
Reconfigurable Memory Based AES Co-Processor

Ricardo Chaves1,2, Georgi Kuzmanov2, Stamatis Vassiliadis2, and Leonel Sousa1

1Instituto Superior Técnico/INESC-ID 2Computer Engineering Lab, EEMCS, TUDelft
http://sips.inesc-id.pt/ http://ce.et.tudelft.nl/

{ricardo.chaves, las}@inesc-id.pt {G.Kuzmanov, s.vassiliadis}@ewi.tudelft.nl

Abstract

We consider the AES encryption/decryption algo-
rithm and propose a memory based hardware design
to support it. The proposed implementation is mapped
on the Xilinx Virtex II Pro technology. Both the byte
substitution and the polynomial multiplication of the
AES algorithm are implemented in a single dual port
on-chip memory block (BRAM). Two AES encryp-
tion/decryption cores have been designed and imple-
mented on a prototyping XC2VP20-7 FPGA: a com-
pletely unrolled loop structure capable of achieving a
throughput above 34 Gbits/s, with an implementation
cost of 3513 slices and 80 BRAMs; and a fully folded
structure, requiring only 515 slices and 12 BRAMs,
capable of a throughput above 2 Gbits/s. To evalu-
ate the proposed AES design, its has been embedded
in a polymorphic processor organization, as a recon-
figurable co-processor. Comparisons to state-of-the-art
AES cores indicate that the proposed unfolded core out-
performs the most recent works by 34% in throughput
and requires 68% less reconfigurable area. Experimental
results of both folded and unfolded AES cores suggest
over 560% improvement in the throughput/slice metric
when compared to the recent AES related art.

1 Introduction

In most of the current communication systems, pri-
vacy is a key requirement, which is typically achieved
by the use of several encryption systems. In 2001,
the National Institute of Standards and Technology
(NIST) accepted the Rijndael algorithm as the Ad-
vanced Encryption Standard (AES) [12, 2]. This
new AES has been introduced as the replacement
for the old, but still used Data Encryption Standard
(DES) [11]. Even though the AES is one of the most
computationally efficient encryption algorithms, it is
still very computationally demanding, and not able to
achieve the throughput required by some applications
when implemented in software. Motivated by the need
of higher throughputs, several hardware designs of the
AES algorithm have been proposed either for very high
throughputs [5, 4, 8] or for more limited resource de-
vices (achieving lower throughputs) [18, 17, 4]. How-

This research has been supported by the European Network of
Excellence on High-Performance Embedded Architecture and
Compilation (HiPEAC) project number IST-2003-004408.

ever, these approaches implement the AES algorithm
in a fine grain structure, requiring more hardware re-
sources in a more complex structure, that reflects on a
lower performance. This paper proposes a coarse grain
AES design, employing the FPGA internal memories.

Unlike other designs that use FPGA internal mem-
ories to implement only the byte substitution opera-
tion, in our proposal, we use these memory blocks to
merge the byte substitution and the polynomial multi-
plication. This memory based structure allows an effi-
cient AES encryption and decryption core implementa-
tion, and at the same time, potentially more resistent
to DPA cryptanalyses attacks [7], due to the uniform
power consumption of the memory blocks. More specif-
ically, this paper presents two structures for the AES
core: a fully folded one for area constrained implemen-
tations; and a fully unfolded structure meeting higher
throughput requirements. Both AES cores have low
hardware complexity and short critical paths. The de-
sign allows high throughput and low pipeline latency.
The proposed AES core has been implemented within
the reconfigurable co-processor of a Xilinx Virtex II
Pro MOLEN prototype [15, 16]. The MOLEN poly-
morphic approach allows the core to be activated by a
traditional software routine call, thus requiring practi-
cally no software development costs. More specifically,
experimental results on the proposed standalone AES
implementations indicate:

• High encryption/decryption efficiency and efficient
hardware utilization:
– 34 Gbit/s throughput AES core with 3513 slices

and 80 BRAMs (9.9 Mbits per slice);
– 2.3 Gbit/s throughput AES core with 515 slices

and 12 BRAMs (4.6 Mbits per slice).
• Improvement to related-art:

– 34% higher throughput;
– 68% less reconfigurable area;
– 560% improvement on the throughput/slice

metric.

For the MOLEN polymorphic implementation, results
suggest:

• Low FPGA utilization: just 10% occupation of a
XC2VP20 device;

• Throughput of 1.2 Gbits/s;
• Minimal software integration costs.

1-4244-0054-6/06/$20.00 ©2006 IEEE

The paper is organized as follows: Section 2 presents
an overview on the AES algorithm as well as pos-
sible fine grain implementations of the several com-
ponents of this algorithm. Section 3 describes the
proposed BRAM implementation of the unfolded and
folded versions of the AES core, as well as its polymor-
phic AES processor implementation. Section 4 presents
the obtained experimental results and compares them
to other state-of-the-art AES implementations. Sec-
tion 5 concludes this paper with some final remarks.

