
A Distributed Object System Approach for Dynamic Reconfiguration

Ronald Hecht, Stephan Kubisch, Harald Michelsen, Elmar Zeeb, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
Richard-Wagner Str. 31, 18119 Rostock-Warnemünde, Germany

{ronald.hecht, dirk.timmermann}@uni-rostock.de

Abstract

Managing reconfigurable hardware resources at run-
time is expected to be a new task for future operating
systems. But due to the mixture of parallel and sequen-
tial parts of dynamically reconfigurable applications, it
is not entirely clear so far, how to use and to program
such systems. A new interpretation of dynamically re-
configurable applications is presented. It will be shown,
that the parallel computing concept of distributed object
systems may be adapted for dynamically reconfigurable
architectures. This approach answers many open ques-
tions concerning communication, interruption, and relo-
cation of reconfigurable modules. It is explored by means
of an extended Linux operating system in conjunction
with a SystemC model of a dynamically reconfigurable
FPGA.

1. Introduction

Operating systems supporting dynamic reconfigura-
tion of hardware are heavily discussed since the appear-
ance of the first dynamically reconfigurable devices, the
Xilinx XC6200 series. Many OS prototypes have been
presented in the past, ranging from specialized hard-
ware operating [6] systems and on-chip reconfiguration
managers using soft core processors [3] to extensions of
a real-time Linux system [1].

All implementations share the concept of a scalable
communication backbone with fixed interfaces to recon-
figurable modules. The most promising approach of a
Network-on-Chip (NoC) [5] is further investigated in [2]
showing, that hardwired NoCs may be an integral part
of future FPGA devices (see Figure 1) superseding soft-
wired System-on-Chip (SoC) buses. They will not only
support dynamic reconfiguration, but also improve sys-
tem efficiency and reduce costs in terms of chip area. In
addition, a NoC leads to message based communication

in contrast to memory reads and writes. Assuming fu-
ture multi billion transistor devices integrating a whole
bunch of hardwired and reconfigurable computing ele-
ments, on-chip communication will play a central role.
Sun’s slogan “The Network is the Computer” will scale
down to those reconfigurable SoCs.

re re

re CPU

re

re

re re re

S S S S S

S S S S S

S S S S S

Figure 1. A Hardwired NoC on future FPGAs

Whereas the management tasks for operating systems
supporting dynamic reconfiguration are well understood
[7, 1], the communication, relocation, and programming
strategies are not entirely clear. Especially interruption
of reconfigurable cores is significantly difficult. Two
major approaches are followed here: reading back the
bitstream on the one hand and a controlled shutdown
generating a context on the other. However, in this
paper a completely new understanding of NoC-based
reconfigurable systems is presented. Starting from an
object oriented approach [4] in Section 3, the whole
system is interpreted as a distributed object system,
well understood in the parallel computing world. On top
of this idea, a unified programming and communication
model is derived. The problems of interruption and
relocation are tackled. In Section 4 and Section 5 the
experimental environment comprising a standard Linux
system and a FPGA simulation model are outlined.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Practical applications and their implementation are
shown in Section 6. A conclusion and remarks for
further improvements summarize this contribution.

2. NoC-based Reconfigurable Systems

Before concentrating on the new ideas of this paper,
the overall architecture of a NoC-based reconfigurable
system should be outlined. Starting from the structure
of dynamically reconfigurable applications, the main
building blocks of the operating system and the underly-
ing hardware will be defined. The terminology favored
here, contrasts in some points to previously presented
architectures, particularly with regard to processes and
computing resources.

2.1. Applications for Reconfigurable Sys-
tems

Modern applications are designed in an object ori-
ented manner using powerful tools allowing for a graphi-
cal design with UML. This does not need to be changed
for dynamically reconfigurable systems [4]. Even if hard-
ware synthesis is not fully functional yet, this approach
leads to a modular design with communicating com-
puting elements. Every method call is equivalent to a
message sent to an object. Thus, applications will have
software parts being highly control-driven and hard-
ware parts with a high potential of parallelism. These
hardware parts, further on called IP cores, are hidden
behind computing objects. These objects own a well
defined interface – the methods or messages the object
will understand.

