
Hierarchical Multithreading: Programming Model and System

Software

Guang R. Gao1, Thomas Sterling2,3, Rick Stevens4, Mark Hereld4, Weirong Zhu1

1Department of Electrical and Computer Engineering 2Center for Advanced Computing Research
University of Delaware California Institute of Technology

{ggao,weirong}@capsl.udel.edu tron@cacr.caltech.edu

3Department of Computer Science 4Mathematics and Computer Science Division
Louisiana State University Argonne National Laboratory

tron@cct.lsu.edu {stevens,hereld}@mcs.anl.gov

Abstract

This paper addresses the underlying sources of per-
formance degradation (e.g. latency, overhead, and
starvation) and the difficulties of programmer produc-
tivity (e.g. explicit locality management and schedul-
ing, performance tuning, fragmented memory, and syn-
chronous global barriers) to dramatically enhance the
broad effectiveness of parallel processing for high end
computing. We are developing a hierarchical threaded
virtual machine (HTVM) that defines a dynamic, mul-
tithreaded execution model and programming model,
providing an architecture abstraction for HEC system
software and tools development. We are working on
a prototype language, LITL-X (pronounced “little-X”)
for Latency Intrinsic-Tolerant Language, which pro-
vides the application programmers with a powerful set
of semantic constructs to organize parallel computa-
tions in a way that hides/manages latency and limits
the effects of overhead. This is quite different from lo-
cality management, although the intent of both strate-
gies is to minimize the effect of latency on the efficiency
of computation. We will work on a dynamic compila-
tion and runtime model to achieve efficient LITL-X
program execution. Several adaptive optimizations will
be studied. A methodology of incorporating domain-
specific knowledge in program optimization will be stud-
ied. Finally, we plan to implement our method in an
experimental testbed for a HEC architecture and per-
form a qualitative and quantitative evaluation on se-
lected applications.

1 Introduction

With the rapid increase in both the scale and com-
plexity of scientific and engineering problems, the com-
putational demands grow accordingly. Breakthrough-
quality scientific discoveries and optimal engineering
designs often rely on large scale simulations on High-
End Computing (HEC) systems with performance re-
quirement reaching peta-flops and beyond. However,
current HEC systems lack system software and tools
optimized for advanced scientific and engineering work
of interest, and are extremely difficult to program and
to port applications to. Consequently, applications
rarely achieve an acceptable fraction of the peak ca-
pability of the system.

To radically improve this situation, the following
key features are expected to be supported in the fu-
ture HEC systems: (1) Architecture support for coarse-
and/or fine-grain multithreading at enormous scale (up
to millions of threads). (2) Architecture support for
runtime thread migration, and (3) Architecture sup-
port for large shared address space across nodes. These
features can be observed in the IBM Bluegene L [6]
and Cyclops architectures [5], Processor-In-Memory-
based architectures [17], fine-grain multithreaded ar-
chitectures like HTMT [10] and CARE [14].

In this paper, we propose a hierarchical threaded vir-
tual machine (HTVM) that defines a dynamic, multi-
threaded execution model, which provides an architec-
ture abstraction for HEC system software and tools de-
velopment. A corresponding programming model will
efficiently exploit the ability of the execution model by
users. We will perform research on programming model

1-4244-0054-6/06/$20.00 ©2006 IEEE

and language issues, continuous compilation and run-
time software that are critical to enable the dynamic
adaptation of the HEC system. We propose a method
to enable domain-expert knowledge input and exploita-
tion, and runtime performance monitoring mechanism
to support the above continuous compilation. Finally,
we report the current status of the implementation,
performance analysis, and evaluation of the proposed
methods under an experimental HEC system software
testbed.

