and design pipelined implementations.
Our performance analysis based on the developed ar-
chitecture gives on the order of 100x speed-up over an
optimized implementation in C of tractography on a
state-of-the-art processor.

1 Introduction

Many brain imaging operations are computation-
ally intensive as they require large amounts of memory
storage, memory bandwidth, and computing power.
For example, researchers at UCSD Institute for Neural
Computation have designed a new way to parse EEG
data and identify the individual signals coming from
different areas of the brain [8]. The work enables much
more comprehensive view of brain dynamics. However,
it was only made possible by exploiting recent advances
in mathematics and increases in computing power [9].

Diffusion tensor imaging (DTI) tractography is a
relatively new approach to visualize brain connections

∗This work was supported in part by grant NIH
NIAP50AG05142.

throughout the volume of the human brain [1]. These
tracts provide vital information about brain structure
and function. These can be used clinically to detect
brain damage or abnormal function. For example, trac-
tography could reveal axonal damage during traumatic
brain injury, frequently missed by conventional MRI or
CT. An example of 3D tractography is shown in Fig-
ure 1 [15]. The state-of-the-art in DTI, however, does
not allow real-time whole brain tractography, making
it difficult to assess damage during a critical situation
such as brain trauma. Real-time tractography would
mitigate this limitation, thus accelerating the diagnosis
process and selection of appropriate treatment options
for the patient.

DTI tractography has been implemented using var-
ious techniques. These consist of many tasks, out of
which fiber tracking is the most time consuming task.
Fiber tracking can be further divided into three compu-
tationally intensive sub-tasks called kernels - tensor in-
terpolation, tensor diagonalisation, and anisotropy cal-
culation. These kernels implemented on reconfigurable
hardware, in particular Field Programmable Gate Ar-
rays (FPGA) can speed-up the fiber tracking to the
order of few seconds.

Tracking of a fiber in DTI tractography is a sequen-
tial process [1, 7]. The direction of next step in trajec-
tory propagation of the fiber depends on the previous
step of the fiber tract. The direction of the next step
can be in any possible direction in 3D space. The next
step of the fiber might not be in the same image slice
as the previous step. Thus, fiber tracking results in ir-
regular memory accesses. This makes the problem far
more complicated than the various image processing
techniques that have been implemented in the past on
FPGAs.

FPGAs have been an attractive option for com-
putationally intensive applications. The flexibility
provided by the FPGAs is exploited to maximize the

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. An image of DTI tractography of the
brain

parallelism and pipelining of the implementations.
Our implementations also exploit the irregular struc-
ture of the process of fiber tracking to simultaneously
compute on multiple fibers parallelly as well as in a
pipelined fashion.

We propose a deeply pipelined architecture for the
computation intensive kernels of fiber tracking in DTI
tractography. We have implemented these kernels in
VHDL using Xilinx ISE 7.1 [17] and simulated them in
modelSim 6.0a [10]. We propose to achieve on the order
of 100x speed-up over the state-of-the-art software im-
plementation using C on a uni-processor for DTI trac-
tography. Further we propose an overall architecture
to accelerate the process of fiber tracking. The acceler-
ation is achieved due to: 1. Deeply pipelined architec-
ture of the kernels linked together to form the kernel
chain; 2. Multiple such kernel chains operating in par-
allel. Based on our preliminary implementations we
provide performance analysis using IEEE 64-bit com-
pliant floating point cores developed by our research
group [3].

This paper is organized as follows. Section 2 dis-
cusses the background of using FPGAs for speeding up
DTI Tractography. In Section 3 we discuss the archi-
tecture details of our deeply pipelined implementations
of the kernel. In Section 4 we provide the high level ar-
chitecture. Section 5 shows the performance analysis
using a C based state-of-the-art software implementa-
tion on a uni-processor. We conclude in Section 6.

2 Background

2.1 Diffusion Tensor Imaging Tractogra-
phy

Tractography based on MRI Diffusion Tensor Imag-
ing (DTI) is a rapidly growing field to map axonal con-
nections through white matter in the human brain. Ei-
ther alone, or in conjunction with functional MRI, the
axonal connections provide important new information
to decipher brain structure and function.