2 The AES algorithm

The AES is the new NIST standard chosen to re-
place DES [11], it uses the Rijndael encryption algo-
rithm with cryptography keys of 128, 192, 256 bits,
the 128 bit key being the most commonly used. As
in most of the symmetrical encryption algorithms,the
AES algorithm manipulates the 128 bits of the input
data, disposed in a 4 by 4 bytes matrix, with byte sub-
stitution, bit permutation and arithmetic operations
in finite fields, more specifically, addition and multipli-
cations in the Galois Field 28 (GF(28)). Each set of
operations is designated by round. The round compu-
tation is repeated 10, 12 or 14 times depending on the
size of the key (128, 192, 256 bits respectively).

AES Encryption: The coding process includes the
manipulation of a 128-bit data block through a series of
logical and arithmetic operations. In the computation
of both the encryption and decryption, a well defined
order exists for the several operations that have to be
performed over the data block. The encryption process
is depicted in Figure 1.

The following describes in detail the operation per-
formed by the AES encryption in each round, intro-
duced in Figure 1. The State variable contains the
128-bit data block to be encrypted.

SubBytes() transformation

The replacement of one set of bits by another is a non
linear transformation, and is one of the most common
operations in symmetrical encryption algorithms. In
the Rijndael algorithm, this replacement is performed
over a set of 8 bits. This replacement can be described
by an affine transformation (over GF (2)), as presented

State = in

AddRoundKey(State, key[0 to Nb−1])
for round= 1, round<Nr, round=round+1 do

SubBytes(State)
ShiftRows(State)
MixColumns(State)
AddRoundKey(State,key[round×Nb to (round+1)×Nb−1])

end for

SubBytes(State)
ShiftRows(State)
AddRoundKey(State,key[Nr×Nb to (Nr+1)×Nb−1])

out = State

Figure 1. Pseudo Code for AES Encryption.

in (1):

b
′
i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 (1)

⊕ b(i+7)mod8 ⊕ ci ; 0 ≤ i < 8,

where bi is the i-th bit of byte b(x) obtained from the
State array. This byte substitution is performed over
each byte individually. The ci is the i-th bit of the
value {01100011}. The byte substitution operation is
usually implemented in hardware by a 256 bytes lockup
table, with an 8 bit input and an 8 bit output.

ShiftRows()

The bytes in each row of the state matrix, are shifted
to the left by 0, 1, 2 or 3 byte positions, depending on
the row where they are located, as depicted in Fig-
ure 2. For example S1,0S1,1S1,2S1,3 is transformed to
S1,1S1,2S1,3S1,0. Since this operation contains no cal-
culations, it can be implemented simply by routing the
appropriate byte from the output of the previously de-
scribed lockup table to the corresponding input of the
MixColumns unit.

MixColumns() transformation

In this transformation, each column is treated as a four-
term polynomial over GF (28) and multiplied modulo
x4 + 1 with a fixed polynomial a(x), given by:

a(x) = 03x3 + 01x2 + 01x + 02 (2)

The resulting new column is thus calculated with the
previous values of only that column. The calculation of
the new column, presented in (3), is performed over the
GF(28), where the multiplications (•) are performed by
AND operations and the additions and subtractions by
XOR (⊕) operations.

S
′
0,c = (02 • S0,c) ⊕ (03 • S1,c) ⊕ S2,c ⊕ S3,c

S
′
1,c = S0,c ⊕ (02 • S1,c) ⊕ (03 • S2,c) ⊕ S3,c

S
′
2,c = S0,c ⊕ S1,c ⊕ (02 • S2,c) ⊕ (03 • S3,c)

S
′
3,c = (03 • S0,c) ⊕ S1,c ⊕ S2,c ⊕ (02 • S3,c) (3)

Since the multiplication of two bytes results in a double
byte number, the result is replaced by the remainder

S0,1S0,0

S1,0 S1,1 S1,2

S0,2 S0,3

S1,3

S0,3S2,2S2,1S2,0

S3,0 S3,1 S3,2 S3,3

Sr,1Sr,0 Sr,2 Sr,3

S

S0,1S0,0

S1,0S1,1 S1,2

S0,2 S0,3

S1,3

S0,3S2,2 S2,1S2,0

S3,0 S3,1 S3,2S3,3

S’r,1S’r,0 S’r,2 S’r,3

S’

ShiftRows()

No shift

Figure 2. AES ShiftRows.

polynomial, that in the case of Rijdael is given by the
irreducible polynomial:

m(x) = x8 + x4 + x3 + x + 1. (4)