2 An Overview of the Hierarchical
Threaded Virtual Machine Model

This section gives our overall vision on the HEC
system software/tools. A major challenge is to accom-
modate dynamic adaptivity in the design due to the
complex and dynamic nature of ultra-large scale HEC
applications and machines. Under a real HEC pro-
gram execution scenario, millions of threads at various
levels in the thread hierarchy may be generated and
executed at different time and places in the machine.
Each thread should be mapped to a desirable physi-
cal thread unit when resources become available and
dependences are resolved. We identify four classes of
adaptivity critical to the performance of the system:

• Loop parallelism adaptation. Scientific appli-
cations tend to have computation-intensive kernels
consisting of loop nests. Exploitable parallelism in
a loop nest, and the grain size of the parallelism,
are runtime dependent on the machine resource
availability and data locality, which change more
drastically in a highly threaded environment with
deep memory hierarchy.

• Dynamic load adaptation. The computation
load may become unbalanced and a large number
of threads may need to migrate to balance the load
of the machine.

• Locality adaptation. Data objects may need
to migrate, and copies be generated and moved
in the memory hierarchy to achieve high locality,
while copy consistency needs to be preserved.

• Latency adaptation. The deep memory hier-
archy usually found in an HEC machine makes
the memory access latencies vary more drastically
during the execution, depending on the locality
of references, the number of concurrent accesses,
and the available memory bandwidth. The system
needs dynamically adapt to such variations.

A main task of our research is to study the key sys-
tem software technologies that support the above dy-

namic adaptiveness of the HEC system. Fig. 1 shows
our overall system software architecture. At the core is
a Hierarchical Threaded Virtual Machine(HTVM) ex-
ecution model that features dynamic multi-level mul-
tithreaded execution. HTVM includes three compo-
nents: a thread model, a memory model and a syn-
chronization model. This design focuses on adaptiv-
ity features, as will be discussed in detail in Section 3.
The functionalities of HTVM will be supported and ex-
plored through the HTVM parallel programming lan-
guage (called LITL-X), compiler and runtime software.
The compiler has two parts: a static part and a dy-
namic part. As shown in Fig. 1, the dynamic compiler
is responsible for the adaptation of loop parallelism,
dynamic load, locality and latency. Since the dynamic
compiler closely interacts with the runtime system and
will be called during the execution of the HEC applica-
tions, its functionality extends smoothly to the runtime
system as well, as indicated by the boxes that span
across the dynamic compiler and the runtime system.

To take advantage of the adaptivity features of
HTVM more effectively, a domain-experts knowledge
base is provided. Domain-specific knowledge is ex-
pressed as scripts, which give specific annotations to
the source of the HEC applications to guide the com-
pilation process of the static compiler. To assist adap-
tivity, a system of structured hints guides the dynamic
compiler for selection and completion of the partial
schedules generated by the static compiler, and for se-
lection of runtime algorithms, based on the dynamic
facts such as memory access patterns found by a run-
time performance monitor during the execution of the
HEC applications. The flow of the mapping process of
an HEC application under our proposed research soft-
ware and tools is indicated by the big shaded arrows
in Fig. 1. The components of the software infrastruc-
ture have been annotated by the corresponding sec-
tion numbers. The HTVM compilation and execution
process is an iterative process with the assistance of a
feedback process as shown in the figure.

3 Hierarchical Multithreading: Pro-
gramming Model and System Soft-
ware

3.1 A Hierarchical Threaded Virtual Ma-
chine Model

One of our primary objectives is to define the hi-
erarchical threaded virtual machine (HTVM). We first
outline our research in the HTVM execution model,
which consists of a thread model, a memory model and

Figure 1. An Overview of the Proposed HEC Software/Tools

a synchronization model. We then outline research is-
sues and tasks for HTVM programming model.

3.1.1 HTVM Execution Model

A novel aspect of our HTVM model is to provide a
smooth and integrated abstraction that directly rep-
resents these thread levels and provides an integrated
thread hierarchy. We will target future HEC architec-
tures - they provide rich hardware support for a hier-
archy of threads at different grain levels, as discussed
earlier.

Intuitively, the following levels of threads are to be
defined under HTVM.