The directional dependence of water-molecular dif-
fusion (anisotropic diffusion) forms the basis of map-
ping axonal tracts in white matter. In general, diffu-
sion is much faster along the fiber than orthogonal to
the fiber. Thus by measuring diffusion along different
directions in 3D space, it becomes possible to detect
and infer the direction of axonal tracts. These axonal
tracts can propagate in different directions in 3D space.
Each axonal tract of the brain is tracked independent
of other axonal tracts. These axonal tracts or fibers
are mapped together to provide the required diffusion
tensor 3D imaging of the brain. The irregularity of
the process of fiber tracking and independence of fiber
tracts lead us to consider the use of FPGAs to speed-up
DTI tractography.

2.1.1 DTI Processing

Diffusion is a tensor and can be mapped by modifying
a gradient echo pulse sequence to become sensitive to
diffusion along a particular gradient direction by apply-
ing a pair of diffusion pulses (bipolar gradients) along
that direction [4]. The MRI signal acquired with a
diffusion sensitive pulse sequence will attenuate in pro-
portion to diffusion along the direction of the diffusion
gradients. Diffusion is conveniently modeled as an el-
lipsoid or rank 2 tensor matrix D (3 × 3 components).
From symmetry considerations, this implies that a min-
imum of six non-collinear gradient directions would be
required to estimate the diffusion tensor matrix per
voxel [1]. After estimating D per voxel, tractography
is commonly accomplished by a streamline tractogra-
phy (SLT) approach where a seed voxel is connected to
surrounding voxels in piecewise linear steps along the
direction indicated by the principal eigenvector of the
diffusion tensor matrix. The vector associated with the
first eigenvalue of the matrix indicates the direction of
fastest diffusion and is presumed parallel to the orien-
tation of a fiber lying in the voxel [1].

The anisotropy per voxel can be expressed in many
ways but usually the fractional anisotropy (FA), which
is computed from the differences around the three eigen
values and normalized to the 0-1 range, is commonly

Algorithm 1. Fiber tracking algorithm

Input: - p images of size m × n
where p is the number of scans from the scanner

- Diffusion Tensor Matrix for each voxel
of the given p images.

Output: Set of fibers tracked from each seed-point
Cartesian cube: The centers of eight adjacent voxels

together form a cartesian cube.
Seed-point: The point where fiber tracking is initiated.

Also the center of the cartesian cube.
Num: Total number of seed points
Fiber Step: Minimum step size taken while tracking a fiber.

The Fiber Step is predefined by the user.
Fiber point: The point where the last tracked fiber

step ends.

Do for all seed-points i = 1...Num
{

Fetch the x, y and z coordinates of the seed point
Initiate fiber tracking on the chosen seed-point

Do
{

Tensor Interpolation: Calculate the weighted diffu-
sion tensor matrix D based on the distance of the
fiber point from the 8 vertices of the cartesian cube.

Tensor Diagonalisation: Calculate eigen values and
eigen vectors using SV Decomposition of the D matrix.

Trajectory Propagation: Choose the direction of the
next fiber step along the longest eigen vector
Interpolate in +/- directions.

If (The selected fiber point in different cartesian cube)
Compute the x, y, and z coordinates of the vertices
of the new cartesian cube.
Fetch the elements of the diffusion tensor matrix
for the eight vertices of the new cartesian cube.

Compute x, y and z coordinates of the new
fiber point.

Anisotropy Calculation: Calculate Fractional
Anisotropy (FA) at each fiber step.

} while(FA ≥ specified value)
Fiber tracking from the chosen seed point continues
till the FA falls below a specified value.