2.2. Tiles, IP Cores and Processes

Dynamically reconfigurable devices are and will be
partitioned into rectangular areas independently re-
configurable. As shown in Figure 2, these tiles are
configured with IP cores. An IP core may span multiple
tiles. Thus, IP cores with different sizes and degrees of
parallelism are possible.

As IP cores should exploit the parallelism and effi-
ciency of hardware, they must be able to serve multiple
clients. For example, if one process accesses only every
now and then a crypto core, another process should
be able to use the same core to increase its utilization.
Following the client-server analogy, this means running
multiple processes on an IP core, each serving a client
process. Whether supported or not and how it is im-
plemented in a particular core, is not of interest here.
The main idea is, that IP cores are computing elements
being able to execute multiple processes. Consequently,

Tile

IP Core

Process

Process

Process

Physical

Address

Logical

Address

Port

Figure 2. Tiles, IP Cores and Processes

instruction set processors (ISP) are a specific form of
IP cores.

2.3. Accelerators and Decelerators

Implementing a certain computing problem often
aims at performance improvements. Thus, a hardware
realization is called accelerator. Accelerators may come
in multiple implementations supporting different levels
of parallelism, power, and area consumption. On the
contrary, the software implementation of an IP core
is called decelerator. It is required to emulate the
hardware behavior when reconfigurable resources are
exhausted or not existent at all. But they are also useful
when improvements of an accelerator are not necessary
at the moment.

Accelerators and decelerators of an IP core share the
same functional interface. Speaking in object oriented
terms, they understand the same methods or messages.

2.4. IP Core Relocation

The process of relocation describes a logical move-
ment of an IP core within the system. An accelerator
may be moved into another tile or replaced by a decel-
erator running on a ISP. Due to increased performance
requirements, a decelerator or an accelerator may be
substituted by a more powerful accelerator. All this
requires to save and to restore the current state of an
IP core. This state information is called context.

Besides the functional interface of accelerators and
decelerators, the context and the interruption mecha-
nisms have to be compatible as well. This makes the
approach of bitstream read-back very inefficient and
complicated, as it is highly dependent on the underlying
FPGA architecture and the physical structure of the
accelerators. Thus, the context should to be extracted
by the core itself and not by an external instance.

2.5. Communication

Dynamic reconfiguration involves disconnecting and
establishing physical links at the boundaries of reconfig-
urable modules at runtime. But it also means to control
the logical connections of IP cores. This makes the NoC
approach highly attractive. Besides fixed physical inter-
faces, it comes with stacked abstraction layers. Each
layer may be substituted by another implementation.
Thus, from the application point of view, the physical
layer is not of interest.

A NoC allows for a unified communication method-
ology. Packet based communication facilitates message
passing being a fundamental part of an object oriented
approach. A shift from physical interconnection details
to a high level abstraction of IP core communication is
achieved.

It must be stressed, that even if NoCs adapt concepts
of Internet communication, they focus on throughput,
low power consumption, and small scale communica-
tion. Consequently, a full blown TCP/IP stack is not
reasonable here.

2.6. Management

The management of the NoC and reconfigurable
resources is assigned to an operating system or a mid-
dleware. This includes scheduling strategies, allocation
and deallocation of tiles and their configuration. IP
cores and decelerators must have suitable representa-
tions within the operating system. NoC routing tables
and logical links between hardware and software are to
be controlled during relocation. On the lower end, de-
vice drivers for the configuration interface and the NoC
must be existent. Figure 3 summarizes the fundamental
components of a NoC-based dynamically reconfigurable
system in a three layered manner.