• Large-Grain Threads (LGTs) under
HTVM. Large-grain threads are a universally
supported feature of many HEC architectures.
These threads normally perform a substantial
computation task, building up their state, of
considerable “weight”, during the course of their
execution. There is usually considerable cost as-
sociated with such a coarse thread invocation and
management, even with architectural support.
Examples of LGTs are the high-weight threads
under Cascade architecture [4] or coarse-grain
threads under PERCS architecture [1], and the
threads under Cyclops-64 TiNy threadTM [7].

• Small-Grain Threads (SGTs) under
HTVM: Small-grain threads are another
feature of certain HEC architectures interested
in this proposal. These threads normally expect
to perform a much smaller computation task,
building some state but with substantial less
“weight”. Therefore, cost of their invocation
and management is much lower when comparing
with large-grain threads. An example of SGTs is
the threaded function calls under CILK [9] and
EARTH[19], parcels under HTMT [10] and Cas-
cade [4], and asynchronous calls being considered
under PERCS [1].

• Tiny-Grain Threads (TGTs) under HTVM:
threads with much lighter weight than SGTs will
be supported in some future HEC architectures.
The partition of TGTs and their resource usage
(e.g., registers) are done by automatic thread par-
titioning [18]. Examples of TGTs include fibers
under EARTH [19] and strands under CARE [14].

An important research task is to provide a solid def-
inition and specification of the three levels of threads
under a unified thread hierarchy. The specification
needs to be general enough to capture the features of
a family of future HEC architectures to ensure porta-
bility, while simple enough for compiler and/or pro-
grammers to generate efficient code, and to facilitate
runtime optimization.

Figure 2. A Case Study of Hierarchical Thread Execution Model: Large Scale Simulation of Brain
Neuron Networks

Our current plan is: An LGT has its own private
memory space, and all LGTs share a global address
space. A group of SGTs invoked from an LGT will see
the private memory of the LGT. An SGT invocation
will have its own private frame storage, where its local
state is stored. The TGTs within an SGT will share
the frame storage of the enclosing SGT invocation, but
may communicate efficiently by using registers under
the compiler control. To illustrate our thoughts, Figure
2 shows a mapping of the computation of a multi-level
neural system simulation onto our HTVM hierarchy of
threads. We hope the figure should be self-explanatory.

3.2 Parallel Programming Model and
LITL-X

For developing the parallel programming model for
HTVM, we leverage our own experience in partici-
pating recent on-going research on new parallel pro-
gramming models and languages such as the language
proposal X10 under the IBM PERCS project [2] and
Chapel under the Cray Cascade project [4]. All are
seeking a potential alternative programming model
that is more aggressive in addressing the combined
challenges of latency and overhead.

To be more concrete, We are working on a prototype
language, LITL-X (pronounced “little-X”) for Latency

Intrinsic-Tolerant Language, which provides the appli-
cation programmers with a powerful set of semantic
constructs to organize parallel computations in a way
that hides/manages latency and limits the effects of
overhead. This is quite different from locality man-
agement, although the intent of both strategies is to
minimize the effect of latency on the efficiency of com-
putation. Locality management attempts to avoid la-
tency events by aggregating data for local computation
and reducing large message communications. Latency
management attempts to hide latency by overlapping
communications with computation.

LITL-X will incorporate the following classes of par-
allel constructs for latency tolerance and overhead re-
duction:

• Coarse-grain multithreading, with thread context-
switching built in the application’s instruction
stream (rather than in the operating system) for
keeping the processors busy in the presence of re-
mote requests. This is connected to the LGT un-
der HTVM.

• Parcel(intelligent messages)-driven split-
transaction computation [17], to reduce com-
munication and to enable the moving of the
work to the data (when it makes sense). This is
connected to the SGT under HTVM.

• Futures [11] for eager producer-consumer comput-
ing, with efficient localized buffering of requests at
the site of the needed values. This is connected to
the TGT under HTVM.

• Percolation [12] of program instruction blocks and
data at the site of the intended computation, to
eliminate waiting for remote accesses, which are
determined at run time prior to actual block exe-
cution.

