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Abstract 

By coupling a reconfigurable hardware to a standard 

processor, high levels of flexibility and adaptability are 
achieved. However, this approach requires modifications 

to the compiler of the processor to take into account 

reconfigurable aspects. In this paper, a development 
framework for a RISC processor with reconfigurable 

instruction set extensions is presented. The framework is 
fully automated, hiding all reconfigurable related issues 

from the user and can be used for both program and fine-

tune the architecture at design time. We demonstrate the 
above issues using a set of benchmarks. Experimental 

results show an x2.9 average speedup in addition to 

potential energy reduction. 

1. Introduction 

To amortize cost over high production volumes, 

embedded systems must exhibit high levels of flexibility 

and adaptability. An appealing option –broadly referred to 

as reconfigurable computing– is to couple a standard 

processor with reconfigurable hardware (RH). While the 

processor can serve as the bulk of the flexibility that can 

be used to implement any algorithm, the incorporation of 

the RH offers the adaptation of the system to the target 

application.  

To program such hybrid architecture, the traditional 

software design flow of compiling for a target processor 

must be appropriately extended taking into account the 

presence of the RH [1]. Transparent incorporation of this 

feature is a must in order to preserve the time-to-market 

close to that of the traditional software design flow and 

continue to target software-oriented groups of users. 

In this paper, we present an automated development 

framework for a dynamic Reconfigurable Instruction Set 

Processor (RISP). The target RISP architecture [2] 

consists of a RISC processor extended with a coarse-grain 

Reconfigurable Functional Unit (RFU). The framework 

was developed to be fully automated in the sense that 

hides all RH related issues requiring no interaction with 

the user other than that of a traditional software design 

flow. Furthermore, by allowing different values for 

various architectural parameters, the framework can be 

retargeted to different instances of the architecture. Thus, 

fine-tuning of the architecture during design time is 

possible, while support by the framework is maintained. 

To demonstrate the framework’s usage, a number of 

applications, derived from various domains and 

benchmarking suites, were considered. Experimental 

results present an exploration to derive and evaluate an 

instance of the architecture using the proposed framework. 

2. Related Work 

The overwhelming majority of the proposed 

reconfigurable systems fall into two main categories based 

on the coupling between the processor and the RH: 1) the 

reconfigurable hardware is a co-processor of the main 

processor and 2) the reconfigurable hardware is a 

functional unit of the processor pipeline (we will state this 

category as RFU from now on). 

The first category includes among others, the Garp, 

NAPA, Molen, REMARC, and PipeRench [3-7].  In this 

case, the coupling between the processor and the RH is 

loosely and communication is performed explicitly using 

special instructions. The available performance gain is 

significant but only parts of the code weakly interacting 

with the rest of the code, can be mapped to the RH and 

exploit this gain. These parts of the code must be 

identified and replaced with the appropriate special 

instructions. Garp and Molen features automation of this 

process but only for loop bodies and complete functions, 

respectively. For NAPA and PipeRench this process is 

performed manually. 

Examples of the second category are systems such as 

PRISC, Chimaera, and XiRisc [8-10]. Communication is 

performed implicitly and the coupling is tight. The RH is 

treated as another functional unit of the processor. This 

1-4244-0054-6/06/$20.00  ©2006 IEEE



makes control logic simple, while the communication 

overhead is eliminated but an opcode space explosion is 

likely. In XiRisc the identification of the extracted 

computational kernel must be performed manually, while 

PRISC and Chimaera feature no selection process for the 

identified instructions. 

3. Target Architecture 

The target architecture is a RISP processor [2] based on 

a standard 32-bit, single-issue, five-stage pipeline RISC 

architecture that has been extended with the following 

features: 

 Extended ISA to support three types of operations 

performed by the RFU: 1) computations (comp), 2) 

addressing modes (mem), and 3) control transfer (cti). 

 An interface supporting the tight couple of an RFU to 

the processor pipeline using the ISA extensions. 

 An RFU array of Processing Elements (PEs). 