This calculation can be performed by subtracting the
m(x) polynomial (value 1b) whenever the result of each
partial multiplication is bigger than FF. Finally, the
addition of the four coefficients of the polynomial can
be performed by XOR gates.
AddRoundKey()

The final operation to be performed in each round is
the addition (XOR in GF (28)) of the respective round
Key to each column of the State matrix. Each round
Key consists of 4 32-bit words from the expanded Key
(xK). The formalized operation is:

[S
′
0,c, S

′
1,c, S

′
2,c, S

′
3,c] =[S0,c, S1,c, S2,c, S3,c] ⊕ (5)

[xKround×Nb+c] ; 0 ≤ c < Nb

AES decryption: The decryption process is iden-
tical to that of the encryption (see the pseudo code
in Figure 1). The main differences in the decryption
computation lays on the byte substitution and on the
polynomial equation used in the column mix. The byte
substitution transformation for the decryption has the
same structure as the encryption, only differing in the
values of the look up table, presented in [2]. The row
shifting is also identical, with the only difference that
the rotation of the byte is performed to the right and
not to the left, as depicted in Figure 2. In the in-
verse column mix transformation, the computation is
exactly the same as in the encryption, differing only
in the polynomial coefficient values. In the encryption,
these coefficients result in a small hardware structure,
since at most, only 2 bits are equal to 1 (the multipli-
cations constants are 1, 2 and 3). In the inverse column
mix, the coefficients (9, b, d, e) have 3 bits equal to 1.

3 Memory based implementation of
AES

In a fine grain implementation of the AES algorithm,
both the byte substitution (SBox) and the column mul-
tiplication would require specific and distinct hardware
structures. According to (3), four structures are re-
quired per column. Implementing this structure in a
LUT based architecture has a significant cost, not only
due to the computational units, but also in the re-
sources used in the interconnection. In programable
devices, a significant improvement can be achieved by
merging all computations into a single (on-chip) mem-
ory block [3]. Such a course grain solution is possible
due to the fact that the individual resulting coefficients
of the polynomial depend only on one of the bytes of
the data block (or state matrix). In devices embedding
true dual port memory blocks, such as the BRAM in
the Xilinx FPGAs, 2 byte substitutions and 2 full mul-
tiplications can be mapped in a single memory block,
as depicted in Figure 3. Each full multiplication mul-
tiples one byte (Si,c) by a set of constants: {1, 1, 2, 3}
for the encryption and {9, e, b, d} for the decryption.

BRAM

SBOX

Mult

S

S’

8

8

SBOX

Mult

S

S’

8

8

8 8

3232

Port Bin Port Ain

Port AoutPort Bout

SBOX

Mult

S

S’

8

8

8 8

SBOX

Mult

S

S’

8

8

8 8

Figure 3. Coarse grain column computation
using BRAM

Since the byte permutation required in the row shift,
is a fixed operation, it is performed simply by routing
the values to the respective memory block. Only the re-
maining additions have to be performed in a fine grain
organization (e.g. in LUTs). For each byte in a given
column, 4 additions have to be performed: 3 to add
the polynomial coefficients and 1 for the key addition.
It should be noted that because the byte substitution
operation does not depend on the bytes position in the
state matrix, the ShiftRow operation can be performed
before the SubBytes (see pseudo-code in figure 1).

Last round calculation: The last round of the
AES computation has the particularity of not comput-
ing the polynomial multiplication, as illustrated in the
pseudo-code in Figure 1. This can be computed with
the memory structure previously presented, which only
performs the byte substitution operation. Also the out-
put value is directly added to the key, since no polyno-
mial addition has to be performed. For reconfigurable
area efficiency, the last round is computed using the
same memory blocks as the inner rounds. In the en-
cryption, the byte substitution can be obtained directly
since this value is equal to the multiplication by 1, given
by the memory computation. In the decryption, how-
ever, all four results are multiplied by coefficients that
are different from 1 (i.e. {9, e, b, d}). In order to obtain
the original value before the multiplication, the logical
operation 1 = b ⊕ d ⊕ e ⊕ 9 can be performed on the
four 8-bit outputs of the memory blocks, at the cost of
three 8-bit XOR gates.

Encryption and decryption AES rounds: As
previously mentioned, the two major differences be-
tween the encryption and decryption algorithms are the
byte substitution operation and the polynomial multi-
plication coefficient values. In our memory based im-
plementations, these two differences are located in the
memory blocks. Thus, by changing the lookup val-
ues in the memories, the computation can change ei-
ther to encryption or to decryption. For better hard-
ware efficiency, both encryption and decryption can be
merged into a single memory block [10]. The encryp-
tion/decryption memory block requires 2048 address-
able bytes (2×32×28 = 1024 bytes). The new memory
address is given by a byte, of the state matrix, and an
additional bit, indicating whether the operation is en-
cryption or decryption, as depicted in Figure 4.