• Synchronization constructs for data-flow style op-
erations, as well as atomic blocks of memory oper-
ations.

3.3 System Software: Compiler and Run-
time Solutions

In this section, we describe how the compiler and
runtime software to address the challenges of efficient
execution under the HTVM model. Our solution is
moving from static analysis and optimization toward a
hybrid scheme, combining both static compilation and
runtime adaptation. The compiler and the runtime
system software are intimately connected under our
adaptive/continuous compilation strategy, where some
key functions of runtime system software can also be
viewed as an extension of the compiler. As mentioned
in Section 2, the HTVM system software addresses four
types of runtime adaptation: loop parallelism adap-
tation, dynamic load adaptation, locality adaptation,
and latency adaption. In this paper, we take the loop
multithreading and parallelism adaptation as an ex-
ample to illustrate how the system software should be
designed.

Scientific applications heavily rely on loop nests to
compute their results. Often, more than 90% of the
execution time is spent on some computation-intensive
kernels composed of loop nests. It is of extreme impor-
tance to schedule these loops effectively to improve the
overall performance of the application. Loop schedul-
ing on a parallel distributed system can be broadly di-
vided into two classes: static and dynamic scheduling.
Static scheduling tends to cause load imbalance, since
the exploitable parallelism, and the grain size of the
parallelism, vary with the machine resource availabil-
ity, data distribution and the latency of memory ac-
cesses, especially in the context of the highly dynamic
and threaded HEC machines. Consequently, dynamic
scheduling has been developed and shown promising
performance improvement.

The dynamic loop scheduling methods, however,
target only Thread-Level Parallelism (TLP). In con-
trast, there is another important technology, namely,
software pipelining, aims to exploit Instruction-Level

Parallelism (ILP) from loops. Software pipelining is
a most widely and successfully used loop paralleliza-
tion technique for existing microprocessor architectures
(e.g. VLIW or superscalar architectures) [13]. Tradi-
tionally, software pipelining is mainly applied to the
innermost loop of a given loop nest. Recently we have
introduced a new approach, called Single-dimension
Software Pipelining (SSP) [16],to software pipeline a
loop nest at an arbitrary loop level with desirable op-
timization objectives such as data locality and/or par-
allelism. The SSP method has been successfully tested
on a uniprocessor architecture (Intel IA-64 architec-
ture) and shows significant performance improvement.

In this research, we will further extend SSP from
single-processor single-thread environments to multi-
processor multithreading environments, by combining
the strength of software pipelining (a static scheduling)
and dynamic scheduling. The basic approach can be
described as follows: First choose the most profitable
loop level [16], which may have its own inner loops and
therefore a loop nest itself. This loop level is software
pipelined first. After that, the software pipelined code
is partitioned into threads, each thread composed of
several iterations of the selected loop level. The ap-
proach is unique in that it exploits instruction-level
and thread-level parallelism simultaneously.

There are several issues we need to study: (1) What
is the performance and cost model for such partition
of the software pipelined code into threads? (2) How
to integrate this approach with runtime optimization?
Software pipelining uses a machine resource model, in-
cluding the memory access latencies, to scheduling the
loop. The available resources and actual memory ac-
cess latencies, however, are runtime dependent in an
HEC machine, as explained before. (3)What seman-
tics constructs can be provided in LITL-X specifically
for SSP and multi-threading? For example, a pragma
may be presented to indicate the most beneficial loop
level, or indicate the scheduling strategies. The static
compiler acts according to the pragma and generates
some (partial) schedules, and stores this pragma as a
structured hint in appropriate format if it is dependent
on runtime statistics.

4 Efficient Interaction between Appli-
cations and System Software

In this section, we outline the solution strategies for
the efficient interaction between applications and sys-
tem software. There are two important aspects: the
first is developing the methods, models, and tools to
facilitate mapping complex domain application codes
to the HTVM model; the second is developing a mon-

itoring methodology and interface that will help the
adaptive compiler and runtime system to optimize ex-
ecution and resource utilization on the fly.

