
An Automated Development Framework for a RISC Processor with

Reconfigurable Instruction Set Extensions

Nikolaos Vassiliadis, George Theodoridis and Spiridon Nikolaidis

Section of Electronics and Computers, Department of Physics,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

nivas@skiathos.physics.auth.gr

Abstract

By coupling a reconfigurable hardware to a standard

processor, high levels of flexibility and adaptability are
achieved. However, this approach requires modifications

to the compiler of the processor to take into account

reconfigurable aspects. In this paper, a development
framework for a RISC processor with reconfigurable

instruction set extensions is presented. The framework is
fully automated, hiding all reconfigurable related issues

from the user and can be used for both program and fine-

tune the architecture at design time. We demonstrate the
above issues using a set of benchmarks. Experimental

results show an x2.9 average speedup in addition to

potential energy reduction.

1. Introduction

To amortize cost over high production volumes,

embedded systems must exhibit high levels of flexibility

and adaptability. An appealing option –broadly referred to

as reconfigurable computing– is to couple a standard

processor with reconfigurable hardware (RH). While the

processor can serve as the bulk of the flexibility that can

be used to implement any algorithm, the incorporation of

the RH offers the adaptation of the system to the target

application.

To program such hybrid architecture, the traditional

software design flow of compiling for a target processor

must be appropriately extended taking into account the

presence of the RH [1]. Transparent incorporation of this

feature is a must in order to preserve the time-to-market

close to that of the traditional software design flow and

continue to target software-oriented groups of users.

In this paper, we present an automated development

framework for a dynamic Reconfigurable Instruction Set

Processor (RISP). The target RISP architecture [2]

consists of a RISC processor extended with a coarse-grain

Reconfigurable Functional Unit (RFU). The framework

was developed to be fully automated in the sense that

hides all RH related issues requiring no interaction with

the user other than that of a traditional software design

flow. Furthermore, by allowing different values for

various architectural parameters, the framework can be

retargeted to different instances of the architecture. Thus,

fine-tuning of the architecture during design time is

possible, while support by the framework is maintained.

To demonstrate the framework’s usage, a number of

applications, derived from various domains and

benchmarking suites, were considered. Experimental

results present an exploration to derive and evaluate an

instance of the architecture using the proposed framework.

2. Related Work

The overwhelming majority of the proposed

reconfigurable systems fall into two main categories based

on the coupling between the processor and the RH: 1) the

reconfigurable hardware is a co-processor of the main

processor and 2) the reconfigurable hardware is a

functional unit of the processor pipeline (we will state this

category as RFU from now on).

The first category includes among others, the Garp,

NAPA, Molen, REMARC, and PipeRench [3-7]. In this

case, the coupling between the processor and the RH is

loosely and communication is performed explicitly using

special instructions. The available performance gain is

significant but only parts of the code weakly interacting

with the rest of the code, can be mapped to the RH and

exploit this gain. These parts of the code must be

identified and replaced with the appropriate special

instructions. Garp and Molen features automation of this

process but only for loop bodies and complete functions,

respectively. For NAPA and PipeRench this process is

performed manually.

Examples of the second category are systems such as

PRISC, Chimaera, and XiRisc [8-10]. Communication is

performed implicitly and the coupling is tight. The RH is

treated as another functional unit of the processor. This

1-4244-0054-6/06/$20.00 ©2006 IEEE

makes control logic simple, while the communication

overhead is eliminated but an opcode space explosion is

likely. In XiRisc the identification of the extracted

computational kernel must be performed manually, while

PRISC and Chimaera feature no selection process for the

identified instructions.

3. Target Architecture

The target architecture is a RISP processor [2] based on

a standard 32-bit, single-issue, five-stage pipeline RISC

architecture that has been extended with the following

features:

 Extended ISA to support three types of operations

performed by the RFU: 1) computations (comp), 2)

addressing modes (mem), and 3) control transfer (cti).

 An interface supporting the tight couple of an RFU to

the processor pipeline using the ISA extensions.

 An RFU array of Processing Elements (PEs).