3. Dynamic Reconfiguration and Dis-
tributed Object Systems

Whereas the system architecture outlined in the pre-
vious section is widely accepted, the abstraction and
programming models are still heavily discussed. Main
problems arise from the diverging paradigms of hard-
ware and software. Unifying both worlds in one de-
scription language has been proved to be very difficult,
particularly in the field of design automation. Reloca-
tion of IP cores within a heterogeneous environment is
basically understood, but also lacks of a programming
model and design automation. Thus, even if the whole
idea of dynamic reconfiguration is promising and has
definitely a commercial potential, it is still extremely

Application

Operating System

IP Core Loader

IP Core Registry

IP Core Scheduler

NoC Transport

Layer

Decelerators

Device Driver

Config Driver NoC Driver

FPGA

NoC
Accelerators

Tiles

Software

IP Cores

Figure 3. Dynamically rec systems

tricky. But often, complicated things are solved with
very simple ideas.

3.1. Everything is an Object

Recent developments in the field of system level mod-
eling languages reveal the strengths of an object ori-
ented design not only for software but also for hardware.
As software objects are data containers representing a
thing in the real world, they are also used to represent
hardware modules. In traditional RTL design, mod-
ules have signal ports defining their physical interface.
But transaction level modeling, emerged from system
level design, teaches to raise the abstraction level from
the physical details to a functional description of the
interface. This description is basically a collection of
methods a module understands. Modules are allowed
to have multiple interfaces. A network controller has
a separated receive and transmit interface for instance.
Interfaces may be stacked. This means, that different
abstraction layers of an interface may exist. A protocol
stack is an example here.

Figure 4 illustrates the basic concept of hardware
modules being objects. At a high abstraction level,
every module has one or more functional interfaces
aggregating methods. How the methods are mapped
to a physical interface is defined at design and compile
time and depends on the desired throughput and costs.
Pure combinational interfaces, handshakes, FIFOs, bus
interfaces, and even networks fit for this methodology.

3.2. How Objects communicate

The second fundamental concept of object oriented
thinking says, that objects communicate by the use of

+setKey()

+encrypt()

+decrypt()

«Schnittstelle»

ICrypto

+setKey()

+encrypt()

+decrypt()

-key

-someData

CryptoCore

«Interface»

ICrypto

+recv()

«Schnittstelle»

IRecv

+send()

«Schnittstelle»

ISend

+send()

+recv()

-rxBuf

-txBuf

EthernetCore

«Interface»

ISend

«Interface»

IRecv

Figure 4. Hardware Modules are Objects

messages. Objects may understand these messages, if
they know a corresponding method. Due to performance
reasons, most object oriented languages have abandoned
the distinction between messages and methods, thus,
dealing only with methods. But objects representing
hardware modules are remote from a calling instance.
Methods can not be called directly.

This problem is solved with remote method invoca-
tion (RMI). If one object wants to invoke a method
of a remote object, a real message is generated. This
message is sent over a network to the remote object.
A reply message containing the result of the method
call is sent back to the invoking instance. As Figure 5
shows, the translations from methods to messages and
vice versa are performed by a proxy and a skeleton.
Whereas the proxy resides at the client side imitating
the remote object, the skeleton interfaces the real ob-
ject to the network. Thus, proxy, skeleton, and network
act as invisible intermediate layers between client and
object.

Remote ObjectClient

Network

Identical

Interfaces

Client Proxy Server Skeleton

Message

Figure 5. Client Proxy and Server Skeleton

As the reconfigurable system features a NoC, this
concept is easily adapted. Most prototypes follow the
approach of sending messages to communicate with
reconfigurable cores, even an object oriented design not
in mind.

3.3. Distributed Objects

Generalizing the idea of IP cores being remote ob-
jects, leads to distributed object systems, such as

CORBA, DCOM, and JavaRMI. From the applica-
tion point of view, all objects seem to be located on
the local host. But objects are allowed to be on remote
machines, concealed by client proxies. Objects can be
allocated and deallocated at will. Even remote objects
may allocate other objects being local or remote. Ob-
jects can be shared and can migrate between the client
and remote hosts. A lookup or directory service assists
locating objects within the network.