4.1 Domain-Specific Knowledge Input to
System Software

Today, it is a widely accepted belief that some ultra-
large scale scientific applications targeted by the HEC
machines are so complex that efficient mapping of such
applications to the architecture will require application
scientists/programmers who are domain experts. The
gap between expressions of domain-specific computa-
tions and expressions tailored to efficient execution on
a given system architecture is widening. Domain ex-
perts are and will continue to be challenged to write
high performance codes.

Figure 3. Mapping pNeocortex to system
software

HTVM embodies a model that we believe expresses
effectively the low-level idioms and interfaces required
by future ultra-large scale computing platforms. But
programming at the HTVM level will require expertise
well outside the domain of typical application special-
ists. To bridge this gap with as little compromise as
possible we present a layered architecture that we will
implement manually first, with an eye toward later au-
tomation as relevant technologies mature. Fig.3 illus-
trates the basic idea as it has evolved in the context of
the EARTH project [19] and a particular application: a
simulation of electrical activity in the neocortex. With
the assistance from the domain specific knowledge em-
bedded in the neocortex simulation, a test model of the
PGENESIS neocortex is designed and the code map-
ping and optimization on the EARTH base program-

ming model and runtime system software are under the
guidance of the domain experts’ knowledge. It shows
the progression from a domain-specific script-based de-
scription of a simulation to HTVM code. The domain
expert’s knowledge is built into the script language
and/or idiomatic modules that augment the script or
other programming language. Pseudo-code distills the
simulation down to its key structural and computa-
tional components, and includes hints to be used to
guide optimization. This code is then translated to run
on the HTVM. The resulting code is ready for compi-
lation and execution.

Guidance from the application programmer, and
more generally available from domain-specific idioms
and algorithms used explicitly or implicitly by the ap-
plication programmer, must be passed to the adaptive
compiler, runtime system, and monitoring system to
enable them to efficiently optimize the execution of
the code. We plan to define and implement a system of
structured hints to capture and apply the combined ex-
pertise of the domain specialist and the compiler. Our
notion of structured hints embodies the idea that the
compiler and the domain expert can collaborate to re-
duce the number of possible optimization strategies to
a modest and manageable set of options which are most
likely to produce high performance code in the context
of a complex and adaptive system architecture.

• The compiler will identify points in the code which
present the potential for optimization, but for
which it has insufficient information to proceed on
its own.

• The domain expert, led by the structured list of
opportunities generated by the compiler, will add
priorities and rules to this list of opportunities that
will aid the compiler and runtime to streamline
code execution.

The resulting organized and expertly culled guide to
optimization, the structured hints, includes data struc-
tures, dependencies, weights, and rules. In addition to
focusing the compilers attempts at optimization, the
resulting structured hints will be an integrated part
of our Program/Execution Knowledge Database, pro-
viding the runtime system with an informed and tai-
lored set of options around which to make its choices.
Each hint can be expressly targeted at some part of the
execution model: the adaptive compiler, the runtime
system, or monitoring system. For example, informed
choices about which pieces of the code to instrument,
and how, will become part of the metric suite used by
the adaptive compiling and runtime system to adjust
resource allocation and compilation strategy during ex-
ecution. As another example, the domain expert can

identify critical parameters to be adjusted by the com-
piler for its adaptive optimizations, thereby narrowing
the parameter space to be searched. Without reference
to the underlying hardware architecture, or even to the
HTVM software architecture, the hints must address,
in a general way, issues of: 1) data locality, 2) moni-
toring priorities, 3) data access patterns, and 4) com-
putation patterns. These will be mapped directly to
specific actions, weighting schemes, and optimization
strategies in the HTVM system software.

4.2 Monitoring of Application Execution

The adaptive compile and runtime system will re-
quire feedback derived from the execution and resource
allocation monitoring. The hints discussed in the pre-
vious subsection will drive both static and dynamic
optimizations of the program execution. In this later
context, they will provide the system with guidance on
degrees of freedom most likely to affect performance,
likely bottlenecks in the code, unpredictable aspects of
data locality and computational work patterns to steer
monitoring resources to develop heuristic models.