The last difference between the encryption and the
decryption process resides on the byte permutation

BRAM

2S’0,c 3S’1,c S’3,cS’2,c

S’0,c

9 9

32 32

8 8 8 8

8

BRAM

9 9

32 32

Key

8

MUX 0
1 MUX 0

1

8

8 88 8
8 8

S0,0 S1,1 S1,3 S2,2 S3,3 S3,1

decrypt

3S’0,c S’1,c 2S’3,cS’2,c

S’3,c

8 8 8 8

8

Key

8
. . .

S’1,c

8

S’2,c

8

8

Figure 4. AES partial Encryption and decryp-
tion round

performed by the shift row transformations, as depicted
in Figures 5. The corresponding byte permutation can
be selected by multiplexing the two possible values.
After the byte permutation only half of the new byte
positions are different (depicted by the shaded rows
in Figure 5). Thus, each resulting column calculation
only requires the multiplexing of half of the byte values
to select between encryption and decryption.

The AES core: To compute the AES algorithm,
the round calculations have to be performed a prede-
fined number of times depending on the key size. This
can be done either by having one hardware structure
per each AES round or by reusing the hardware of the
rounds. The first approach is refereed to as unfolded
loop and the second one, a fully unrolled loop approach
by folded loop.

Unfolded loop AES core: When a high throughput
is required, pipelined versions of the fully unrolled ap-
proach can be used (referred to as AES unfolded core).
In the the AES unfolded core, each round is computed
in it’s own dedicated structure. Such a structure can
be implemented by connecting the output of one round
to the input of the following round, as depicted in Fig-
ure 6. Since the reconfigurable devices internal memory
blocks are synchronous and have registered outputs,
the inter-round pipeline consists of the synchronous
memory blocks output. Additional pipelining can be
introduced, by inter-round registers. These registers

S0,1S0,0

S1,0S1,1 S1,2

S0,2 S0,3

S1,3

S0,3S2,2 S2,1S2,0

S3,0 S3,1 S3,2S3,3

S0,1S0,0

S1,0 S1,1 S1,2

S0,2 S0,3

S1,3

S0,3S2,2S2,1S2,0

S3,0 S3,1 S3,2 S3,3

S0,1S0,0

S1,0 S1,1 S1,2

S0,2 S0,3

S1,3

S0,3S2,2 S2,1S2,0

S3,0S3,1 S3,2 S3,3

Original Encryption Decryption

Figure 5. Byte permutation in the row shifting

Round
1

. . .

...

Key

Data in Data out

128 128

128

Initial
Round

Round
9

Final
Round

128

Figure 6. AES unfolded core

can be easily introduced after the memory blocks and
anywhere in the additional logic, as depicted in Fig-
ure 6 by the shadowed registers. Folded loop AES core:
When the throughput requirements are not critical or
the available hardware is limited, a folded versions of
the core can be used. In the fully folded design, the
throughput is significantly lower, due to the reuse of
the hardware structure and due to a longer critical
path. The longer critical path is imposed by the addi-
tional multiplexer unit required to reinsert the value of
the previously calculated round or the new data block,
as depicted in Figure 7. The primary design trade-
off is between performance and hardware resources.
The rolled structure can also be advantageous when
other commonly used encryption modes are used, such
as Cipher-Block Chaining (CBC) and Cipher Feed-
back (CFB) [14]. In these modes, the next data block
can only be encrypted after the previous one has been
coded. For these modes, the existence of a pipeline (e.g.
in the unfolded structures) becomes inefficient, since it
would be almost always empty. The folded structure,
on the other hand, has the round hardware always in
use. Figure 8 depicts a variation of the folded design
to encrypt and decrypt in Electronic CodeBook (ECB)
and CBC modes (where the Initialization Vector (IV)
is used). Since the difference in the AES algorithm for
the 128, 192 and 256 is the number of times the rounds
are executed, the folded AES core is able to cipher in
these 3 modes, simply by switching the reset value of

Reset

RoundKeyi

128

128

MUX

128

Key0

128

128

128

Decrypt

0

1

128128

Data out

MUX
0

1

128

Counter

Round

Figure 7. AES folded core

RoundKeyi

Data in

128

128

MUX

128

Key0

MUX

IV_CBC

128

128

128

128

128

CBCmode

Counter

128

Data out

MUX

Decrypt

0
1
2
3

0

1

128

IV_CBC

0
1
2

Data in

Reset

CBCmode

128 128

Reset

Round

Figure 8. AES folded core with ECB and CBC

the internal counter (to 10, 12 or 14). In the folded
design, the expanded key is only accessed in blocks
of 128 bits, which is the corresponding size for each
round. In these cases the key register can be accessed
as an addressable register bank, which can be imple-
mented with memory blocks. To better use the dual
encryption/decryption capability of the AES, the key
register (implemented with memory blocks) can store
both the encryption and the decryption keys. Like in
the round calculation, the differentiation of the cipher
mode is done by adding the encryption/decryption sig-
nal to the register address. In devices with memory
blocks having less than 128-bit output ports, the mem-
ory based register has to be implemented with several
memory blocks. Figure 9 depicts such an implementa-
tion for a XILINX FPGA using 32-bit output BRAMs.

