High-Level Synthesis with Reconfigurable Datapath Components

George Economakos

National Technical University of Athens
School of Electrical and Computer Engineering
Microprocessors and Digital Systems Laboratory
Iroon Polytexneiou 9, GR-15780 Athens, Greece
geconom@microlab.ntua.gr

Abstract

High-level synthesis is becoming more popular as de-
sign densities keep increasing, especially in the ASIC de-
sign world. Although FPGA design follows ASIC design
methodologies and FPGA densities are increasing too, pro-
grammable devices also offer the advantage of partial re-
configuration, which allows an algorithm to be partially
mapped into a small and fixed FPGA device that can be re-
configured at run time, as the mapped application changes
its requirements. This paper presents a novel resource con-
strained high-level synthesis scheduling heuristic, which
utilizes reconfigurable datapath components. The resulting
schedule can be shortened so as the gain in clock cycles can
overcome the timing overhead of reconfiguration. The main
advantage of the proposed methodology is that through run
time reconfiguration, more complicated algorithms can be
mapped into smaller devices without speed degradation.

1. Introduction

Modern consumer digital devices are built using either
application specific hardware modules (ASICs) or general
purpose software programmed microprocessors, or a com-
bination of them. Hardware implementations offer high
speed and efficiency but they are tailored for a specific set of
computations. On the contrary, software implementations
can be modified freely during their life-cycle but they are
much more inefficient in terms of speed and area. Recon-
figurable computing [3] is intended to fill the gap between
hardware and software, achieving potentially much higher
performance than software, while maintaining a higher level
of flexibility than hardware. Reconfigurable devices, in-
cluding Field-Programmable Gate Arrays (FPGAs), con-
tain an array of computational elements whose functional-

1-4244-0054-6/06/$20.00 ©2006 IEEE

ity is determined through multiple programmable configu-
ration bits. These elements, usually called logic blocks, are
connected using a set of programmable routing resources.
Custom digital circuits can be mapped to the reconfigurable
hardware by computing the logic functions of the circuit
within the logic blocks, and using the configurable routing
to connect them. Currently, the most common configuration
technique is to use Look-Up Tables (LUTs), implemented
with Random Access Memory (RAM).

The areas of a program that can be accelerated through
the use of reconfigurable hardware may be too numerous
or complex to be loaded simultaneously onto the avail-
able hardware. In such cases, it is beneficial to be able
to swap different configurations in and out of the reconfig-
urable hardware as they are needed during program execu-
tion. This concept is known as Run-Time Reconfiguration
(RTR). Through RTR, more sections of an application can
be mapped into hardware and thus, despite reconfiguration
time overhead, a potential for an overall performance im-
provement is provided. RTR can be applied on different
phases of the design process, according to the granularity
of the reconfigurable blocks, which may be complex func-
tions [9], simple RTL components [1] or LUTs [11]. The
reconfiguration data can be stored inside the reconfigurable
device [10] or transfered from an embedded or host proces-
sor [9]. The underlying architecture can be traditional FP-
GAs or special purpose architectures [6, 11, 12], supporting
very fast reconfiguration.

High-Level Synthesis (HLS) [7], where a behavior is
mapped into an RTL architecture, has a great impact on cir-
cuit implementation because each HLS transformation acts
on large portions of the design. Reconfiguration in HLS
can be applied in the construction of the RTL architecture
considering that each RTL component is not active in every
control step. Partially inactive components can be merged
into a reconfigurable component. This paper presents a
novel resource constrained HLS scheduling heuristic, which

utilizes reconfigurable datapath components covering dif-
ferent function types in different control steps through RTR.
Since RTR in modern architectures can take as little as 10ns
[12], a part of every control step may be used for calcula-
tions and the other part for RTR. With the proposed heuris-
tic, the resulting schedule can be shortened enough to over-
come the timing overhead of reconfiguration. Experimental
results show an average 50% reduction in control steps that
compensates for the worst case of 50% increase in clock
period, with better hardware utilization.