But what does that mean if applied to dynamically
reconfigurable systems? If an application wants to use
an IP core, it simply creates an instance of it. The
proxy and, if enough resources available on the FPGA,
the accelerator are loaded. The decelerator equals an
object on the local machine. As shown in the following
example, communication with the core is simply done
by method calls. The NoC is hidden by the proxy
and the skeleton. If the application does not want to
use the core anymore, it just destroys the instance.
Reconfigurable resources are freed.

// Load an IP core, Decelerator or
// Accelerator are initialized
myCore = myCore::createInstance();

// Do something with it,
// Remote method invocation
myCore->doSomething();

// Unload the IP core,
// Free reconfigurable resources
myCore->releaseInstance();

Relocation of IP cores is possible, if it is, speaking in
an object oriented terminology, serializable. Serializing
means to save the internal state information after an
atomic operation. Thus, not all registers of an IP
core have to be saved, but only those representing the
state between atomic operations. To access IP cores, a
remote reference has to be used. This not only allows
the client but also other IP cores to communicate with
it. According to distributed object systems, a naming
and lookup service has to be implemented to find IP
cores within the network.

Obviously, a dynamically reconfigurable system may
be understood as a distributed object system in the
small. Even if this analogy does not simplify dynamic
reconfiguration, it definitely aids developing future con-
cepts and architectures.

4. Middleware Architecture

Based on the proposed analogy, a new middleware
architecture for dynamically reconfigurable systems has

been developed. It resides on top the NoC transport
layer supporting point-to-point connections, a logical
addressing scheme and ports. Alike TCP/IP, logical
addresses specify IP cores and ports the processes on
IP cores.

As shown in Figure 6, applications use the client
side representation of IP cores – the proxy. It hides
the complexity of communication and reconfiguration.
A proxy comprises the application protocol translating
methods to messages and a naming service responsible
for dynamic reconfiguration. The naming service acts as
an interface to the IP core lookup service and the IP core
loader. The IP core lookup service searches for existing
IP cores matching the requested service and returns
its remote reference. A remote reference consists of a
service ID describing the function, the logical address of
the IP core, and the port of the service. If the requested
service is not available within the network, a new IP
core will be loaded by the IP core loader creating a new
remote reference.

IP cores have at least two implementations, the ac-
celerator and the decelerator. Both share the same
skeleton translating messages into methods. Whereas
the accelerator is only accessible over the network, the
decelerator has an additional interface to bypass net-
work communication. This speeds up the interaction
between software and decelerators. The network inter-
face of decelerators is required to allow a communication
between IP cores even if not running in hardware.

 Software

 FPGA

NoC Transport Layer

Accelerator

IP Core

Skeleton

IP Core

IP Core

Lookup

Service

IP Core

Loader

Client Process Decelerator

IP Core Proxy

Application

Protocol

Naming

Service IP Core

Skeleton

IP Core

Figure 6. The NoC Object System

Besides a software interface to proxies, the IP core
lookup service and the IP core loader are visible within
the network. This allows IP cores to find, to create,
and to use other IP cores by themselves. Consequently,
hardware and software have equal rights to trigger dy-

namic reconfiguration and to communicate among each
other. This approach is a fundamental improvement
compared to previously presented systems, where dy-
namic reconfiguration is requested by a central instance,
in most cases the software part of the application.

5. Experimental Environment

As shown in Figure 7, besides a Debian Linux system
with kernel version 2.6.9, an abstract FPGA simulation
model was used. This model is written in SystemC 2.1
and features a NoC and 16 dynamically reconfigurable
tiles. The reason for such a model is, that dynamic
reconfiguration is very cumbersome today. Tool support
is still under development. Tile-based dynamic recon-
figuration of Virtex-4 is possible but not supported yet.
A soft-implemented NoC consumes to much resources,
resulting in just a few reconfigurable tiles. Instead, the
SystemC model assumes a dynamically reconfigurable
FPGA with an hardwired NoC. The FPGA-model is
attached to virtual Linux devices allowing configuration
of the tiles and NoC communication.