AES polymorphic processor prototype: In or-
der to evaluate the AES core in real applications, a
prototype has been developed and embedded in the
MOLEN polymorphic processor [16]. The MOLEN
paradigm [15] is based on the coprocessor architectural
paradigm. More specifically, a reconfigurable copro-
cessor is configured for an application specific opera-
tion, while the main program is executed on a General
Purpose Processor (GPP). The prototyping platform
technology is the XILINX Virtex II Pro, which em-
beds a PowerPC as a GPP. In order to use this core,

Address

Data

Memory
Bank 128

32

32

32

32

128

Write

decrypt

4 5

Figure 9. AES folded key register

Power

PC

Main Data

Memory

XREG

AES
core

Key
 Register

Address

Data

64

Data Bus

DataAddress

Start

Stop

Address

64

4

 Round

Control

Unit

64

Arbiter

Instruction
Memory

AES processor Molen

Address

Figure 10. AES polymorphic processor

the pre-existing software applications are compiled by
a specialized compiler [13]. Thus, for the software pro-
grammer, the usage of the reconfigurable coprocessor
is transparent, it is used as if the function were im-
plemented in software. This capability allows the co-
processor to be used in any existing application with
minor modifications to the already existing software
applications. Figure 10 illustrates the MOLEN orga-
nization with the AES polymorphic prototype. Un-
like other existing AES coprocessors [6, 9], the pro-
posed coprocessor allows to speedup any application
that uses AES encryption or decryption with virtually
no software development costs. While in software func-
tions the parameter passing is done through the stack,
in the MOLEN processor these parameter are passed
through a dedicated exchange register file, designated
by XREG, depicted in Figure 10. Identically to a soft-
ware function, the data to be ciphered by the coproces-
sor, is accessed directly from the main data memory.

The specialized compiler transfers the function pa-
rameters, either from the stack or from the XREG,
depending if the functions is implemented in software
or hardware. During runtime the arbiter depicted in
Figure 10, decides if the instruction is to be executed
in the main processor or in the co-processor. The con-
trol unit is responsible for retrieving the initialization
data and the data blocks from and to the main data
and the XREG. This control unit reads the memory
pointers from the XREG and addresses the main data
memory in order to initialize the AES core internal reg-
isters. The initialization values are the key addresses
and the begin and end address of the data blocks to
be ciphered. The control unit has been described in a
fully parameterizable fashion, allowing structural mod-
ifications to be performed simply by altering a set of
constants. These structural modifications include: the
use of a main data memory with different dimensions,
influencing the way the data is read; distinct memory
architectures types that require different timing; differ-
ent levels of loop unfolding, increasing the latency of
the data throughput.

The proposed implementation uses a fully folded
loop version of the AES core capable of encrypting and
decrypting data blocks in both ECB and CBC modes

for all key sizes, i.e., for 10, 12 or 14 rounds. The oper-
ation modes as well as the Initialization Vector for the
CBC mode are passed as additional parameters in the
XREG.

4 Performance analysis and related
work

This section evaluates the proposed AES implemen-
tations and the polymorphic AES co-processor. It also
presents comparative analysis to related work. The
prototype systems were implemented in a Xilinx Virtex
II Pro (xc2vp20-7) on an Alpha Data: (ADM-XPL) de-
velopment board using the ISE (6.3) tools from Xilinx.
The system is using the embedded PowerPC, capable
of running at a maximum frequency of 300 MHz. The
used main memory has a maximum working frequency
of 100MHz.

Implementation results: Table 1 presents the
implementations results (after Place & Route) of the
unfolded AES, with intra-pipelining (intra-pp) and
without intra-pipelining(inter-pp), and the folded AES
core. Note that all the proposed cores are capable of
performing both encryption and decryption.

Due to the usage of the internal BRAMs, it is possi-
ble to obtain very high throughputs for a relatively low
FPGA area utilization, namely a throughput above 34
Gbits/s for an 36% and 80 BRAMs occupation of a
XC2VP20 FPGA. With the folded design a through-
put of above 2 Gbits/s is obtained for a occupation
of only 5% and 12 BRAMs, which already includes
the additional logic and the 4 BRAMs used to imple-
ment the expanded key register. With different syn-
thesis and routing tools some aspects of the implemen-
tations might be further improved. In Figure 4, the
intra-register pipeline that precedes the BRAM block
can be included in the BRAM itself, since these com-
ponents can be configured to have registered inputs.
However the ISE 6.3, reported worst implementation
results for this solution. Since the unfolded AES core
is implemented as a sequence of registered rounds, the
maximum frequency of the unfolded core without intra-
pipelining should be at least as high as the folded AES
core.