On each execution cycle an instruction is fetched from

the Instruction Memory. If the instruction is identified as

reconfigurable its opcode is forwarded to the RFU. In

addition, the opcode is decoded and produces the

necessary control signals to drive the interface. At the

same time the RFU is appropriately configured by

downloading the necessary configuration bits from a local

configuration memory with no cycle penalty.

The RFU consists of a 1-Dimension array of PEs. The

array features an interconnection network that allows full

connectivity. The granularity of PEs is 32-bit allowing the

execution of the same word-level operations with the

processor datapath. Each PE can be configured to provide

unregistered or registered result. In the first case, spatial

computation is exploited by executing chains of

operations in the same clock cycle. When the delay of a

chain exceeds the clock cycle, the register output is used

to exploit temporal computation by providing the value to

the next pipeline stage. In this way, the PEs can be seen as

“floating” in the processor’s pipeline.

We have designed and synthesized a complete

hardware description model of the architecture using STM

0.13um technology [2]. Results indicate reasonable area

overhead from the incorporation of the RFU. Also, the

extensions do not introduce any overhead in the critical

path of the processor.

4. Automated Development Framework

Our approach of compiling for reconfigurable

computing involves primarily the transparent to the user

incorporation of compiler extensions to support the

reconfigurable instruction set extensions. Under this

demand, we developed an automated development

framework for the target RISP architecture, which

organization is depicted in Figure 1. The complete flow is

divided in five distinct stages, presented in detail below.

Front-End: MachSUIF [11] is used to generate the

Control and Data Flow Graph (CDFG) of the application

in SUIFvm Intermediate Representation (IR). In addition,

a number of machine independent optimizations are

performed in the CDFG.

Profiling: A MachSUIF pass has been developed that

instruments the CDFG with profiling annotations, which

mark the entrances and exits of basic blocks (we will state

DFGs as basic blocks from now on). Another pass (m2c)

translates the CDFG to equivalent C code and annotations

regarding the basic blocks are converted to program

counters. Compiling and executing the generated code,

profiling information for the execution frequency of the

basic blocks is collected.

Instruction Generation: This stage is divided in two

steps. The goal of the first step (pattern generation) is the

identification of complex patterns of primitive operations

that can be merged into one reconfigurable instruction.

The patterns generation engine is based on the MaxMISO

(maximal multiple-input single-output) algorithm [12]. An

enhanced version of the algorithm implemented in [13] is

used. Enhancements consist of user defined parameters

controlling: 1) the maximum number of inputs of the

pattern, 2) the type of operations in the pattern and 3) the

maximum number of operation in the patterns. Exploiting

these features the user can configure the architecture at

design time to fine-tune it towards an application domain.

In the second step, the mapping of the previously

identified patterns in the RFU is performed and the actual

reconfigurable instruction set extensions are generated. A

mapper for the target RFU has been developed for this

reason. Since any resource constraint has been resolved in

the pattern generation step and the 1-D array of the RFU

offers full connectivity, the implementation of the mapper

is significantly simplified. The steps performed by the

mapper are:

C/C++

Front-End

MachSUIF

Optimized IR

in CDFG form

Basic Block

Profiling Results

Instruction

Selection

Back-EndStatistics

Executable

Code

Profiling

Instrumentation

m2c

Instr.Gen.

Pattern Gen.

Mapping

Instr.

Extens.

User Defined

Parameters

Figure 1. Automated development framework

1.Calculate the delay of each pattern. The delay is

calculated using user parameters defining the delay of the

modules of the RFU (PEs, interconnection etc.).

2. Place each operation of a pattern in a PE and

appropriately configure its functionality.

3. Put the PE for execution in the appropriate pipeline

stage based on the calculated delay and the type of the

pattern (e.g. computation, addressing etc.). This is

performed by selecting the registered or unregistered

output of the PE.

4. Configure the multiplexers of the 1-D array for

appropriate interconnection of the PEs.

5. Report the reconfigurable instruction set semantics (e.g.

latency, type, resources etc.).

Instruction Selection: In this stage, the final

instruction set extensions are selected. The only constraint

for this selection is the total number of instructions that

directly affects the storage size required for the

configuration bits of the RFU. This constraint can be

again defined externally to fine-tune the architecture

during design time. Therefore, the only metric for the

selection of an instruction is the offered speed-up.

