
A Stochastic Multi-Objective Algorithm for the Design of High Performance

Reconfigurable Architectures

Wing On Fung
1
, Tughrul Arslan

1, 2

School of Electronics and Engineering
1

University of Edinburgh, King's Buildings,

Mayfield Road, Edinburgh, EH9 3JL, UK

Institute for System Level Integration
2

The Alba Centre, Alba Campus

Livingston, EH54 7EG, UK

wing.fung@ed.ac.uk, tughrul.arslan@ed.ac.uk

Abstract

The increasing demand for FPGAs and reconfigurable

hardware targeting high performance low power

applications has lead to an increasing requirement for new

high performance reconfigurable embedded FPGA cores.

This paper presents a multi-objective population based

algorithm which given a library of basic blocks and a list of

constraints, identifies an optimum reconfigurable

embedded reconfigurable core suitable for the target

application.

1. Introduction

Modulo placements in regular architectures such as

FPGAs and other emerging reconfigurable arrays have

been studied extensively, and given the rise in the use of

these programmable arrays, they have become increasingly

important. Not only do they require performance in terms

of timing and delay, the demand for endurable portable

electronics implies that minimising routing resources and

hence reducing power consumption also plays a significant

role in circuit design today.

This paper aims to investigate the use of a

population-based heuristic in an attempt to solve the

placement problem. Its approach is characterised by its

robustness in solving multi-objective and difficult

problems. Where a specific heuristic may only be suitable

for solving selected problems, the algorithm is useful if the

problem space is relatively unknown or large.

2. Background and Overview

The use of heuristics such as simulated annealing [2] to

search for optimal placements has been intensely studied.

The goals of these heuristics can be categorised into three

main areas: timing driven, congestion/routability driven

and wirelength driven. There are in general two types of

timing-driven algorithms, path-driven and net-driven

timing placement.

There are currently commercial [5] and academic [4]

placement tools available which are driven by various

algorithms. VPR [3] uses bounding box to estimate the

total wirelength, and uses path-driven timing analysis with

simulated annealing to generate its placement. PATH [4] is

an enhancement to VPR. It uses a different net weighting

algorithm to VPR, and is implemented by accurately

counting the number of paths and assigning the weight of

the net according to the number of paths the net is in. The

performances of the above tools were tested on T-PEKO

[6]. It creates circuit like hierarchies with which their

optimal delays are known. Those hierarchies can then be

used to test how the placement tools perform. It was found

that the delay produced by the current tools are between

10% to 18% away from the optimal critical path delay,

hence a significant improvement can still be made from the

current tools available.

Figure 1. array architecture

S switch box

1-4244-0054-6/06/$20.00 ©2006 IEEE

3. The Models

Nearly 90% of the total power consumed by FPGAs is

due to power dissipation through routing resources. With

the increasing popularity of reconfigurable hardware being

employed in mobile electronics, this gives the motivation to

seriously consider minimising power consumption as a

primary objective. Accordingly, the model being used

should reflect the task of minimising routing resources

while the resulting placement should maintain a good delay

value. The placement architecture is assumed to be an

island-style array with switch boxes and connection boxes

switches connecting the nets (Figure 1).

The system is shown in Figure 2. It inputs a netlist and

descriptions of the array architecture. Then an evolution

[1] based algorithm is implemented to find the likely group

of critical paths which will be described below. The

following gives the cost factors which model parts of the

physical structure of an array. They are used to guide the

algorithm to find an optimal solution.

3.1 Wirelength Cost

The total wirelength of the nets reflects the delay and

power dissipation of the circuit and forms the main part of

the cost function. The wirelength of a net in a placed circuit

is estimated by the Manhattan distance between its output

pin to the rest of its input pins. If inet is the number of nets

in the array and fanouti is the number of fan-outs of net i,

the wirelength cost of a placement would be,

() ()()��
= =

=
inet

i

fanout

j

iposwl

i

jblocknetblocknetdiffC
1 2

1.,1. .

3.2 Switch Boxes Cost

If the number of active switches used in the circuit is

reduced, power dissipation would also be reduced. When

the input pin of a net is laying in the same axis as its output

pin, it is assumed that they can be directly routed without

being diverted by any “S” switch boxes (Figure 1). If a pin

is not on the same axis as the output pin, the wire

connection between them must go through a “S” switch box

(Figure 3). The net is then assigned a weight proportional

to the number of pins that are not in alignment.