2. Related Research

RTR is a leading technology improvement of reconfig-
urable computing. A key point for its broad acceptance is
how to conduct reconfiguration quickly and flexibly. Con-
ventional FPGAs have not focused on RTR much, because
they have been used mainly for emulation and prototyping
purposes. This has started to change and new architectures
are proposed. In [6, 12], the proposed architecture can store
up to 8 different contexts to configure LUTs with a fast
hardware context switch. In [11] a similar architecture with
8 different contexts is presented along with a scheduling al-
gorithm to partition a technology mapped design. However,
scheduling after technology mapping is less effective than
the proposed scheduling at the RT level. A hardware con-
text switching in a conventional FPGA architecture is pro-
posed in [10], but it requires much more hardware resources
than a non-RTR approach. In [8] RTR efficiency is consid-
ered by partitioning a dataflow graph into a minimal set of
reconfigurations applied through the whole run time of the
corresponding application. Reconfigurable components are
presented in [2] and [4]. In [2] the morphable multiplier
is presented, which is an array multiplier that can be con-
figured through multiplexers to work as either an adder or
a multiplier. In [4] morphable multipliers are used for the
design of a graphics processor. Reconfigurable computing
for HLS is reported in [1] where register binding is handled
by reconfiguring on-chip embedded memory.

3. The Proposed Solution

This paper considers RTR during HLS proposing a novel
resource constrained scheduling heuristic utilizing RTR
arithmetic units. Specifically, after experimentation with
different FPGA architectures, it has been found that a bi-
nary multiplier takes 3 to 4 times the LUTs required for an
adder of the same input bit width. So, we can assume that
we have an arithmetic component that can be used as a mul-
tiplier in some control steps and as 3 adders (at least) in all
the others. If we perform resource constrained scheduling
with such reconfigurable components we can reduce the la-
tency, in terms of control steps, of our circuit.

For example, consider a digital filter with two inputs z
and y and two outputs z; and zo, where 21 = apxo + 1 +
Lo + azxs + x4 + a5z and 2o = boyo + b1y +y2 + y3 +
bays + y5. If we want to build a circuit for this system,
using two multipliers and two adders in every control step,
we will come out with the schedule of figure 1. If one of the
multipliers is reconfigurable, and as in the above discussion
can be used as either a multiplier or 3 adders, we can reduce
the latency by one control step, as shown in figure 2.

Such a result is promising but to apply RTR a reconfigu-
ration delay is required at the beginning of appropriate con-
trol steps and thus, the control step period must be extended.
So, in the above example, the one control step gain will be
outperformed by the increase in clock period. However, if
we want to implement the system using two multipliers and
one adder we will come out with a large schedule, shown in
figure 3. In that case, making one multiplier reconfigurable
will result in a more drastic latency improvement, as shown
in figure 4. If RTR can reach 10ns, as reported in modern
architectures, the latency reduction is almost 50%.

4. Scheduling with RTR Logic

Practical problems in hardware scheduling are modeled
by generic sequencing graphs, with possibly multiple-cycle
operations of different types. With this model, the schedul-
ing problem is known to be intractable. Therefore, heuristic
algorithms have been researched and used. For resource
constrained scheduling, that is when the number of avail-
able hardware resources is determined, a very efficient and
widely used algorithm is list scheduling [7]. In its general
form, list scheduling is the following algorithm.