Linux

FPGA Model

Applications + IP Cores

BSD-Socket API

socket()

NoC Stack

NoC

Device Driver

IP Core Loader

exec()

IP Core

Scheduler

FPGA

Device Driver

TUN/TAP

Interface

Character

Device

NoC

Object System

Figure 7. Linux Experimental Environment

The Linux NoC extensions are integrated similar to
other network systems. The transport layer is accessible
with standard BSD socket API calls. Thus, direct
communication with IP cores is as simple as TCP/IP
networking. Moreover, this implementation is very
fast, as the whole Linux network subsystem is highly
optimized for packet based communication.

The object system managing dynamic reconfigura-
tion resides on top of the NoC transport layer. It makes

use of the BSD socket API and the exec() system call
to load new IP cores. For this purpose, the Linux ELF
loader was extended to support IP core description files.
They contain the names of accelerator and decelerator
files.

Decelerators are represented by Linux processes. Ac-
celerators run within the FPGA model. Bitstream
download is not modeled. Configuration is simply done
by selecting a certain accelerator and a tile over the
configuration interface. As this contribution focuses on
design and programming paradigms and the overall sys-
tem architecture rather than efficient resource sharing,
a very simple scheduler was implemented. If the tiles
are exhausted, the decelerator is used.

6. Case Studies

To evaluate the proposed architecture and its impact
on the design flow, various case studies have been done.
Two of them will be outlined here, starting with an
AES crypto core demonstrating the acceleration of com-
pute intensive applications. A second example shows
how to integrate a communication controller alike the
hardwired components depicted in Figure 1. Both case
studies will highlight the seamless refinement process
from a pure software solution to the final IP core imple-
mentation comprising the client side, the decelerator,
and the accelerator.

6.1. AES Crypto Core

Following the principle “IP cores are objects”, a
software implementation of the AES taken from the
Linux kernel was encapsulated within a class. This
class features an interface describing the messages an
AES core will understand. The very basic interface
methods are setKey, encrypt and decrypt. The next
step was to define the communication protocol and the
message format. A message starts with a request/reply
qualifier followed by an opcode specifying the method
to be invoked. The parameters of request messages and
results of reply messages are appended.

The translation between methods and messages are
put in a client proxy and a server skeleton. The lat-
ter is attached to the AES class, whereas the client
proxy is used by an application. Communication with
the NoC transport layer and IP core look-up resist in
precompiled libraries. Now, the decelerator was imple-
mented. Decelerators are standard console applications
comprising the AES software implementation class and
the server skeleton.

The Linux extensions allow to load IP cores by the
use of the exec() system call. It returns the logical

address of the IP core being the same as the Linux
process ID of the decelerator. IP core executables are
text files containing the names of the decelerator and
accelerator file. The AES IP core executable aes.core
looks like

dec:AES.dec
acc:AES.acc

To verify the application and the decelerator only, the
accelerator was omitted first. To use the AES core
within an application, an instance of the AESCore class
has to be created

AESCore* myAESCore;
myAESCore = AESCore::createInstance();

The creation of a virtual connection to the decelerator
and the loading mechanism of IP cores is completely
hidden behind this creation. The core is ready for use
now. The methods may be called.

myAESCore->setKey(aKey);
aCypher = myAESCore->encrypt(aMessage);

When all desired operations are done, the IP core must
be released. This does not necessarily mean, that the
IP core is unloaded. It may stay within the system
to serve other applications. On the other hand, this
approach allows IP cores to serve more than one client.
Such a release does only close the connection to the core
and frees its utilized computing resource to be available
for other applications.

myAESCore->releaseInstance();

After the decelerator was working as expected, the
implementation of the accelerator was started. As a
SystemC model instead of a real FPGA was used, this
design step was very simple. The AES class was put
together with the server skeleton in a dynamically re-
configurable SystemC module. These modules feature
an reconfigurable interface to the transport layer of
the NoC. They are configured on request through the
configuration interface of the FPGA simulator.

If a real FPGA is available, the AES accelerator has
to be refined for RTL synthesis using SystemC, VHDL
or Verilog. As modern tools support mixed language
simulation, the FPGA model can be reused.