} Fiber tracking continues on the other seed points.

used as a stopping criterion to end tracts [11, 1].
The problem of fibers crossing within a voxel could

mislead fiber tracking [13, 16]. An alternative ap-
proach [5] that relies on a statistical model to detect
tracts has been proposed to address the problem. In
order to map the connectivity of the entire brain, ran-
dom curves are initiated on a bootstrap of the white
matter. From certain randomly selected seed points
curves are grown in both directions and elongation
stops when maximum steps or the border of the mask
is reached. The result is a statistical estimate of the
entire brain connectivity, modeled by approximately
100,000 curves. Each of these curves are tracked in-
dependently of each other. The propagation direction
calculation at each step has much more computations.
For one DT-MRI dataset, it took tens of minutes to
finish the fiber tracking.

2.1.2 Fiber Tracking Algorithm

Diffusion tensor imaging involves various tasks like fil-
tering, diffusion tensor calculation, fiber tracking, im-
age mapping, 3D visualization, etc. Out of these tasks,
fiber tracking is the most computationally intensive
task and requires the maximum amount of time. Dif-
ferent DTI tractography techniques use different fiber
tracking algorithms. The process of fiber tracking can
be further sub-divided into four sub-tasks: 1. Ten-
sor Interpolation; 2. Tensor Diagonalisation; 3. Tra-
jectory Propagation; 4. Anisotropy Calculation. An
example of an algorithm for fiber tracking is given as
Algorithm 1.

2.2 FPGAs for DTI Tractography

DTI tractography is a tightly coupled computation
and is irregular in its memory access. The tracts
can be oriented in many directions. The stored
data must be accessed without access conflicts to
permit effective parallelization. Many brain imaging
techniques are computationally intensive, as they
require large amounts of memory storage, memory
bandwidth, and computing power. To address the
need for high performance computing in brain imaging
various resources like super-computers, cluster and
grid computers, etc. have been utilized [2].

However, those technologies have several limita-
tions: 1. they are expensive, in terms of the infrastruc-
ture investment. 2. A highspeed network is required
for users to access the computing resources. 3. Main-
taining such a computing environment is a tremendous
task for computer scientists and engineers. 4. Since the
computing power provided by those technologies is cen-
tralized or distributed over a limited number of sites,

its usage is restricted. For example, real-time imag-
ing can only be performed where the scanner is close
to the available computing power. On the other hand
the maximum gate density FPGA costs a few hundred
dollars [17] and can easily be used next to the scanner.

The computation intensive task of fiber tracking in-
volves tracking of different fibers which are indepen-
dent of each other. The calculations involved for the
sub-tasks at every fiber step of an axonal tract is in-
dependent from any other fiber step at any other ax-
onal tract. This property of diffusion tensor imaging
tractography is exploited to develop deeply pipelined
kernel architecture implementations on the FPGAs to
provide the necessary speed-up to enable real time DTI
tractography.

FPGAs provide the flexibility and programmability
to optimize the hardware to solve a specific problem.
Parallelism and pipelining are the two techniques
which provide the most efficient architecture designs
on the FPGA . The flexibility of the FPGA devices can
be exploited to have multiple kernel chains running
in parallel, thus providing further speed-up. The
on-chip Block RAM and Distributed RAM available
on the FPGA’s are used to continuously feed the
kernel chains. Reusability of data can be exploited,
while different steps of the same fiber tract are being
computed. Thus further reducing the FPGA to
off-chip memory accesses.

3 Our Architecture

3.1 Observations based on the Algorithm

The following observations were made based on the
process of fiber tracking given in Algorithm 1:

1. Tracking of two fibers is independent of each other.

2. Tracking a fiber is a sequential process. Next fiber
point is chosen at the end of processing of each
fiber step.

3. Fiber tracking in each cartesian cube consists of
about 10 fiber steps. This value is as used in the
profiled C-code for fiber tracking. As in Figure 2,
shows the fiber steps taken from the center solid
circle representing the seed-point.

4. The fibers might converge together or diverge out
into two branches. Such a situation is taken into
consideration by starting from multiple seed points
within the set of images. Fiber tracts originating
from these multiple seed points are independent of
each other.