The proposed prototype of the polymorphic AES
processor was implemented with a fully unfolded loop
AES core, capable of encryption and decryption in both
ECB and CBC encryption modes. The implementa-
tion of this system requires 1130 slices (12%) and 12
BRAMs with a maximum frequency of 100 MHz. The
maximum frequency is imposed by the main data mem-
ory and not by the AES core. An additional hardware
round can be included at a cost of 160 slices and 8
BRAMs. Table 2 presents the throughput results us-

Table 1. AES implementation results
(MHz) (Gbps) (cycles)

Slices BRAM Freq. ThrPut. Lat.

folded 515(5%) 12 182 2.33 10
unfolded
(inter-pp) 3168(32%) 80 156 19.95 10
unfolded
(intra-pp) 3513(36%) 80 271 34.7 30

Table 2. AES polymorphic performances
Hardware Software

(Mbps) (Mbps) Kernel
Bits Cycles ThrPut Cycles ThrPut SpeedUp
128 646 59 24216 1.59 43
4k 4366 281 738952 1.66 169

128k 31246 1258 23610504 1.67 751

ing a 128-bit key, for the full software and the hybrid
software/hardware implementations. The speedup ob-
tained with the AES core, when compared to the soft-
ware implementation of the AES algorithm is also pre-
sented.

The obtained speedup is just 43 when only one 128-
bit data block is encrypted, due to the overhead to
transfer the expanded key (1408 bits). A speedup of
571x is accomplished for a file with 16kBytes. Note
however, that the overhead of the expanded key trans-
fer is already not significant, especially when consid-
ering the encryption of large files. The last column
of Table 2, contains the calculated speedup for the ci-
phering kernels. The number of cycles is the same for
encryption and decryption, for both the software and
hardware implementations. Note that speedups are for
the ciphering subroutine (kernel) only and not of the
entire application. In a practical application, even if
only one data block is ciphered in every function call,
the expanded key remains the same. Since the AES
core internal registers are not cleared each time a new
encryption is executed, they work as static variables.
This means that the expanded key has to be trans-
ferred only once. In this case, for the ciphering of a
single 128-bit data block per function call, a hardware
throughput of 89 Mbits/s is obtained, resulting in a
local kernel speedup of 56x. Finally, a speedup above
750x is obtained with small resource utilization (1130
slices and 12 BRAMs) and at practically no software
development costs.

Related work: In order to analyze the obtained
results, the following compares the obtained figures for
the fully unfolded design, the fully folded and the hy-
brid AES processor to other related work.

Folded AES core

In Table 3, the figures of the proposed folded AES core
are compared to the state-of-the-art research and the
most recent commercial products. In order to com-
pare our design to the semi unfolded core proposed
in [17], ours was unfolded once to obtain an identical
throughput. Even though our design requires 2k-Byte
RAMs and focused on a different FPGA technology (a
Virtex II Pro), it was implemented in an FPGA with
512-byte internal RAMs. Even in this less favorable
case our AES core outperforms [17] by 560% on the
Throughput/Slice metric.

When compared to the Helion [4] folded core im-
plemented on a Virtex II Pro, our core outperforms
it by 91%. However, the encryption/decryption AES
core from Helion, is designed to perform the encryption
and decryption calculation, with independent inputs
and outputs, which make it less usable as a single AES
core. If these separate inputs/outputs are combined to
make a real encryption/decryption AES core, the oc-

Table 3. AES folded core performance comparisons
Architecture Jhing [17] Ours CAST [1] Helion [4] Ours

Cipher Enc./Dec. Enc./Dec. Enc./Dec. Enc.&Dec. Enc./Dec.
Device used XCV812E XCV812E XC2VP20 XC2VP20 XC2VP20
Speed grade n.a. -8 -7 -7 -7
Number of slices 3046 431 928 1016 515
Number of BRAM 280 32 8 18 121

Max. frequency (MHz) 61 67 122 198 182
Latency (cycles) 11 10 11 11 10
Throughput (Gbps) 1952 1718 1415 2304 2332

Throughput/Slice (Mbps/s) 0.6 4.0 1.5 2.3 4.6

cupation and throughput will most likely be affected,
as shown in [8]. It should be noticed that the Helion
core has the key expansion in the core itself, while in
our approach the key expansion is performed outside
the core.

When compared to one of the leading (real) en-
cryption/decryption AES cores on the market, the
CAST [1], implemented on a Virtex II Pro, our AES
folded core is over 200% more efficient, in the Through-
put/Slice metric.