6.2. Synchronous and Asynchronous Mes-
sages

As described above, every method call results in a
request and a reply message. The caller halts until the
reply message is received. This is formally known as

synchronous message passing. Communication and com-
putation are not pipelined which highly degrades the
obtained throughput. Especially streaming applications
will suffer from this methodology.

In contrast, asynchronous message passing allows
deferred reply messages. To integrate this communica-
tion scheme into the AES core, asynchronous method
calls for encryption and decryption were added to the
client proxy. Results are received with handlers to be
registered before communication.

void resultHandler(result) { ... };
myAESCore->resultEvent(resultHandler);
myAESCore->encrypt(aMessage);

At the beginning, the client proxy is informed about a
result handler. This function will consume encryption
results. An encryption is still triggered with encrypt(),
but it does not return the result by itself. Instead it is
handled by the function resultHandler().

This programming technique is only to be concerned
for software parts of an application and decelerators.
In hardware, the request and reply data path may
be buffered and parallelized to achieve asynchronous
message passing.

6.3. Remote references

The previous code examples demonstrated, how to
explicitly load IP cores. Instead of pointers addressing
dynamically created IP cores, remote references may be
used. They contain the specific service ID of the core,
its logical address and port number. One advantage
of this approach is to defer the creation of an IP core
until it is actually used. In the following example the
creation is deferred until the encrypt method is called.

AESCoreRef myAESCore;
myAESCore->encrypt(aMessage);

Thus, the user does not have to explicitly create an
instance of the AES core. This is hidden behind the
operator ->, reducing the code overhead for the user.

Besides simplification, this is a consistent approach
to share IP cores between applications and other IP
cores. Instead of pointers, remote references exactly
address a service end point within the system and are
thus relocatable. The entire communication rests upon
them, decentralizing the dynamically reconfigurable
system.

6.4. Relocation

Relocating an IP core within a dynamically reconfig-
urable system requires to save its internal state or to

serialize it, speaking in terms of distributed objects. In
both worlds, this is not straight forward and sometimes
even not possible. The approach taken highly depends
on the internal structure and functionality of a partic-
ular core. The amount of data to be saved must be
balanced with the time to transfer and store it and the
time required to stop and to restart the core. Therefore,
it is not reasonable to save all internal register values
nor to completely dismiss the state. IP cores should be
allowed to finish atomic operations before interruption,
alike general purpose processors.

In the case of the AES core, only the key committed
by the application is saved. This is due to the fact that
key expansion is very fast. In our hardware reference
design, it takes only 48 clock cycles and is much faster
than to transfer the expanded key.

To integrate interruption and restoration, every IP
core features beside its functional interface a relocation
interface. As shown in Figure 8, this interface defines
methods to start, to stop, and to reset an IP core.

+setKey()

+encrypt()

+decrypt()

«Schnittstelle»

ICrypto

+setKey()

+encrypt()

+decrypt()

+start()

+stop()

+reset()

AESCore

«Interface»

IAESCore

+start()

+stop()

+reset()

«Schnittstelle»

ICrypto

«Interface»

IRelocation

Figure 8. IP Core Relocation Interface

To transmit relocation requests over the NoC, the
methods are translated to messages extending the ap-
plication protocol of the core. These messages are gen-
erated and processed by the distributed object system
and scheduled by the IP core scheduler.

6.5. Network Controller

Besides classical accelerators, IP cores may imple-
ment communication controllers for off-chip devices,
such as multi-gigabit or Ethernet transceivers. It is
expected that those cores are not relocatable, due to
their connection to specific pads of the FPGA.

The network controller is again treated as an object.
It will understand messages to receive and to transmit
packets as well as to adjust communication parame-
ters. Even though an asynchronous interface should be
preferred, the client side may do

myEthCore->setSpeed(100);
myEthCore->send(sData);
rData = myEthCore->recv();

Thus, the transmitted data is encapsulated in NoC mes-
sages. But an Ethernet controller is hardly accessed
from an application directly. It rather should be inte-
grated as a traditional network device. For this purpose
a low level Linux kernel interface to NoC sockets was re-
alized. It allows to use regular socket operations within
the kernel context. Figure 9 depicts the control and
data flow from a conventional Linux network device to
the communication controller in the NoC.