Table 1. Profile of the C-code for DTI tractog-
raphy on a uni-processor

Profiling Results
T otal number of operations : 107

Average number of fiber
steps per cartesian cube : 10

Kernels Execution T ime(secs)
Tensor Interpolation 18.7

Tensor Diagonalisation 128.0
Anisotropy Calculation 5.9

Figure 2. Fiber tracking in a cartesian cube

We profiled the C based software implementation of
the DTI tractography on an Intel Xeon Processor [6]
running at 800 MHz and having 4GB RAM. The re-
sults of profiling the C-code are as shown in Table 1.
The three time consuming kernels thus identified are
1. Tensor Interpolation 2. Tensor Diagonalisation 3.
Anisotropy Calculation.

3.2 Acceleration of Computationally In-
tensive Kernels

We develop deeply pipelined architectures of the
computationally intensive kernels. We have exploited
the property of the fiber tracts being independent of
each other and the flexibility of FPGA devices to sup-
port a deeply pipelined and parallel architectures. The
data-sets for multiple seed-points are provided to the
deeply pipelined kernels to initiate multiple fibers to
be tracked in parallel.

We implemented the three computation intensive
kernels using 64 bit integer cores provided by Xil-
inx [17]. The implementations were done using VHDL
in Xilinx ISE 7.1 [17] and simulated in modelSim
6.0 [10]. We further provide performance analysis us-
ing the 64 bit floating point cores developed by our
research group [3]. We use 64 bit cores so as to provide
a fair comparison with the available state-of-the-art C-
code which uses double precision floating point data.
Tensor Interpolation

Tensor interpolation is used to calculate the six

X

+

+

X Reduction Circuit

+

X

Buffer

Xv

Y0

Zv

Z0

X0

Yv

Dxy

Figure 3. Tensor Interpolation Kernel

components of the 3 × 3 weighted diffusion tensor
symmetric matrix at every step in fiber tracking.
The weights are based on the distance of the fiber
point from vertices of the cartesian cube. The basic
computation involved in this kernel is as follows:

Dxy = Σv Dv
xy × (Xv − X0) × (Yv − Y0) × (Zv − Z0)

where
v represnts the vertices of the cartesian cube
Xv, Yv, Zv are the x, y, z coordinates of the vertex v
X0, Y0, Z0 are the x, y, z coordinates of the seed point
Σv - summation over all 8 vertices

The architecture of the implemented kernel
is as given in Figure 3. Seven inputs i.e.
Xv, Yv, Zv, X0, Y0, Z0, and Dxy are provided to the
tree structured pipeline during every clock cycle. The
output from the tree structured pipeline is accu-
mulated using a high through-put pipelined reduc-
tion circuit [18]. The tensor interpolation kernel
pipeline produces an output every 8 cycles. This
is due to the accumulation of the weighted diffu-
sion tensor matrix elements from the eight vertices
of the cartesian cube. Thus, to output the six
elements of the symmetric diffusion tensor matrix:
D00, D01, D02, D11, D12, and D22, the pipelined kernel
provides a set of results every 48 cycles. The kernel was
implemented using the integer cores provided by Xil-
inx [17]. After synthesis and simulation, the kernel was
found to run at a maximum frequency of 186.2 MHz.

Tensor Diagonalisation
The 3 × 3 symmetric tensor matrix is diagonalised

to calculate the eigen values and their corresponding
eigen vectors. The next fiber-step in the process
of fiber tracking is decided in the direction of the
longest eigen vector. The eigen values and their
corresponding eigen vectors are calculated by the

Jacobi based Singular Value (SV) Decomposition [14]
of the symmetric tensor matrix. SV Decomposition
of the symmetric matrix always produces a diagonal
matrix, whose elements represent their respective eigen
values. SV Decomposition involves multiplication of
two orthogonal matrices with the tensor diagonal
matrix. The elements of the orthogonal matrix of
each iteration are calculated to make a pair of the off
diagonal elements of the symmetric diffusion tensor
matrix tend to zero. The following computation is
involved in the Tensor Diagonalisation kernel:

θpq = Dqq−Dpp

2Dpq

t = sqn(θ)

