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Abstract 
DNA sequence comparison is a computationally 
intensive problem, known widely since the competition 
for human DNA decryption. Database search for DNA 
sequence comparison is of great value to computational 
biologists. Several algorithms have been developed and 
implemented to solve this problem efficiently, but from a 
user base point of view the BLAST algorithm is the most 
widely used one. In this paper we present a new 
architecture for the BLAST algorithm. The new 
architecture was fully designed, placed and routed. The 
post place-and-route cycle-accurate simulation, 
accounting for the I/O, shows a better performance than 
a cluster of workstations running highly optimized code 
over identical datasets. The new architecture and 
detailed performance results are presented in this paper. 

1. Introduction 

When performing DNA Sequence Comparison, 
biologists are not interested in the exact match of the 
sequences but they are interested in the degree of 
similarity between them. For that reason all the 
algorithms that have been developed are based on 
similarity scoring. First efforts during the early 70s 
focused on finding the optimal matching between two 
DNA sequences [1]. Dynamic programming methods 
were selected due to the nature of the problem, which 
results in huge datasets. Needlamn and Wunsch [8] 
developed their algorithm which uses a dynamic 
programming approach in order to obtain an optimal 
global alignment of two sequences. Biologists know that 
when there is a need for a comparison between two long 
DNA sequences, global similarity will be very poor even 
though there are sub sequences with strong, meaningful 
similarities. Therefore, local alignment is more 
appropriate to locate these sections and global alignment 
misleads. Several dynamic programming algorithms for 
local alignment have been developed, such as Smith 

Waterman[7], FASTA[6] and BLAST[5]. The Smith 
Waterman algorithm provides optimal solutions and is 
able to recognize distantly related sequences and its 
complexity is O(mn), where m is the database size is and 
n is the query size. However, FASTA originally, and  
subsequently BLAST, which was developed as an 
improvement of FASTA, both use heuristic methods to 
provide near optimal solution based on their ability to 
discard sequences that are not related to the query 
sequence. It may be public wisdom, but there is no 
mathematical proof that BLAST is faster than FASTA 
but it’s a fact that BLAST based programs are the most 
widely used sequence comparison codes in the area of 
computational biology. The success of BLAST is owed 
to it being open source software, with NCBI support and 
continuous development. For that reason, the 
acceleration of BLAST through custom hardware 
architectures seems an appropriate first step in the 
speedup of DNA sequence comparison, and this is the 
purpose of this work. Historically, DNA string matching 
is one of the first applications of reconfigurable 
computing [2, 3]. 

1.1 The BLAST Algorithm 

BLAST is the acronym for Basic Local Alignment 
Search Tool and was first presented in [5]. A family of 
implementations has been developed, depending on the 
nature of data to be processed (nucleotides have a 4 letter 
alphabet, amino acids have a 20 letter alphabet, and there 
may be cases of both in a search.). BLAST is used for 
searching large genetic databases to find areas of high 
similarity (matches) between the data base and an input 
query. For example, it compares a nucleotide query 
against a nucleotide sequence database. Depending on 
query and database data each BLAST implementation is 
named BLASTp when the query is an amino acid and the 
database is a protein, BLASTn when both the query and 
the database are nucleotides, BLASTx when the query is 
nucleotide translated and the database is protein, 
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tBLASTn when the query is an amino acid and the 
database is a nucleotide translated, and finally tBLASTx 
when the query and the database are nucleotides 
translated. The inputs of the algorithm are the genetic 
sequence database (or a part of it such as the human 
genome) and a query which tries to find areas of 
similarity in the database. Outputs of the algorithm are 
the positions of the areas of these two strings that have 
similarity, as well the score of these similarities. Each of 
these pairs, comprising of a database area and a query 
area, is called a High Score Pair (HSP). The score has 
significant value for biologists because it is used to 
compute several variables, the most important of which 
is the e-value. 

The algorithm consists of three steps. In the first step
the query is compiled to form a list of length w 
substrings. These substrings are called W-mers and are 
all the contiguous substrings of length w of the query 
sequence. Let ATGAACCTGAATACTGGGTTACCT 
be the query DNA sequence of length 24 and let w, the 
length of W-mers, be equal to 8. The word list will 
contain 17 W-mers.  

ATGAACCT will be the first 
TGAACCTG will be the second 
GAACCTGA will be the third etc. and 

GGTTACCT will be the last one. 
The Second step is the search of the database for 

“hits”. After the word list generation, the database 
sequences are searched for an exact match between any 
substring of the W-mers list and the database sequence. 
Every word of the word list found in the database is 
called hit and it is possible to be part of a High Score 
Pair (HSP).  

The list of the generated “hits” is processed in the 
third step. Each substring which generated a match in the 
second step is extended locally in both directions as long 
as the score of this substring no longer gets improved 
following the scoring rules.  