Firstly, the static speed-up of each instruction is

calculated by considering the software (processor) versus

the hardware (RFU) execution cycles of the instruction.

The static speed-ups are multiplied by the execution

frequency of the basic block and the dynamic speed-ups

are calculated. Finally, pair-wise graph isomorphism is

performed. The instructions are ranked based on their

dynamic speed-ups and the best are selected. The output

of this stage is the reconfigurable instruction set

extensions in addition to statistics (speed-up, number of

instructions etc.).

Back-End: The back-end of the framework flow is the

only stage that has not yet been fully implemented.

However, since reconfigurable instructions do not require

any special manipulation for the communication and

synchronization between processor and RFU, the back-

end is much like any traditional processor back-end.

5. Experimental Results

For the experiments we have consider a set of

benchmarks derived from various suites and application

fields. The complexity of the benchmarks varies from

simple kernels (bitcount, fir, dct, quant, vlc) to

implementation of algorithms in full applications

(dijkstra-reed solomon encoder). Also a complex

application (mpeg4 shape encoder) that uses several

kernels is present. In the coming up experimental results,

the possibilities of using the framework for fine-tune

critical architectural parameters and to program/evaluate a

specific instance of the architecture are demonstrated.

A parameter that can be used to drive the instruction

generation stage is the number of operations in the

patterns. This number is actually equal to the maximum

numbers of PEs in the RFU. By appropriate selecting this

number, the designer can accomplish the perfect balance

between the required performance and area utilization.

Figure 2 indicates that while an average speedup of x3 is

possible with the maximum number of PEs (that is 13

PEs), the 97% of this speedup is feasible with only 8 PEs

resulting to area reduction.

Another parameter that can be defined in the

instruction generation stage is the number of maximum

number of inputs for each pattern. This number is equal to

the available read-ports of the register file. Even though

our intention not to alter the instruction format and size of

the base RISC processor have restricted us not to exceed

the four inputs, Figure 3 gives an estimate of the

unutilized performance. Thus, while unconstraint

instruction generation can produce an average speedup of

x3.2, the four inputs restriction utilizes the 94% and 91%

of this speedup with no and eight PEs constraint in the

number of PEs, respectively. Again the 8 PEs-4 Input

instance seems like a very good trade-off between

performance and area utilization.

Figure 4 shows the speedup of each application

regarding the maximum number of available

reconfigurable instructions. It must be pointed out that we

assume all available instructions fit in the local

configuration memory. This memory can provide on each

cycle the appropriate configuration to the RFU without

introducing any extra overhead. In general, the figure

indicates that an average speedup of x2.9 over all

considered benchmarks is possible.

The execution of complex patterns of operations as

reconfigurable instruction in the RFU results to reduction

of the program code size and instruction fetches. Figure 5

presents an average code size and instruction memory

accesses reduction of 38% and 62%, respectively. Since a

major source of energy consumption of embedded

processors is the instruction memory accesses significant

energy savings can be produced.