INSERT READY _OPS(V,PListy, ,PLists,,. ..,PLists,,);
Cstep=0;
while (PListy, # 0) or ... or (PList;, # 0))do
Cstep=Cstep+1;
for k=1 to m do
for funit=1 to Ny do
if (PList;, # () then
Scurrent=SC_OP(Scurrent,FIRST(P List:, ,Cstep));
PList;, =DELETE(P List, FIRST(P List;,,);
endif
endfor
endfor
INSERT READY _OPS(V,PListy, ,PLists,,...,PListy,,);
endwhile

The algorithm uses a priority list PList for each opera-
tion type tj, € T'. Each operation’s priority is defined by its
mobility, that is the difference between its ALAP scheduling
value and its ASAP scheduling value. The operations in all
priority lists are scheduled into control steps based on Ny,
which is the number of functional units performing opera-
tion of type . The function INSERT_READY _OPS scans

Xy X, 85X X, 8 Xg by

Vo

R EE S HIE
OIS

CS=4

&

Cs=5

CS=6

Cs=7

CS=8

CS=9

CS=10
Figure 3. Schedule with 2 mult. - 1 add.
a\o/xo Xy X 3 X4 3 X5 by Yobyyy 3&2 7’3 74 4 7’5

A \/\7

Figure 4. Schedule with 1+1 mult. - 1 add.

the set of nodes V' and moves ready operations (with all
predecessors scheduled) to the appropriate priority list. The
function SC_OP(S¢yrrent.0:,5;) schedules operation o; in
control step s;. The function DELETE(P Listy, ,0;) deletes
operation o; from the specified list. Operations with low
mobility are put first in the list. In other words, operations
that do not have many opportunities to be scheduled in sub-
sequent control steps are preferred for the current. As the
algorithm moves on, the ASAP and ALAP values change
and thus mobilities are dynamically re-calculated.

The same algorithm can be used when a subset of the re-
sources are reconfigurable and through RTR can be used in
some control steps as one type and in all the rest as another
type. For example, a reconfigurable binary multiplier can
be used as either a multiplier or (at least) three additions.
The required modifications are the following:

e The priority lists corresponding to types covered by a
reconfigurable operator are merged into a common list.

e The numbers of available resources of each type, in-
cluding RTR resources, are kept in separate variables.

e When both reconfigurable and non-reconfigurable
components can perform an operation, the latter takes
precedence. So priority lists are merged after all non-
reconfigurable components have been used.

e At each control step a reconfigurable component can
cover only one operation type.

e The number of available reconfigurable components is
not decreased with each operation scheduled but only
when full coverage is reached.

With the above modifications, the new resource-
constrained scheduling heuristic with reconfigurable com-
ponents can be realized. The circuits designed using this
heuristic may have to pass through RTR at every control
step. This can double the control step period or lower
the operating frequency. However, frequency degradation
can be outperformed by the latency improvements achieved
(more on that in the following section). Considering appli-
cations that are bound to a specific I/O protocol, like the
33 MHz PCI bus, our approach can dramatically improve
the effectiveness of small partially reconfigurable FPGA de-
vices. Moreover, better hardware utilization is supported
because idle components may be reconfigured to perform
other tasks. Finally, the proposed reconfiguration is kept
minimum by utilizing very few (less than five) reconfig-
urable components. Small scale reconfiguration can be per-
formed in a flexible and fast way both in modern architec-
tures but also in future proposals, which will try to take full
advantage of RTR.

Number of Number of cycles
Application nodes ORTR | 1RTR [2RTR
Fircls 63 24 18 10
Firls 64 32 25 17
Firrcos 79 42 30 18
Invfreqz 41 25 18 10
Maxflat 115 51 38 22
Remez 55 28 20 17

Table 1. DSP schedules with RTR

(7]

o

S .

>

S J—

) P

N .