The scoring scheme of the algorithm is based on the 
PAM (Point Accepted Mutations) matrices which 
examine which amino-acid “substitutions” (i.e. 
mismatches) are evolutionary accepted. However, in this 
project we deal with the implementation of the algorithm 
in which both the query and the database consist only of 
nucleotide sequences and we use a simpler scheme 
where each match is scored with 5 and any mismatch is 
scored with -4 (almost all standard literature uses this 
scheme). With this scheme we may have answers 
slightly different than the use of the PAM matrices but 
biologically it does not matter. 

Figure 1 BLAST Algorithm Step 1 

Figure 2 BLAST Algorithm Step 2 



Figure 3 BLAST Algorithm Step 3 

2. Sequence Comparison in Large 

Sequence Databanks: Implementations 

to Date  

The genome of many organisms has been sequenced 
to date but the process is due to be done for many others. 
Large scale sequencing follows computer technology 
progress. One of the results of this procedure is the 
creation of large centralized databanks that store large 
quantities of genomic data. These databanks are 
categorized according to their contents (DNA or 
proteins).  Major databanks are NCBI [18] which 
maintains GenBank that stores all DNA sequences that 
are made in public; EMBL [9] which is a large DNA 
archive in Europe. Important DNA archives are kept in 
DDBJ [10], and GSDB [11]. Regarding protein archives, 
PIR [12] in the USA and Swiss-Prot[13] in Europe  are 
the most important databases.  

Biologists consider BLAST based tools as one of the 
most important in computational molecular biology. For 
that reason several implementations and improvements 
of the original algorithm have been implemented and 
applied to all these huge datasets. NCBI is considered as 
the institute where BLAST development started and is 
mostly done to date. It maintains and updates GenBank 
with sequences of more than 100 billion bases 
(characters). The BLAST software that was produced at 

NCBI has been used as benchmark for computing 
systems such as IBM 375 MHz POWER3-II 
multiprocessor (SMP) and the 1.1 GHz POWER4 
pSeries 690 Model 681, which according to published 
results [19] is the fastest system for BLAST.

2.1 Hardware Efforts for Sequence Comparison 

Sequence comparison in Large Sequence databanks 
was one of the first applications for FPGAs.  D. Hoang 
et. al. [2], [3] implemented the Needleman-Wunsch and 
dynamic programming algorithms using systolic array 
implementation on SPLASH 2 in order to achieve orders 
of magnitude higher performance than the conventional 
computers of that time. Using JBits S. Guccione et. al.
[4] implement the  Smith Waterman matching algorithm. 
The same algorithm was implemented at Virginia Tech 
[17] and the most recent implementation was at Nanyang 
Techological University [14]. Mapping dynamic 
programming algorithms on FPGAs seems to be suitable 
for the capabilities of FPGAs especially when systolic 
array architectures are used. On the other hand, mapping 
the BLAST algorithm on reconfigurable logic is not as 
suitable and only in [15] an implementation can be 
found. In this architecture Muriki et al. measured the 
time allocation for BLAST execution in software and 
according to their measurements replaced the code 



segment that consumes almost 80% of execution time 
with a system call to their specific hardware. 

Several impressive but not detailed results of 
DeCypher have been announced [23].  Unfortunately, 
lack of information about the architecture itself (number 
of chips, I/O, architecture type, etc.) as well as how the 
performance is calculated (types of queries, size of 
database, version of BLAST, etc.) do not allow for 
comparisons with our present work. 

3. The TUC Architecture 

The Technical University of Crete (TUC) 
architecture, described in this paper, was designed for 
BLASTn small query implementation (1000 letters) 
regardless of the data base size. Query sequences can be 
divided to three cases: small sequence which is between 
100 to 2000 characters, medium which is between 2000 
and 50000 characters, and large which  is between 50000 
and 200000 characters. Data base size can also be 
divided at three cases; small, medium, and large. Small 
consists of 4.7 × 106 characters, medium is between 5 × 
106 and 200 ×106, and large is between 200 × 106 and 4 
× 109 characters. NCBI codes consist of several hundreds 
of files calculating the BLAST algorithm and exporting 
several numbers which have biological meaning. All 
these numbers are calculated based on the score of HSP. 
These calculations produce substantial computing load 

but the most significant part of the computation power is 
consumed to find every HSP and extend it, calculating 
its score. Previous efforts for hardware implementation 
of BLAST using profiling show that almost 80% of CPU 
time is spent on these calculations [15].

The TUC architecture is divided into N identical 
computing machines, each one of which implements all 
three steps of the algorithm. Input data have a width of 
2N bits, and come from N different channels. Every 
channel drives one of the N computing engines. Every 
machine has two major subsystems, one for step 2 of the 
algorithm and one for step 3. The first step of the 
algorithm (the W-mer calculation) is precalculated 
before algorithm is run. The precalculation results are 
the first inputs for the machine and they are stored in the 
memory, together with their position in the query. After 
this procedure the data stream of the database starts to be 
processed and if a match is found the second component 
of the architecture is activated and starts to extend the 
match, thus implementing the third step of the algorithm. 
The general design of the architecture is shown in Figure 
4. 