Our plan is to implement a hint schema that is fed
by the application programming and domain-expert in-
teractions. It will be used by various stages of the code
translation process, the HTVM system, and the run-
time monitoring system.

5 Infrastructure and Experimentation
Plan and Status

In this section, we report the current status of
the implementation and experimentation of the system
software and tools.

5.1 The Infrastructure of an Experimen-
tal Testbed

For the implementation and experimental study of
the HTVM system software, we continue to develop
and refine our software infrastructures. As the start-
ing point, we choose the system software infrastruc-
ture for IBM Cyclops-64 cellular architecture, a peta-
flops supercomputing chip-multithreaded architecture
under development at IBM Research Laboratory, fea-
tured with 160 thread units and a number of memory
modules interconnected by a high speed on-chip inter-
connection network [8]. We will leverage an system
software infrastructure and tool-chain for this archi-
tecture being developed jointly by a collaborative ef-
fort between ETI and CAPSL at University of Delware.
The system software infrastructure includes a runtime

system for a threaded virtual machine at LGT level,
a thread communication and synchronization library,
a OpenMP compiler and runtime system, a function-
accurate simulator, a cycle-accurate simulator, a Gcc-
based compiler, the binary utilities (assembler, linker,
etc.), and the libraries (e.g. libc/libm). We also con-
tinue develop the EARTH and CARE software infras-
tructure at SGT and TGT levels. We have re-targeted
the Open64 compilation infrastructure from the 64-bit
Intel IA-64 architecture to the 32-bit Intel XScale em-
bedded architecture [3], and recently we have success-
fully implemented the SSP scheduling [16], register al-
location, and code generation [15] in this compiler.

Based on the above infrastructures, we are con-
structing an experimental testbed in the following way.
First we are modifying the current virtual machine that
is for large-grain threads under C64 software infras-
tructure, and implement the HTVM small-grain and
tiny-grain threads. Second we are implementing run-
time system software support for both, leveraging our
experience with the EARTH and CARE software in-
frastructures. Third, we are extending and modifying
the function-accurate simulator to include the support
of relevant architecture features. We are also extend-
ing the above runtime system, compiler and simula-
tor to implement the algorithms developed during this
research for continuous compilation and runtime opti-
mization, as introduced in Section 3.3.

5.2 Experimentation Plan and Status

The primary goal of the experimentation is to val-
idate the proposed HEC system software and tools
in addressing the needs of selected HEC applications.
Have we created a practical methodology, ultimately
amenable to automation, that enables efficient applica-
tion programming by domain experts while producing
codes that perform well? We have selected two codes
for our study: the computational neuroscience, which
simulates large networks of biological neurons, and the
fine grain molecular dynamics, which simulates rela-
tively modest sized molecules, a single protein or pro-
tein complex in water with multiple ion species. Both
codes are representative HEC applications, therefore
they are important for the research and development
of HTVM execution model, programming model, and
system software.

Our proposed experimental methodology comprises
five major tasks enumerated below. We will use our
Neuroscience code to blaze the trail and follow the task
list for the molecular dynamics code with a delay. In
this way we will begin the development and testing of
the process and tool set with one code, and use the

second code to validate the process and provide oppor-
tunity for refinement.

• Instrument and characterize the application codes
on existing machines to establish base performance
properties.

• Develop performance models for each code in
terms of the proposed HTVM model.

• Develop a new implementation of each code to use
the proposed HTVM model using the application
mapping methodology.

• Validate on the simulation testbed.

• Project performance and impact of the proposed
new HEC software and tools.

6 Acknowledgments

We acknowledge the support from the National Sci-
ence Foundation (CNS-0509332) and Laboratory Di-
rector Research and Development funding, IBM, ETI,
and other government sponsors. We acknowledge
Hongbo Rong, who has been instrumental in the devel-
opment and documentation of some key ideas in this
paper. We would also like to acknowledge other mem-
bers at the CAPSL group, who provide a stimulus en-
vironment for scientific discussions and collaborations,
in particular Ziang Hu, Juan del Cuvillo, and Ge Gan.