The switches cost for a placement can be found as

() ()
� �

= = �
�
� ≠∪≠

=
inet

i

fanout

j

posposjposposj

switch

i

otherwise

yyxx
C

1 2

11

,0

,1
,

where xposj and xposy are the coordinates of the fan out pins.

3.3 Finding the Critical Path

The algorithm uses a form of net-driven timing criteria

to implement timing analysis on the model. There is likely

to be more than one critical path in net-driven timing

placement, therefore instead of finding a single critical

path, a group of likely critical paths are searched. The

resulting population of paths will be used as a cost function

in the main heuristic.

If pop is the size of the population, Pi is path i of the

population, the total cost of the population would be

()�
=

=
pop

i

inet
PlengthC

1

.

The algorithm first generates a population of random

paths. The population is then put through a process similar

to that of Figure 5, which is described in the next section. A

population of long paths from net counting is then

determined and is used as part of the final fitness function.

output block

input block

Figure 2. system overview

population based

algorithm

configuration

of netlists

heaviest paths

design

constrains

system to be

routed

Figure 3. 3 input blocks not in alignment with

output

(1)

(2)

(3)

4. The Multi-Objective Algorithm

The costs described above are then input into the

heuristic. The following gives a description of the method

used to generate an array. The coding of a solution is

described in Figure 4. Each logic element of the array is

assigned a reference number. The number points to a

position in the array for which the logic element occupies.

The fitness: the objective is to minimise the length of

wires and switches usage, hence reducing both power and

delays of asynchronous circuits. The fitness function is a

combination of the above, and is calculated as follows.

If ipath is the number of critical paths generated, the cost

function for an individual placement would be,

()�
=

=
ipath

i
ipath PC length

1

.

From (1), (2) and (4), the fitness can then be defined as,

CCCCCC pathkswitchjWLi
fitness ×+×+×= ,

where Ci, Ci and Ck are constants that can be varied by

the user to tune the algorithm. When the fitness of every

individual of the initial population is evaluated, the

following operators are used to improve the overall quality

of the placements.

Operator 1: randomly selects four placements from the

population, and picks the better two according to their

fitness; Operator 2: combines logic element placements

from one selected placement to another in an alternating

fashion to create a new placement. It selects a first position

in the array and fills it with an element from one individual

in the same position. Then it fills the next position with

element from the other individual in that position. This is

then repeated alternatively, if the element selected is

already placed, then an empty or a randomly selected

element is placed; Operator 3: picks two random positions

in a placement and swap the blocks in the positions.

The algorithm is described in Figure 5. Operator 2

passes on useful information from one placement to the

next, while operator 3 introduces random changes to the

population. After a number of these heuristic operations, a

new population is produced. The amount of operations

performed is determined by their rates, which are defined

by the user. The rates control how well the algorithm will

perform and must be fine-tuned if the algorithm is to find a

good solution in a reasonable time. The operations are

repeated until a satisfied solution is found.

5. Target Array

The heuristic is tested on two reconfigurable arrays

targeting DCT [7] and speech coding separately. The initial

architecture targets 27 stages of 32-bit one and two

dimensional DCT. This implementation uses 41 logic

elements. A placement on a 9x5 array is generated from the

input of the 27 configuration descriptions of the array. The

placement is then routed using VPR and the results are

compared with the designer layout.

The other architecture targets the last loop branch in the

Algebraic Codebook Search. It is implemented using 43

logic elements and is shown in Figure 6. A placement on a

9x5 array is generated from 27 configuration descriptions,

and it is tested in the same way.

initialise population();
best_cost = get_cost(population, Cswitch, Cwl, Cpath);

while placement does not reach criteria:

 for p=0:(population size/2);

 ind_1, ind_2 = op1(p, cost);
 op2(cross_probability, ind_1, ind_2);
 op3(mutate_probability,ind_1);
 op3(mutate_probability,ind_2);
 store(individual_1&2);

 end;

 new_population(n);
cost = get_cost(population, Cswitch, Cwl, Cpath);
if (cost >best_cost)
 best_cost=cost;

end;

position 5 9

0 1 2 3 4 … … … … … n …

x y

logic elements

Figure 4. encoding of the placement

(4)

(5)

Figure 5. pseudo code of the main heuristic

Figure 6. resulted array for speech coding

6. Experimental Result

The algorithm is first fine-tuned to find the best

combination of operator rates. Then it was run with a

population of 30 to implement both arrays. The small

population allows the programme to find a good solution in

a reasonable time. It was stop at 3000 iterations when no

significant improvement of the placements can be made.