Unfolded AES core

Table 4 presents the figures for the fastest hight
throughput AES cores, including the proposed un-
folded AES core. Note that some of the consid-
ered cores are only able to perform AES encryption
and not AES decryption. In [8], the AES encryp-
trion/decryption core is implemented by one encryp-
tion unit and another decryption unit. Thus, although
not explicitly presented in the paper, the required hard-
ware resources have to be at least twice those of the
single encryption core (2 × 5408 = 10816 slices).

Our intra-pipelined AES core (Ours-P30) proposal is
capable of achieving a 34% faster throughput, than the
Giga AES core from Helion [4], which in turn is capable
of a maximum throughput of 25 Gbits/s. No further
comparisons with [4] are be made, since no more figures
have been made available by Helion. In implementa-
tions, where the output latency is critical, the unfolded
AES core without intra-pipelining (Ours-P10) is able
to achieve a frequency 24% faster than [8], with only
17% of the output latency of [8]. Even when compared
to the architectures than only perform encryption, this
AES encryption/decryption core outperforms any of
the existent cores in speed and in area occupation,
resulting in an improvement of the Throughput/Slice
metric of almost 100%.

When compared to the existing cores, reported
in [8], that are also capable of performing both encryp-
tion and decryption, our intra-pipelined core achieves
a throughput more than 115% higher, with 68% less
reconfigurable area. Thus, achieving a 560% better
Throughput/Slice metric by more than , while the out-
put latency is reduced by half.

AES polymorphic processor

The developed hybrid processor is compared to a re-
cently published, computationally identical processor.
The figures presented in Table 5 show an improvement
on the area occupation while maintaining an identical

Table 5. AES hybrid implementation
Architecture Lu [9] Ours
Cipher Enc./Dec. Enc./Dec.
Operation modes ECB, CBC ECB, CBC
Device used XC2VP100 XC2VP20
Main processor PowerPC PowerPC
Speed grade n.a. -7
Number of slices 17002 847
Number of BRAM 44 12
Max. frequency (MHz) 196-179 1003

Throughput AES-128 1197 Mbps 1258 Mbps
Throughput AES-256 778 Mbps 905 Mbps
Throughput/slice (Mbps/s) 0.7 1.5

throughput for the 128-bits key cipher mode. However,
for the ciphering using a 256-bit key, the implementa-
tion proposed in [9] suffers from a frequency degra-
dation. On the contrary, in our proposal, the hybrid
processor has already been implemented in a design ca-
pable of cipher with all key sizes at the same frequency.
For the AES ciphering with a 256-bit key, our proposal
obtains a 16% higher throughput. The AES version for
256-bit keys in [9] implies an area increase and a fre-
quency decrease, in regard to their 128-bit AES core,
thus reducing the Throughput/slice performance met-
ric. The slice number value presented in Table 5 depicts
only the figures for the AES core (with ECB and CBC)
for both processing units. The interface hardware over-
head is excluded form the presented overall synthesis
results for both processors. The Throughput/Slice ra-
tio given in Table 5 relates to the most advantageous
case for the processor proposed in [9]. Even in this
case, this metric is 114% higher for our co-processor.
For the 256-bit key ciphering, our Throughput/Slice
efficiency is even higher. Overall, the performance of
our core is clearly advantageous when compared to the
existing art.

5 Conclusion

We proposed a new approach to the implementation
of the AES algorithm in hardware, where by merging
the ByteSub operation and the polynomial multiplica-
tion operations and computing them in a single lookup

1This 12 BRAMs includes the 4 BRAMs used to implement
the expanded key register.

2A estimated value for the slice utilization has been used, for
a ratio of 0.62 Slices per LUT. The authors in [9] only give the
number of utilized LUTs. Our AES core has a 0.62 Slice/LUT
ratio.

3100 MHz is the maximum frequency imposed by the main
data memory and not of the AES core itself, that is capable of
running at higher frequencies.

Table 4. AES unfolded core performance comparisons
Architecture Hodjat [5] Kotturi [8] Kotturi [8] Ours-P10 Ours-P30

Cipher Encryption Encryption Enc./Dec. Enc./Dec. Enc./Dec.
Device used XC2VP20 XC2VP70 XC2VP70 XC2VP20 XC2VP20
Speed grade -7 -7 -7 -7 -7
Number of slices 5177 5408 10816 3168 3513
Number of BRAM 84 200 400 80 80
Max. frequency (MHz) 168 233 126 156 272
Latency (cycles) 41 60 60 10 30
Throughput (Gbps) 21.54 29.77 16.08 19.95 34.76