References

[1] DARPA: High Productivity Computing Systems
(HPCS).

[2] IBM: PERCS (Productive, Easy-to-use, Reliable
Computing System).

[3] Kylin C Compiler.

[4] D. Callahan, B. L. Chamberlain, and H. P. Zima. The
cascade high productivity language. In Ninth Interna-
tional Workshop on High-Level Parallel Programming
Models and Supportive Environments, Santa Fe, New
Mexico, April 26th 2004.

[5] C. Cascaval, J. Castanos, L. Ceze, M. Denneau,
M. Gupta, J. M. D. Lieber, K. Strauss, and
J. H.S. Warren. Evaluation of a multithreaded ar-
chitecture for cellular computing. In Proceedings
of the 8th International Symposium on High Perfor-
mance Computer Architecture (HPCA), Boston, Mas-
sachusetts.

[6] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson,
M. Lang, S. Pakin, and F. Petrini. A performance and
scalability analysis of the BlueGene/L architecture. In
Proceedings of SC2004: High Performance Network-
ing and Computing, Pittsburgh, PA, Nov. 2004. ACM
SIGARCH and IEEE Computer Society.

[7] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy
Threads: A thread virtual machine for the Cyclops64
cellular architecture. In Fifth Workshop on Massively
Parallel Processing, in conjuction with 19th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS 2005), page 265, Denver, Colorado, USA,
April 2005.

[8] J. B. del Cuvillo, Z. Hu, W. Zhu, F. Chen, and G. R.
Gao. Toward a software infrastructure for the cy-
clops64 cellular architecture. CAPSL Technical Memo
55, April 26th 2004.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The im-
plementation of the Cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation,
pages 212–223, 1998.

[10] G. Gao, K. Theobald, A. Marquez, and T. Sterling.
The htmt program execution model. CAPSL Technical
Memo 09, July 1997.

[11] R. H. Halstead, Jr. Multilisp: A Language for Concur-
rent Symbolic Computation. ACM Transactions on
Programming Languages and Systems, 7(4):501–538,
Oct. 1985.

[12] A. Jacquet, V. Janot, R. Govindarajan, C. Leung,
G. Gao, and T. Sterling. Executable performance
model and evaluation of high performance architec-
tures with percolation. Technical Report 43, Newark,
DE, Nov. 2002.

[13] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 318–328, Atlanta,
Georgia, June 22–24, 1988. SIGPLAN Notices, 23(7),
July 1988.

[14] A. Marquez and G. R. Gao. CARE: Overview of an
adaptive multithreaded architecture. In Fifth Inter-
national Symposium on High Performance Computing
(ISHPC-V), Tokyo, Japan, October 20-22, 2003.

[15] H. Rong, A. Douillet, R. Govindarajan, and G. R.
Gao. Code generation for single-dimension software
pipelining of multi-dimensional loops. In Proc. of the
2004 Intl. Symp. on Code Generation and Optimiza-
tion (CGO), pages 175–186, Palo Alto, California,
March 2004.

[16] H. Rong, Z. Tang, R. Govindarajan, A. Douillet,
and G. R. Gao. Single-dimension software-pipelining
for multi-dimensional loops. In Proceedings of the
2004 International Symposium on Code Generation
and Optimization (CGO), pages 163–174, Palo Alto,
California, March 2004. Best Paper Award.

[17] T. Sterling. An introduction to the gilgamesh PIM ar-
chitecture. Lecture Notes in Computer Science, 2150,
2001. LNCSD9.

[18] X. Tang and G. R. Gao. Automatically partitioning
threads based on remote paths. Technical Report 23,
Newark, DE, July 1998.

[19] K. B. Theobald. EARTH: An Efficient Architecture
for Running Threads. PhD thesis, May 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