θ+
√

θ2+1

c = 1√
t2+1

s = tc
Dnew = Q × Dold × QT

where given p=0, q=1, the orthogonal matrix is
constructed as follows:

Q01 =

⎡
⎣

c −s 0
s c 0
0 0 1

⎤
⎦

The orthogonal matrix Q is constructed using the
c and s values. The orthogonal matrix is multiplied
to the diffusion tensor matrix as above to complete
one iteration of the SV Decomposition. The algorithm
keeps iterating for all values of p = 0 to 2 and q =
p+1 to 2. These iterations continue till the off-diagonal
elements of the diffusion tensor matrix D, tend to 0.
The implementation details of the kernel are as shown
in Figure 4. The pipelined architecture of this kernel
is capable of producing an output every clock cycle.

The designed pipeline of the kernel is equivalent to
one iteration of the Jacobi SV Decomposition algo-
rithm. The latency of the pipeline is a multiple of the
rate at which the kernel receives the inputs from the
Tensor Interpolation kernel, i.e. 48 clock cycles. The
Jacobi SV Decomposition of a n × n matrix converges
in n2 cycles. Thus, the Jacobi SV Decomposition of
the tensor diagonal matrix of the order 3 × 3 will con-
verge in at most 9 iterations. As 48 > 9 thus, every
consecutive iteration can be fed back to the pipeline,
without any possibility of data hazards. Thus in the
worst case, even if all the data elements take 9 itera-
tions to converge, we will produce an output every 48
clock cycles.

The value of c is also calculated by feeding back the

Dqq

+ X

X

X

/

Buffer

Buffer

Dpq

Dpp

t

c
s

Eigen Values

Iteration N+1
or

X

X

X

+

Buffer

+

Matrix
multiplication

X

X

X

+

Buffer

+

Matrix
multiplication

+1
�

+

/X

Buffer

Buffer

Feedback for calculation of c

t calculation

c calculation

++ X

X

XX

//

BufferBuffer

BufferBuffer

Dpq

Dpp

t

c
s

Eigen Values

Iteration N+1
or

X

X

X

+

Buffer

+

Matrix
multiplication

X

X

X

+

Buffer

+

Matrix
multiplication

Eigen Values

Iteration N+1
or

Eigen Values

Iteration N+1
or

X

X

X

+

Buffer

+

Matrix
multiplication

X

X

X

+

BufferBuffer

+

Matrix
multiplication

X

X

X

+

BufferBuffer

+

Matrix
multiplication

+1
��

++

//XXX

Buffer

BufferBuffer

Feedback for calculation of c

t calculation

c calculation

Figure 4. Tensor Diagonalisation Kernel

value of t to the pipeline. The data collisions in the
pipeline are avoided, because of the delay of 48 clock
cycles between consecutive inputs to the Tensor Diag-
onalisation kernel. First 9 of these idle clock cycles are
used for the 9 iterations of the SV Decomposition. The
next 9 idle clock cycles are used for the calculation of
the value of c. Once the values of s and c are calcu-
lated, we determine the orthogonal matrices, which are
multiplied with the tensor matrix.

The kernel was implemented using the integer cores
provided by Xilinx [17]. After synthesis and simulation,
the kernel was found to run at a maximum frequency
of 111.3 MHz.
Anisotropy Calculation

This kernel involves the following calculations:

FA =
√

3×[(λ1−λ)2+(λ2−λ)2+(λ3−λ)2√
2×(λ2

1×λ2
2×λ2

3)

RA =
√

(λ1−λ)2+(λ2−λ)2+(λ3−λ)2√
3λ

where λ = λ1+λ2+λ3
3

The implementation details of the kernel are as
shown in Figure 5. The architecture of this kernel
consists of a deep pipeline of a set of operations be-
ing performed in a sequential manner, while exploiting
parallelism where ever possible. The architecture is
capable of producing an output every clock cycle.

The kernel was implemented using the integer cores
provided by Xilinx [17]. After synthesis and simulation,
the kernel was found to run at a maximum frequency
of 162.8 MHz.