Each configuration is then separately evaluated and routed

in VPR to get their bounding box and wirelength values.

The results of the generated placements for DCT and

Algebraic Codebook Search are shown in Figure 7. It

compares the total wirelength of the generated array with

designer’s architecture. In the case of 2-D DCT, there is an

overall average of 24% saving in total wirelength. The

bounding box is also reduced by a similar rate by 24%. The

array for the Codebook Search has an overall bounding box

saving of 20%. The total wirelength is also 23% less. Both

of the generated architectures have demonstrated improved

performance compare with ones placed by designer.

For larger commercial arrays, the program is tested

against five circuits of the MCNC LGSynth93 benchmark

[8] for FPGAs. Figure 8 shows the critical delays of the

placements of both methods.

Although the heuristic succeeded in reducing the initial

placement cost by a factor of a third, but comparing with

performance of a high performance software tool like VPR,

apart from the delay cost of the alu4 array, the heuristic has

been outperformed.

There are fundamental constrains which limits the

performance of the algorithm implementing in placement

architecture. Firstly in every loop of evaluating the

population, the algorithm takes up a lot more time than

other heuristic algorithms since it requires accessing a large

part of memory. Further more, when VPR evaluates a

singe placement, it uses information from previous

placements to help it calculates the new placement’s cost.

Where as for the program described, it has to calculate the

fitness from scratch. To calculate the wirelength of a

circuit with a few thousands nets for every placement is a

demanding task. Future research is aimed to optimize the

performance of the algorithm as well as producing more

accurate model of the reconfigurable arrays.

0

2000

4000

6000

8000

10000

12000

14000

16000

to
ta

l
w

ir
e
le

n
g
th

1 2

Multi

Design

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

4.00E-07

1 2 3 4

VPR

Multi

7. Conclusion

A population based multi-objective algorithm has been

presented which aims to produce an embedded

reconfigurable core give a library of primitive blocks. The

algorithm utilises three cost functions and a set of heuristics

in order to identify an optimal embedded reconfigurable

architecture for a target specification. We have

demonstrated the efficiency of the algorithm by producing

embedded reconfigurable cores targeting DCT and motion

estimation applications and have compared these with

specially tailored efficient designs available in the

literature.

References

[1] David E. Goldberg, Genetic Algorithms in Search,

Optimization & Machine Learning.

[2] C.-C. Chang, J. Cong, Z. Pan, and X. Yuan. Physical

hierarchy generation with routing congestion control. In

Proc. Int. Symp. on Physical Design, pages 36.41, 2002.

[3] V. Betz and J. Rose; VPR: A New Packing, Placement and

Routing Tool for FPGA Research, Seventh International

Workshop on Field-Programmable Logic and Applications,

London, UK, 1997, pp. 213 - 222.

[4] Kong, T.; A novel net weighting algorithm for timing-driven

placement, Computer Aided Design, 2002 ICCAD 2002,

10-14 Nov. 2002, Pages:172 – 176.

[5] W. Swartz and C. Sechen. Timing-driven placement for large

standard cell circuits. In Proc. ACM/IEEE Design

Automation Conference, pages 211-215, 1995.

[6] Chin-Chih Chang; Cong, J.; Romesis, M.; Min Xie;

Optimality and scalability study of existing placement

algorithms Computer-Aided Design of Integrated Circuits

and Systems, April 2004 Page(s):537 - 549

[7] S. Khawam, T. Arslan, F. Westall, Synthesizable

reconfigurable array targeting distributed arithmetic for

system-on-chip applications, 2004 Parallel and Distributed

Processing Symposium, (RAW'04)

[8] LGSynth93 MCNC Benchmarks. Obtained from

http://www.eecg.toronto.edu/~lemieux/sega/ccts_blif.tar

Figure 7. bounding box cost of DCT/Speech

DCT Speech Coding

ex5p misex3 alu4 spla pdc

33x33 38x38 40x40 61x61 68x68

Figure 8. critical delay of MCNC LGSynth93

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