] [1 42 ‘ 9l 38

Ke] 32 30 28

E 24|18 22 25118 fppe— 20

< Fircls Firls Firrcos Invfreqz Maxflat Remez

Applications I ORTR

[0 1RTR
Bl 2RTR

Figure 5. Graph of DSP schedules with RTR

5. Experimental Results

The scheduling algorithm of the previous section has
been implemented on top of a C-to-RTL HLS synthesis en-
vironment [5]. In order to evaluate the proposed method-
ology, six different DSP applications (from MATLAB’s
DSP tool box) have been used as testbenches: Fircls (Con-
strained least square FIR filter), Firls (Least square linear-
phase FIR filter), Firrcos (Raised cosine FIR filter), In-
vireqz (Discrete-time filter from frequency data) Maxflat
(Generalized digital Butterworth filter) and Remez (Parks-
McClellan optimal FIR filter). Table 1 shows three im-
plementations for each application, one with no recon-
figurable components (the reconfigurable multipliers dis-
cussed above), one with one reconfigurable component and
one with two reconfigurable components. The implemen-
tations with two reconfigurable components have an aver-
age latency improvement of 53% that can overcome even a
doubling in control step period due to RTR. Figure 5 sum-
marizes the results of table 1 and gives another view of the
improvements achieved.

6. Conclusions

A novel resource constrained HLS scheduling heuristic,
which utilizes reconfigurable datapath components has been
presented in this work. Using reconfigurable multipliers,
the resulting schedule can be shortened so as the gain in
clock cycles can overcome the timing overhead of recon-

figuration. Since RTR in modern reconfigurable architec-
tures has been reported to take as little as 10ns, an approach
where half of the control step may be used for calculations
and the other half for RTR is feasible. The main advantage
of this solution is that through RTR, more complicated al-
gorithms can be mapped into smaller devices without speed
degradation.

References

[1] H. Al Atat and I. Quaiss. Register binding for FPGAs with
embedded memory. In /2th Annual Syumposium on Field-
Programmable Custom Computing Machines, pages 167—
175. IEEE, 2004.

[2] S. Chiricescu, M. Schuette, R. Glinton, and H. Schmit. Mor-
phable multipliers. In [2th International Conference on
Field Programmable Logic and Applications, pages 647—
656. IEEE, 2002.

[3] K. Compton and S. Hauck. Reconfigurable computing: A
survey of systems and software. ACM Computing Surveys,
34(2):171-210, 2002.

[4] K. Dale, J. W. Sheaffer, V. V. Kumar, and D. P. Luebke. Ap-
plications of small scale reconfigurability to graphics pro-
cessors. Technical Report CS-2005-11, University of Vir-
ginia, 2005.

[5] G. Economakos, P. Oikonomakos, 1. Panagopoulos,
I. Poulakis, and G. Papakonstantinou. Behavioral synthe-
sis with SystemC. In Design Automation and Test in Europe
Conference and Exhibition, pages 21-25. ACM/IEEE, 2001.

[6] T. Fujii, K. Furuta, M. Motomura, M. Nomura, M. Mizuno,
K. Anjo, K. Wakabayashi, Y. Hirota, Y. Nakazawa, H. Ito,
and M. Yamashina. A dynamically reconfigurable logic en-
gine with a multi-context/multi-mode unified-cell architec-
ture. In International Solid-State Circuits Conference, Di-
gest of Technical Papers, pages 364-365. IEEE, 1999.

[7]1 D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis.
Kluwer Academic Publishers, 1992.

[8] S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh. An opti-

mal algorithm for minimizing run-time reconfiguration de-

lay. ACM Transactions on Embedded Computing Systems,

3(2):237-256, 2004.

C. Patterson. High performance DES encryption in virtex

FPGAs using JBits. In Symposium on Field-Programmable

Custom Computing Machines, pages 113-121. IEEE, 2000.

[10] J. Torresen and K. A. Vinger. High performance computing
by context switching reconfigurable logic. In /6th European
Simulation Multiconference, pages 207-210, 2002.

[11] S. Trimberger. Scheduling designs into a time-multiplexed
FPGA. In 6th International Symposium on Field Pro-
grammable Gate Arrays, pages 153—160. ACM, 1998.

[12] M. Yamashina and M. Motomura. Reconfigurable comput-
ing: Its concept and a practical embodiment using newly
developed dynamically reconfigurable logic (DRL) LSI. In
Sth Asia and South Pacific Design Automation Conference,
pages 329-332. ACM/IEEE, 2000.

[9

—

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