4 Experimental Results

The preliminary implementations of the kernels were
done using the 64 bit integer IP cores available by Xil-
inx [17]. Based on the maximum frequency of the ker-
nel implementations, we have made a conservative esti-

Table 2. Floating point core details
Floating − point P ipeline Maximum

cores stages Frequency(MHz)
Adder 14 170

Multiplier 11 170
Divider 58 140

SquareRoot 55 169

mate of using 100 MHz as the frequency to operate the
implemented kernels as a kernel chain. In this section
we provide performance analysis based on our exper-
imental results of the implementation of the kernels.
For a fair performance analysis with the C-code, we
use the IEEE 64 bit floating point cores developed by
our research group [3] instead of the 64 bit integer cores
used in the kernel implementation.

The speed-up achieved is due to the deeply pipelined
design, which exploits the independence of the track-
ing of individual fiber tracts. Thus, input data-set
from different fibers can be continuously provided to
the pipeline. The profiled C-code uses 28 images of
size 128× 128, and each image on an average has 2000
seed points. Thus we have enough data available to
us to keep the pipeline busy. However in the tracking
of a single fiber the consecutive fiber step is depen-
dent on the outcome of fiber step currently computed.
The latency of fetching the input data to maintain the
through-put of the pipeline is overlapped with the com-
putation of the anisotropy calculation kernel. Once
the next fiber point has been computed and the re-
quired data fetched, the data-set is again provided to
the pipeline for further fiber tracking.

We have compared our implementation performance
with the profiled state-of-the-art C-code. The profiling
results are as shown in the Table 1. Each kernel is exe-
cuted on the order of 107 times as seen by the profiling
results. Thus the initial combined latency of the kernel
chain is neglected when compared to the through-put
of the pipeline.

+
+

+

X

+

+

/

X

X

X

+

+ � X X

1/ � 3

RA

Buffer

Buffer
Buffer

�
1

�
2�
3

X

X

X

+

+

� /

Buffer

Buffer X X

�
2/

�
3

FA

�
1

�
1

�
2�
2�
3�
3

1/3

�
1

�
2

�
3

+
+

+

X

+

+

/

X

X

X

+

+ �� XX XX

1/ � 3

RA

BufferBuffer

BufferBuffer
BufferBuffer

�
1

�
2�
3

XX

X

X

++

+

�� /

BufferBuffer

BufferBuffer XX XX

�
2/

�
3

FA

�
1

�
1

�
2�
2�
3�
3

1/3

�
1

�
2

�
3

Figure 5. Anisotropy Calculation Kernel

Table 3. Performance Comparison with C-
code

Execution Time (secs)
Kernels

C − code FPGA

Tensor Interpolation 18.7 0.8

Tensor Interpolation+
Tensor Diagonalisation

146.7 4.8

Tensor Interpolation+
Tensor Diagonalisation+ 152.6 4.8
Anisotropy Calculation

Tensor Interpolation
This kernel uses a fully pipelined tree structure

and a reduction circuit. Set of 7, 64-bit floating point
inputs are available every clock cycle. The output
is produced every 8 clock cycles. The time taken to
process 107 such operations to be equal to 0.8 seconds
at 100 MHz. The same operation takes about 16
seconds on the C-based software implementation as
seen from the profiling results.

Tensor Diagonalisation
One iteration of the SV Decomposition is unrolled to

produce a very deep pipelined non-linear kernel imple-
mentation. This kernel receives the set of inputs after
every 48 clock cycles from the tensor interpolation ker-
nel. Due to the delay between successive inputs, the
output is produced after every 48 cycles. Thus at this
rate, both the tensor interpolation kernel and tensor
diagonalisation kernel together will be able to process
the input data in 4.8 seconds at 100 MHz as compared
with 2 minutes and 27 seconds of the profiled C-code.