On each execution cycle an instruction is fetched from 

the Instruction Memory. If the instruction is identified as 

reconfigurable its opcode is forwarded to the RFU. In 

addition, the opcode is decoded and produces the 

necessary control signals to drive the interface. At the 

same time the RFU is appropriately configured by 

downloading the necessary configuration bits from a local 

configuration memory with no cycle penalty. 

The RFU consists of a 1-Dimension array of PEs. The 

array features an interconnection network that allows full 

connectivity. The granularity of PEs is 32-bit allowing the 

execution of the same word-level operations with the 

processor datapath. Each PE can be configured to provide 

unregistered or registered result. In the first case, spatial 

computation is exploited by executing chains of 

operations in the same clock cycle. When the delay of a 

chain exceeds the clock cycle, the register output is used 

to exploit temporal computation by providing the value to 

the next pipeline stage. In this way, the PEs can be seen as 

“floating” in the processor’s pipeline. 

We have designed and synthesized a complete 

hardware description model of the architecture using STM 

0.13um technology [2]. Results indicate reasonable area 

overhead from the incorporation of the RFU. Also, the 

extensions do not introduce any overhead in the critical 

path of the processor. 

4. Automated Development Framework 

Our approach of compiling for reconfigurable 

computing involves primarily the transparent to the user 

incorporation of compiler extensions to support the 

reconfigurable instruction set extensions. Under this 

demand, we developed an automated development 

framework for the target RISP architecture, which 

organization is depicted in Figure 1. The complete flow is 

divided in five distinct stages, presented in detail below.  

Front-End: MachSUIF [11] is used to generate the 

Control and Data Flow Graph (CDFG) of the application 

in SUIFvm Intermediate Representation (IR). In addition, 

a number of machine independent optimizations are 

performed in the CDFG.  

Profiling: A MachSUIF pass has been developed that 

instruments the CDFG with profiling annotations, which 

mark the entrances and exits of basic blocks (we will state 

DFGs as basic blocks from now on). Another pass (m2c) 

translates the CDFG to equivalent C code and annotations 

regarding the basic blocks are converted to program 

counters. Compiling and executing the generated code, 

profiling information for the execution frequency of the 

basic blocks is collected. 

Instruction Generation: This stage is divided in two 

steps. The goal of the first step (pattern generation) is the 

identification of complex patterns of primitive operations 

that can be merged into one reconfigurable instruction. 

The patterns generation engine is based on the MaxMISO 

(maximal multiple-input single-output) algorithm [12]. An 

enhanced version of the algorithm implemented in [13] is 

used. Enhancements consist of user defined parameters 

controlling: 1) the maximum number of inputs of the 

pattern, 2) the type of operations in the pattern and 3) the 

maximum number of operation in the patterns. Exploiting 

these features the user can configure the architecture at 

design time to fine-tune it towards an application domain. 

In the second step, the mapping of the previously 

identified patterns in the RFU is performed and the actual 

reconfigurable instruction set extensions are generated. A 

mapper for the target RFU has been developed for this 

reason. Since any resource constraint has been resolved in 

the pattern generation step and the 1-D array of the RFU 

offers full connectivity, the implementation of the mapper 

is significantly simplified. The steps performed by the 

mapper are: 

C/C++

Front-End

MachSUIF

Optimized IR 

in CDFG form

Basic Block 

Profiling Results

Instruction 

Selection

Back-EndStatistics

Executable 

Code

Profiling

Instrumentation

m2c

Instr.Gen.

Pattern Gen.

Mapping

Instr. 

Extens.

User Defined 

Parameters

Figure 1. Automated development framework 



1.Calculate the delay of each pattern. The delay is 

calculated using user parameters defining the delay of the 

modules of the RFU (PEs, interconnection etc.). 

2. Place each operation of a pattern in a PE and 

appropriately configure its functionality. 

3. Put the PE for execution in the appropriate pipeline 

stage based on the calculated delay and the type of the 

pattern (e.g. computation, addressing etc.). This is 

performed by selecting the registered or unregistered 

output of the PE. 

4. Configure the multiplexers of the 1-D array for 

appropriate interconnection of the PEs. 