To illustrate in more detail, before each machine 
starts the database search, its setup mode asks for the 
precomputation of W-mers, with their position in the 
query and their loading to the corresponding memories. 
This procedure takes about  

Figure 4 BLAST Machine 



1000 cycles for 1000-character long queries.The input of 
the system in normal mode (database search) is the 
database stream, one character for each machine. Only 
the 10 MSBs of W-mers are stored in memory and at the 
address which corresponds to their 12 LSBs. The stored 
bits are called W-mer tags. The width of the memory is  
23 bits, 10 for the W-mer tag, 1 for valid, and the 
remaining 12 to show the position of the corresponding 
W-mer in the input query.  

The Hit Finder Unit except for the W-mer memory 
that was previously described has an input buffer which 
is 2 bits wide (1 character) and one thousand positions 
deep, called Future memory. The data stream from the 
input channel passes through this buffer. As long as there 
is no hit the buffer operates as a FIFO, getting 2 new bits 
from the stream in every cycle and driving one shift 
register (22 bits long) that shifts 2 bits (one letter) per 
cycle. That shift register has one eleven letter long 
substring, which is compared with all the W-mers. The 
12 LSB of the shift register address the W-mer memory 
in order to read the W-mer tag. The W-mer tag is 
compared with the remaining 10 MSBs of the shift 
register. When a hit is found the Future memory 
continues to push its data to the shift register and starts 
to send them at the extension unit as well for the 3rd step 

of the algorithm. A new comparison is made during 
every cycle in which the shift register has new data. 
Conditions for a hit are to have two equal strings in the 
shift register and the W-mer memory, and the memory 
content to be valid. Figure 5 shows the Hit Finder Unit 
architecture. If a second hit comes when the previous is 
still extended the whole system goes to a stall mode. The 
system stops trying to find new hits and signals external 
devices to stop sending new data. In this case the 
extension unit operates in the normal mode. The Hit 
Finder unit stops normal operation but continues to pass 
the data stream to the extension unit. 

The Extension Unit executes two comparisons in 
every cycle, according to the algorithm. It extents both 
sides and compares the two pairs of letters. The first pair 
comes from the query memory and the history memory 
and the remaining couple comes from the Query memory 
and the Future memory. The data from the input are 
buffered in the History and Future memories, as it can be 
seen in Figure 6. There are also counters and registers 
that keep several useful data, such as hit position for 
query and database, its length, and the score (which is 
the most important result to be calculated). Based on the 
score all the remaining useful data for biologists (e.g. e-
value) can be calculated.   

Figure 5 Hit Finder Unit Architecture        Figure 6 Step 3 Architecture
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Number of 

parallel 

Machines 

Number of 

FIFO16/RAMB16s

(Total 552)           

Number of 4 

input LUTs 

(Total 

126,336) 

1 8 1% 744 >1% 

60 480 86% 46,522 36% 

69 552 100% 53,836 42% 

Table 1 Area Demands of TUC Architecture 

4. TUC Implementation 

The TUC Architecture has been coded in VHDL and 
exhaustively post place-and-route simulated for the 
VIRTEX 4 family using the 4VFX140FF1517-11 
device. The first experiment was the measurement of a 
single machine (N=1) which run at 121.20 MHz and 
consumed less than 1% of logic recources and 8 
BRAMs. More specifically every single machine needs 8 
Blocks of BRAM, 5 of which are given to the memory of 
W-mer, 1 is used for query, 1 for History Memory and 1 
for Future Memory. On the other hand it consumed 744 
out of 126,336 LUTs. That shows that the critical 
resource for implementing many parallel machines is the 
BRAMs and this restricts parallelization to 69 for the 
specific device (it has 552 BRAMs divided by 8 BRAMs 
for each machine). The next implementation was for 60 
parallel computing machines (N=60) where exactly 480 
BRAMs (or 86%) where used but only 36% of the 
available LUTs were used. In the last experiment the 
critical resource BRAMs were exhausted - 552 are used 
to create 69 parallel computing machines running at 
100.36 MHz. As in the previous experiments the 
percentage of LUT usage was low, only 42%. 

In the above experiments it was assumed that there 
will be an input data stream of up to 69 characters, 2 bits 
each in parallel at a speed of 100.39 MHz. For that data 
stream a 138 bit wide bus is needed, with a speed of 
13.86 Gbps. The device that was selected for the 
experiments supports up to 20 ROCKET I/O serial 
transceivers with 3.125 Gbps each [16].  That gives an 
upper bound of 62.50 Gbps aggregate bandwidth, and 
with a realistic and measurable 2.5 Gbps per link we 

have a total bandwidth for the system of 50Mbps, i.e. an 
upper bound of 248 parallel computing machines. This 
amount exceeds any expected number, so the 
architecture is not input-starved. Output is not a problem 
and can be accomplished at normal speeds through other 
pins.  