Anisotropy Calculation
The three eigen values λ1, λ2, and λ3 are provided in

parallel to the anisotropy calculation kernel from the
tensor diagonalisation kernel. This is a fully pipelined
kernel capable of producing an output every clock cy-
cle. The input from the tensor diagonalisation kernel
is delayed by 48 clock cycles, thus this latency is re-
flected in the output of this kernel. Considering the
three kernels together as a kernel chain, the output
can be produced every 48 cycles. The total time taken
to compute for 107 such computations with the kernel
chain operating at 100 MHz takes about 4.8 seconds
as compared with 2 minutes and 32 seconds of profiled
the C-code. Thus providing a speed-up of the order of
30x.

SRAM

FPGA

k � 10

Kernel Chain 1

BRAM 0 Fiber m Fiber r

Kernel Chain k

BRAM k-10.8
GB/s

Fiber q Fiber u

Kernel Chain 2

BRAM 1
8 GB/s

0.8
GB/s

0.8
GB/s

Fiber n Fiber s
SRAM

FPGA

k � 10

Kernel Chain 1

BRAM 0 Fiber m Fiber r

Kernel Chain k

BRAM k-10.8
GB/s

Fiber q Fiber u

Kernel Chain 2

BRAM 1
8 GB/s

0.8
GB/s

0.8
GB/s

Fiber n Fiber s

Figure 6. Overall Architecture

5 Overall Architecture

5.1 Parallel Implementation of Multiple
Kernel Chains

Multiple kernel chains consisting of the computa-
tional intensive kernels can be implemented to run in
parallel. This is possible because the computation in-
volved in tracking a fiber is independent of that in-
volved in tracking another fiber. This would provide
a further speed-up proportional to the number of ker-
nel chains implemented in parallel. Thus, if we have
enough resources to implement 10 such kernel chains,
with each chain providing a speed-up of 30x, we can ex-
pect an overall speed-up of the order of 300x. We would
be able to complete the computation for the data-set
of 107 data elements in 0.48 seconds as compared with
2 minutes and 32 seconds taken by the profiled C-code.
The overall architecture is shown in Figure 6.

5.2 Bandwidth Requirements

Multiple kernel chains operating in parallel will re-
sult in increased FPGA to off-chip memory band-
width requirements. Currently available FPGA mod-
ules (e.g. BenDATA-WS FPGA module [12]) provide
up to 8 GBytes/sec of maximum memory to FPGA
bandwidth.

The inputs required by the tensor interpolation ker-
nel are the x, y, and z coordinates of the eight vertices;
x, y, and z coordinates of the seed-point; and one of the
six elements of the symmetric diffusion tensor matrix
every clock cycle, as can be seen in Figure 3. With the
known size of the cartesian cube, the values of the x,
y and z coordinates of the vertices and the computed
fiber points are locally available. Thus the inputs re-
quired from the off-chip memory are the six elements of
the diffusion tensor matrix for each vertex of the carte-
sian cube in operation. These elements can be stored
on chip in the BRAM while the fiber tracking continues
in the same cartesian cube.

If our pipeline requires one diffusion tensor matrix
element every clock cycle to sustain fiber tracking from

multiple seed-points, we would require one 64-bit float-
ing point value every clock cycle. Thus the bandwidth
requirement in the worst case would be 0.8 GBytes/sec.
However, as the fiber tracking continues with-in the
cartesian cube, the on-chip data is reused and no in-
puts are required from the memory for this compu-
tation. Thus during this time the unused bandwidth
can be used for speculative pre-fetching of the diffusion
tensor matrix elements of the vertices of the cartesian
cube surrounding the cartesian cube in operation.

5.3 Overall Performance

Even if we are able to implement 5 kernel chains
operating in parallel, we can achieve a further 5x speed-
up over the single kernel chain implementation. Thus
we should be able to complete the computation in 0.96
seconds as compared with 2 minutes and 32 seconds
taken by the C-code on a 800 MHz Intel Xeon processor
having 4GB of RAM. Thus providing an overall speed-
up of 155x.

6 Conclusion and Future Work

The pipelined kernel chain was able to complete the
required computation in 4.8 seconds as compared with
the 2 minutes and 32 seconds obtained by profiling the
C-code. Thus providing a speed-up of 31x. The re-
sults based on a conservative clock speed of 100 MHz
have been summarized in Table 3. Further speed-up
is also possible when multiple such kernel chains are
implemented in parallel. Having 5 such kernel chains
in parallel, we will be able complete all computation in
0.96 seconds, a speed up of 155x.