IP Core

API

Application

Protocol

Kernel

Sockets

Virt. Device

Driver

Linux

Netdevice

noc_net_open connectopen

stop

get_stats

hard_start_xmit noc_net_xmit

noc_net_close

noc_net_stats

...

close

send

recv

sock_sendmsg

sock_recvmsg

sock_create

sock_release

...

NoC

Skeleton

Network

Controller

Off-Chip

Network Device

Figure 9. The NoC as a Network Bridge

The Linux network device accesses the virtual Eth-
ernet device with usual device functions. The device
functions are mapped to IP core methods and encap-
sulated into messages. The messages are sent over the
NoC and processed by the IP core.

7. Conclusion and Outlook

By applying an approved methodology from the par-
allel computing world to dynamically reconfigurable
systems, a new approach to design dynamically recon-
figurable applications was presented. Reconfigurable
modules are treated as objects communicating with
software or other modules by the use of messages. The
reconfigurable system is understood as a distributed
object system, allowing remote objects to relocate be-
tween reconfigurable tiles or processors. The question of
interrupting and restoring modules is simply answered
by the concept of serializing objects. Even if this is

also not simple in distributed object systems, it sets up
a formalized foundation for further investigations on
dynamically reconfigurable systems.

Taking a crypto accelerator and a communication
controller as examples, the implications of the presented
analogy were studied. It was shown, that the design
process from a pure software solution to an accelerator
is driven by a step-by-step refinement procedure. This is
well supported by object oriented modeling languages,
such as SystemC. The extensions made to a Linux
system and the use of a SystemC FPGA model provided
an excellent development and evaluation platform for
dynamically reconfigurable applications.

As the design process is straight forward, it may
be automated by tools. In particular, the creation of
messages, the client proxy, and the server skeleton from
a module interface has to be simplified by the use of
interface description languages (IDL) as already used in
CORBA. In addition, sharing remote references must be
further studied. It has high potentials in dynamic cre-
ation and interconnection of reconfigurable modules and
leads to a more general understanding of dynamically
reconfigurable systems.

References

[1] A. Bartic et al. Network-on-Chip for Reconfigurable Sys-
tems: From High-Level Design Down to Implementation.
In FPL 2004, Leuven, Belgium, August 2004.

[2] R. Hecht, S. Kubisch, A. Herrholz, and D. Timmermann.
Dynamic Reconfiguration with hardwired Networks-on-
Chip on future FPGAs. In FPL 2005, pages 527–530,
Tampere, Finland, August 2005.

[3] M. Hübner, K. Paulsson, and J. Becker. Parallel and
Flexible Multiprocessor System-On-Chip for Adaptive
Automotive Applications based on Xilinx MicroBlaze
Soft-Cores. In RAW 2005, Denver, Colorado, USA, April
2005.

[4] M. Hübner, K. Paulsson, M. Stitz, and J. Becker. Novel
Seamless Design-Flow for Partial and Dynamic Reconfig-
urable Systems with Customized Communication Struc-
tures Based on Xilinx Virtex-II FPGAs. In ARCS 2005,
Workshops Proceedings, LNI, Innsbruck, Austria, March
2005. GI.

[5] T. Marescaux et al. Interconnection Networks Enable
Fine-Grain Dynamic Multi-Tasking on FPGAs. In FPL
2002, Montpellier, France, September 2002.

[6] H. Walder and M. Platzner. A runtime environment
for reconfigurable hardware operating systems. In FPL
2004, pages 831–835, Leuven, Belgium, August 2004.

[7] G. Wigley and D. Kearney. Research Isssues in Operat-
ing Systems for Reconfigurable Computing. In ERSA’02,
Las Vegas, Nevada, USA, June 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