5. TUC performance – Results 

The TUC architecture performance is calculated 
according to post place and route timing information of 
Xilinx software 7.1.03 which includes Device speed data 
version:  "ADVANCED 1.54 2005-05-25" for the certain 
device. Table 2 has speed measurements for the three 
experiments. 

Actual runs of NCBI software blast-2.2.12 were 
performed on a 2GHz Xeon with 2GB main memory and 
the CPU usage was profiled running SUSE 9.1 Linux.
For a small query (987 letters) in a large NCBI data base 
(igSeqNt.ftptemp) with 44,419,359 total letters the 2GHz 
Xeon measured at 1.380 sec CPU time  which is an 
actual throughput of 32.19 10

6 characters/sec. The CPU 
time as a fraction of the total time indicates that the 
database was all stored in memory and the application 
was not thrashing.  

Muriki et. al. [15] is the only group that did actual 
runs of BLAST algorithm in FPGAs to date but their 
results proved worse than software implementations due 
to I/O problems, PCI bottleneck and the old technology 
(XC 4085) which they used (the performance was five 
times slower than the purely software version). For that 
reason their results are not used in this comparison. 

Number of parallel 

Machines 

Speed 

(MHz) 

Width of 

Data 

Stream 

(characters) 

Actual 

Throughput 

(characters/sec) 

1 121 1 121.20 106

60 103 60 6,192.58 106

69 100 69 6,924.84 106

Table 2 Speed and throughput of TUC Architecture 



Number 

of 

Processors 

Type of 

Processors

Time 

(sec) 

Database 

Size  

(characters) 

Actual System 

Throughput 

(characters/sec)

Actual 

Throughput 

per Chip 

(characters/sec)

POWER3 43.63 4 109 91.68 106 91.68 106

1
Model 681 1.1 21.32 4 109 187.62 106 187.62 106

POWER3 24.09 4 109 166.04 106 83.02 106

2
Model 681 1.1 11.39 4 109 351.18 106 175.59 106

POWER3 14.23 4 109 281.10 106 70.27 106

4
Model 681 1.1 6.53 4 109 612.56 106 153.14 106

POWER3 9.25 4 109 432.43 106 54.05 106

8
Model 681 1.1 4.33 4 109 923,79 106 115.47 106

POWER3 7.56 4 109 529,10 106 33,07 106

16
Model 681 1.1 3.33 4 109 1201,20 106 75,07 106

Table 3 blastn Benchmarks with a Small Single Query and Large Database 

System Actual Throughput 

(10
6
 characters/sec)

2GHz Xeon 32.19 

TUC Architecture N=1 121.20 

TUC Architecture N=60 6,192,58 

TUC Architecture N=69 6,924.84 

IBM single chip 187.62 

IBM System 1,201.20 

Table 4 Systems Throughput 

 SpeedUp of  

TUC 

Architecture 

N=1 

SpeedUp of  

TUC Architecture 

N=60 

SpeedUp of  

TUC Architecture 

N=69 

2GHz Xeon 3.76 192.37 215.12 

IBM single chip 0.65 33.00 36.90 

IBM System (16 chips) 0.10 5.15 5.76 

Table 5 TUC Architecture SpeedUp

From Table 3 it can be shown that the fastest system 
throughput is achieved with the 16 processors Model 681 
1.1 system, which has a throughput of 1,201.20 106

characters/sec. However, the fastest single chip system is 
IBM Model 681 1.1 with 187.62 106 characters/sec. 

Table 4 has the actual throughput for systems 
implementing BLAST algorithm and in Table 5 the 
Speedup of TUC architecture against the other systems.  

6. Conclusions and Future Work 

Significant improvements on this architecture and its 
implementation can be achieved. More specifically this 
implementation contains several memories which have 
been all implemented using BRAMs. The number of 
BRAMs in the specific device is 552. As 8 BRAMs are 
used for each machine, this gives a parallelisation of 69 

machines. Improving the W-mer addressing with a hash 
function implementation can save up to 3 or 4 BRAMs 
for each machine. Balancing between using of BRAMs 
and distributed memory can save 2 more BRAMs for 
each machine because half of logic cell are not used. 
That will give a new design which uses 2 or 3 BRAMs 
for each machine and it will increase parallelisation to 
180 computing machines. The use of Power PC cores 
that are embedded to VIRTEX 4 must be examined as 
alternative solution to extension unit. Finally it would be 
very interesting to study architectures for bigger queries.
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