In our analysis we have used 64-bit floating point
cores to get a fair comparison with the available state-
of-the-art C-code implementation, which uses double
precision floating point variables. Fiber tracking can
also be achieved using 32-bit floating point numbers
with out much concern of loss of precision to the bio-
medical community. Thus using 32-bit floating point
cores in our implementation, will result in faster clock
rate and reduced area.

Our present research provides the pipelined kernel
implementation for a DTI tractography technique. Our
implementations are modular, and can be used for im-
plementation of other DTI tractography techniques,
with some changes to the present kernel implementa-
tions. Providing a library of kernels would allow the
users to speed-up different DTI techniques on the FP-
GAs. The kernel library would give the users a choice
of the technique to be implemented.

References

[1] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Al-
droubi. In vivo fiber tractography using DT-MRI data.
Magn Reson Med., 44(4):625–32, 2000.

[2] BIRN - Biomedical Informatics Research Network.
http://www.nbirn.net.

[3] G. Govindu, R. Scrofano, and V. K. Prasanna. A
library of parameterizable floating-point cores for FP-
GAs and their application to scientific computing. In
T. Plaks, editor, Proceedings of the International Con-
ference on Engineering Reconfigurable Systems and Al-
gorithms, June 2005.

[4] E. Haacke et al. Magnetic Resonance Imaging-Physical
principles and sequence design. Wiley-LISS, 1999.

[5] P. Hagmann, J. Thiran, L. Jonasson, P. Van-
dergheynst, S. Clarke, P. Maeder, and M. R. DTI
mapping of human brain connectivity: statistical fi-
bre tracking and virtual dissection. Neuroimage,
19(3):545–54, 2003.

[6] Intel Corporation. http://www.intel.com.
[7] S. Kim. White Matter Tractography Using Diffusion

Tensor-Magnetic Resonance Imaging. PhD thesis,
University of Southern California, 2003.

[8] S. Makeig, S. Debener, J. Onton, and A. Delorme.
Mining event-related brain dynamics. Trends in Cog-
nitive Science, 8(5):204–210, 2004.

[9] S. Makeig, A. Delorme, M. Westerfield, T.-P. Jung,
J. Townsend, E. Courchesne, and T. J. Sejnowski.
Electroencephalographic brain dynamics following vi-
sual targets requiring manual responses. Public Li-
brary of Science Biology, 2(6), 2004.

[10] Mentor Graphics ModelSim. http://www.model.com.
[11] S. Mori, W. Kaufmann, G. Pearlson, B. Crain,

B. Stieltjes, M. Solaiyappan, and P. van Zijl. In vivo
visualization of human neural pathways by magnetic
resonance imaging. Annals of Neurology, 47(3):412–
414, 2000.

[12] Nallatech. http://www.nallatech.com.
[13] C. Pierpaoli, P. Jezzard, P. Basser, A. Barnett, and

G. Di Chiro. Diffusion tensor MR imaging of the hu-
man brain. Radiology, 201(3):637–48, 1996.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, second edition, 1999.

[15] M. Singh, W. Sungkarat, and K. Veera. Evaluation
of mri dti tractography by tract-length histogram.
Progress in Biomedical Optics and Imaging: Phys-
iology, Function and Structure for Medical Images,
5746(1):138–147, 2005.

[16] E. von dem Hagen and R. Henkelman. Orientational
diffusion reflects fiber structure within a voxel. Mag-
netic Resonance in Medicine, 48(3):454–59, 2002.

[17] Xilinx, Inc. http://www.xilinx.com.
[18] L. Zhuo, G. R. Morris, and V. K. Prasanna. De-

signing scalable FPGA-based reduction circuits using
pipelined floating-point cores. In Proceedings of the
12th Reconfigurable Architectures Workshop, Denver,
CO, April 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