0

1

2

3

4

5

b
it
c
o
u

n
t fi
r

d
c
t

q
u
a
n
t

v
lc

d
ij
s
k
tr

a
s
tr

in
g

s
e
a
rc

h

d
e
s

g
o
s
t

s
h
a

c
rc

3
2

rs
-e

n
c
o

d
e

m
p

e
g

4
_
s
e
n

c
Max PEs 10 PEs 8 PEs 6 PEs 4PEs

Figure 2. Speedup for different number of PEs

0

1

2

3

4

5

b
it
c
o
u

n
t fi
r

d
c
t

q
u
a
n
t

v
lc

d
ij
s
k
tr

a
s
tr

in
g

s
e
a
rc

h

d
e
s

g
o
s
t

s
h
a

c
rc

3
2

rs
-e

n
c
o

d
e

m
p

e
g

4
_
s
e
n

c

Max PEs-Max Inputs Max PEs-4 Inputs 8 PEs-4Inputs

Figure 3. Speedup for various PEs/inputs

0

1

2

3

4

5

b
it
c
o
u

n
t

fi
r

d
c
t

q
u
a
n
t

v
lc

d
ij
s
k
tr

a
s
tr

in
g

s
e
a
rc

h

d
e
s

g
o
s
t

s
h
a

c
rc

3
2

rs
-e

n
c
o

d
e

m
p

e
g

4
_
s
e
n

c

8 Instr 16 Instr 32 Instr 64 Instr All Instr

Figure 4. Speedup regarding the maximum
number of reconfigurable instructions

6. Conclusions

We presented an automated development framework

for a RISP that can be used both for fine-tune an instance

of the RISP at design time but also to program it after

fabrication. The framework accomplishes to hide all

reconfigurable hardware related issues from the user.

Thus, the target RISP architecture can be used by any

software-oriented user with no knowledge of hardware

design. Finally, the same framework can be used to

explore different parameters of the architecture, derive the

most suited for the targeted application, and support the

new architecture instance without any modification.

Acknowledgement

This work was supported by the General Secretariat of

Research and Technology of Greece and the European

Union.

0

20

40

60

80

100

b
it
c
o
u

n
t

fi
r

d
c
t

q
u
a
n
t

v
lc

d
ij
s
k
tr

a
s
tr

in
g

s
e
a
rc

h

d
e
s

g
o
s
t

s
h
a

c
rc

3
2

rs
-e

n
c
o

d
e

m
p

e
g

4
_
s
e
n

c

Code Size Instruction Fetches

Figure 5. Code size and instruction fetches
reduction

References

[1] F. Barat, R. Lauwereins, and G. Deconinck, “Reconfigurable

Instruction Set Processors from a Hardware/Software

Perspective,” in IEEE Trans. Softw. Eng. 28, 9, pp. 847-862,

2002.

[2] N. Vassiliadis, N. Kavvadias, G. Theodoridis, and S.

Nikolaidis “A RISC Architecture Extended by an Efficient

Tightly Coupled Reconfigurable Unit”, in ARC, pp. 41-49,

2005.

[3] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp

Architecture and C Compiler,” in IEEE Computer, vol. 33, no. 4,

pp. 62-69, April, 2000.

[4] M. B. Gokhale and J. M. Stone, “NAPA C: Compiling for a

Hybrid RISC/FPGA Architecture,” in FCCM, pp. 126, 1998.

[5] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.

Kuzmanov, and E. Moscu Panainte, “The MOLEN Polymorphic

Processor," in IEEE Transactions on Computers, vol. 53, no. 11,

pp. 1363-1375, November, 2004.

[6] T. Miyamori, and K. Olukotun, “REMARC: Reconfigurable

Multimedia Array Co-Processor,” in IEICE Trans. Information

Systems, vol. E82-D, no. 2, pp. 389-397, February, 1999.

[7] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,

R. Taylor, and R. Laufer, “Piperench: A Coprocessor for

Streaming Multimedia Acceleration,” in 26th Annual Int.

Symposium on Computer Architecture, pp. 28-39, 1999.

[8] R. Razdan and M. D.Smith, “A High-Performance

Microarchitecture with Hardware-Programmable Functional

Units,” in MICRO 27, ACM Press, pp. 172-180, 1994.

[9] Z. A. Ye, N. Shenoy, and P. Baneijee, “A C compiler for a

Processor with a Reconfigurable Functional Unit,” in FPGA,

ACM Press, pp.95-100, 2000.

[10] A. La Rosa, L. Lavagno, and C. Passerone, “Software

Development for High-Performance, Reconfigurable, Embedded

Multimedia Systems,” in IEEE Design and Test of Computers,

vol. 22, no. 1, pp. 28-38, 2005.

[11] Machine-SUIF research compiler.

[12] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG

Based Design Approach for Reconfigurable VLIW Processors,”

in DATE, pp. 778-779, 1999.

[13] N. Kavvadias and S. Nikolaidis, “Automated Instruction-Set

Extension of Embedded Processors with Application to MPEG-4

Video Encoding,” in ASAP'05, pp. 140-145, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