Throughput/Slice (Mbps/s) 4.2 5.5 1.5 6.3 9.9

memory bank significant improvements were achieved.
This approach can also be used in other reconfigurable
technologies as well as in ASIC implementations. The
simplicity of the proposed implementations suggests a
high improvement over existing state-of-the-art AES
cores, in terms of area and critical path improvement.
The later directly reflects to an increase of the core
throughput. Since the major differences between the
encryption and the decryption computations are lo-
cated in the memory blocks, an AES core employing
both encryption and decryption can be implemented at
a reduced hardware cost when compared to cores that
only implement either encryption or decryption. An-
other advantage of the proposed design is that due to
the uniformity, simplicity and regularity of the design,
the power consumption is lower and more uniform.
This paper also proposed a polymorphic AES proces-
sor capable of speeding up the AES ciphering kernel by
751x, at the cost of 1130 slices and 12 BRAMs. The
polymorphic computational approach, allows the AES
co-processor to be used at a minimum software devel-
opment costs. To our best knowledge, the proposed
core achieves a maximum throughput 34% faster than
any existing AES core we know about, and requires
68% less reconfigurable hardware and half the pipeline
output latency of equivalent co-processors. These re-
sult suggest an improvement on the Throughput/Slice
metric of more than 200% for the folded core, when
compared to the state-of-the-art research and leading
commercial products. For the unfolded structures, the
Throughput/Slice metric is improved 560%, achieving
a throughput higher than 34 Gbits/s.

Evaluation prototype

An evaluation prototype for the XUP and
AD-XPL prototyping boards of the hybrid
AES processor is available for download at
http://ce.et.tudelft.nl/MOLEN/aplications/AES/

References

[1] CAST. AES128-P Programmable Advanced En-
cryption Standard Core. http://http://www.cast-
inc.com/, 2005.

[2] J. DAEMEN and RIJMEN. The design of rijndael.
AES-the advanced encryption standard. Springer-
Verlag, 2002.

[3] V. Fischer and M. Drutarovsk. Two methods of
rijndael implementation in reconfigurable hardware.
In Cryptographic Hardware and Embedded Systems,
CHES 2001: Third International Workshop, volume
2162, pages 77–92, January 2001.

[4] HELION. High Performance AES (Rijndael) cores for
Xilinx FPGA. http://www.heliontech.com/, 2005.

[5] A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s
fully pipelined AES processor on FPGA. In 12th An-
nual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 308 – 309, April 2004.

[6] A. Hodjat and I. Verbauwhede. Interfacing a high
speed crypto accelerator to an embedded cpu. In Proc.
38th Asilomar Conference on Signals, Systems, and
Computers, volume 1, pages 488–492, November 2004.

[7] P. Kocher, J. Jaffe, and B. Jun. Introduction to dif-
ferential power analysis and related attacks, 1998.

[8] D. Kotturi, S.-M. Yoo, and J. Blizzard. AES Crypto
Chip Utilizing High-Speed Parallel Pipelined Architec-
ture. In IEEE International Symposium on Circuits
and Systems, pages 4653 – 4656, May 2005.

[9] J. Lu and J. Lockwood. IPSec Implementation on Xil-
inx Virtex-II Pro FPGA and Its Application. In Pro-
ceedings. 19th IEEE International Parallel and Dis-
tributed Processing Symposium, pages 158b – 158b,
April 2005.

[10] S. Morioka and A. Satoh. A 10 gbps full-aes crypto de-
sign with a twisted-bdd s-box architecture. In ICCD,
pages 98–103. IEEE Computer Society, 2002.

[11] NIST. Data encryption standard (DES), FIPS 46-2
ed. Technical report, National Institute of Standards
and Technology, December 1993.

[12] NIST. Announcing the advanced encryption standard
(AES), FIPS 197. Technical report, National Institute
of Standards and Technology, November 2001.

[13] E. M. Panainte, K. Bertels, and S. Vassiliadis. The
PowerPC Backend Molen Compiler. In 14th Interna-
tional Conference on Field-Programmable Logic and
Applications (FPL), pages 434–443, September 2004.

[14] B. Schneier. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. Jonh wiley & Sons,
inc, second edition, 1996.

[15] S. Vassiliadis, S. Wong, and S. D. Cotofana. The
Molen ρµ-coded Processor. In 11th International Con-
ference on Field-Programmable Logic and Applications
(FPL), Springer-Verlag Lecture Notes in Computer
Science (LNCS) Vol. 2147, pages 275–285, August
2001.

[16] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen poly-
morphic processor. IEEE Transactions on Computers,
pages 1363– 1375, November 2004.

[17] J.-F. Wang, S.-W. Chang, P.-C. Lin, and C. Kung.
A novel round function architecture for AES encryp-
tion/decryption utilizing look-up table. In IEEE 37th
Annual 2003 International Carnahan Conference on
Security Technology, pages 132– 136, October 2003.

[18] S.-S. Wang and W.-S. Ni. An efficient FPGA imple-
mentation of advanced encryption standard algorithm.
In Proceedings of the 2004 International Symposium
on Circuits and Systems, volume 2, pages 597–600,
May 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