5. Report the reconfigurable instruction set semantics (e.g. 

latency, type, resources etc.). 

Instruction Selection: In this stage, the final 

instruction set extensions are selected. The only constraint 

for this selection is the total number of instructions that 

directly affects the storage size required for the 

configuration bits of the RFU. This constraint can be 

again defined externally to fine-tune the architecture 

during design time. Therefore, the only metric for the 

selection of an instruction is the offered speed-up. 

Firstly, the static speed-up of each instruction is 

calculated by considering the software (processor) versus 

the hardware (RFU) execution cycles of the instruction. 

The static speed-ups are multiplied by the execution 

frequency of the basic block and the dynamic speed-ups 

are calculated. Finally, pair-wise graph isomorphism is 

performed. The instructions are ranked based on their 

dynamic speed-ups and the best are selected. The output 

of this stage is the reconfigurable instruction set 

extensions in addition to statistics (speed-up, number of 

instructions etc.).  

Back-End: The back-end of the framework flow is the 

only stage that has not yet been fully implemented. 

However, since reconfigurable instructions do not require 

any special manipulation for the communication and 

synchronization between processor and RFU, the back-

end is much like any traditional processor back-end. 

5. Experimental Results 

For the experiments we have consider a set of 

benchmarks derived from various suites and application 

fields. The complexity of the benchmarks varies from 

simple kernels (bitcount, fir, dct, quant, vlc) to 

implementation of algorithms in full applications 

(dijkstra-reed solomon encoder). Also a complex 

application (mpeg4 shape encoder) that uses several 

kernels is present. In the coming up experimental results, 

the possibilities of using the framework for fine-tune 

critical architectural parameters and to program/evaluate a 

specific instance of the architecture are demonstrated. 

A parameter that can be used to drive the instruction 

generation stage is the number of operations in the 

patterns. This number is actually equal to the maximum 

numbers of PEs in the RFU. By appropriate selecting this 

number, the designer can accomplish the perfect balance 

between the required performance and area utilization. 

Figure 2 indicates that while an average speedup of x3 is 

possible with the maximum number of PEs (that is 13 

PEs), the 97% of this speedup is feasible with only 8 PEs 

resulting to area reduction. 

Another parameter that can be defined in the 

instruction generation stage is the number of maximum 

number of inputs for each pattern. This number is equal to 

the available read-ports of the register file. Even though 

our intention not to alter the instruction format and size of 

the base RISC processor have restricted us not to exceed 

the four inputs, Figure 3 gives an estimate of the 

unutilized performance. Thus, while unconstraint 

instruction generation can produce an average speedup of 

x3.2, the four inputs restriction utilizes the 94% and 91% 

of this speedup with no and eight PEs constraint in the 

number of PEs, respectively. Again the 8 PEs-4 Input 

instance seems like a very good trade-off between 

performance and area utilization. 

Figure 4 shows the speedup of each application 

regarding the maximum number of available 

reconfigurable instructions. It must be pointed out that we 

assume all available instructions fit in the local 

configuration memory. This memory can provide on each 

cycle the appropriate configuration to the RFU without 

introducing any extra overhead. In general, the figure 

indicates that an average speedup of x2.9 over all 

considered benchmarks is possible. 

The execution of complex patterns of operations as 

reconfigurable instruction in the RFU results to reduction 

of the program code size and instruction fetches. Figure 5 

presents an average code size and instruction memory 

accesses reduction of 38% and 62%, respectively. Since a 

major source of energy consumption of embedded 

processors is the instruction memory accesses significant 

energy savings can be produced. 
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6. Conclusions 

We presented an automated development framework 

for a RISP that can be used both for fine-tune an instance 

of the RISP at design time but also to program it after 

fabrication. The framework accomplishes to hide all 

reconfigurable hardware related issues from the user. 

Thus, the target RISP architecture can be used by any 

software-oriented user with no knowledge of hardware 

design. Finally, the same framework can be used to 

explore different parameters of the architecture, derive the 

most suited for the targeted application, and support the 

new architecture instance without any modification. 
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