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Abstract

Parallel programming is facilitated by constructs which, unlike
the widely used SPMD paradigm, provide programmers with a
global view of the code and data structures. These constructs could
be compiler directives containing information about data and task
distribution, language extensions specifically designed for paral-
lel computation, or classes that encapsulate parallelism. In this
paper, we describe a class developed at Illinois and its MATLAB
implementation. This class can be used to conveniently express
both parallelism and locality. A C++ implementation is now un-
derway. Its characteristics will be reported in a future paper. We
have implemented most of the NAS benchmarks using our HTA
MATLAB extensions and found during that HTAs enable the fast
prototyping of parallel algorithms and produce programs that are
easy to understand and maintain.

1 Introduction

This paper describes a class of objects, hierarchically tiled ar-
rays (HTAs) [4], which can be used to represent both tiled par-
allel computations and sequential computations tiled for locality
enhancement. Hierarchically tiled arrays are a natural extension
of the array type of Fortran 90 and MATLABTM and, as a result,
can be used to write very readable parallel code in these languages.

The HTA class is the result of our efforts to develop a parallel
implementation of MATLABTM. Although there have been many
MATLABTM extension proposals [6, 13, 20], none, seemed to us,
enabled a natural representation of parallel algorithms. We de-
cided to use an extension of a MATLABTM object called cell array,
to represent both sequential and parallel tiled computations. This
led to the design of hierarchically tiled arrays. However, although
HTAs were inspired by a MATLAB construct and its first imple-
mentation was in MATLAB, HTAs can be implemented in any OO
language. In fact, a C++ implementation is now underway.

In simple terms, hierarchically tiled arrays (HTAs) are arrays
whose elements are tiles. Tiles contain either conventional arrays
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or lower level hierarchically tiled arrays. The main motivation be-
hind the design of HTAs is that, for many algorithms and program
implementations, tiles have proven convenient to attain locality in
sequential computations [21] and represent data distribution and
communication in parallel algorithms [2, 8, 10, 18]. To repre-
sent parallel computations, the highest level tiles of a HTA are
distributed across the processors of a parallel machine. Communi-
cation can then be represented as assignments between distributed
HTAs and parallel computation as operations on the distributed
tiles.

HTAs are intended for explicit parallel programming and, as
a result, HTA programs are more complex than implicitly parallel
codes implemented in languages such as HPF. This is the price that
must be paid for an environment that does not require sophisticated
compiler algorithms and give the programmer direct control over
parallelism and communications. On the other hand, codes based
on HTAs are higher level than MPI codes and, as will be seen in
the examples presented in this paper, the representation of parallel
operations as array assignments and expressions imposes an struc-
ture on parallel programs similar to that imposed on conventional
codes where goto loops are replaced with structured constructs
like for and while loops. Thus, HTAs force structured parallel
programs which are better in terms of productivity than the more
unstructured, or assembly-like, forms that can arise when using
message passing libraries like MPI.

HTAs can be implemented by extending the language, which
would require modifying the compiler, or by implementing a new
class in an object-oriented language. For the work reported in this
paper we followed the later approach and used the OO capabilities
of MATLABTM to implement HTAs. Thanks to operator overload-

ing, the syntax of HTA operations in MATLABTM is as compact
and readable as the syntax of conventional array operations.

Similar to other programming systems, like pC++ [5], that en-
capsulate parallelism in method invocations, HTA operations are
invoked from a single control thread, which in our current im-
plementation is a conventional MATLABTM program. Conceptu-
ally, we could think of the control thread as executing on a (se-
rial) workstation that takes care of all non-HTA operation includ-
ing user interaction. The HTAs can be assumed to be stored in
a parallel co-processor that execute operations on these objects.
If we view programs this way, we avoid the potential problems
of SPMD programming, where explicit communications could be
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mixed with computations in an unstructured manner which in the
worst case might lead to, difficult to understand, four-dimensional
spaghetti code.

Although it is easy to reason about HTA programs in terms
of the workstation/co-processor model, such implementation is in-
efficient. The overhead of broadcasting computation requests and
data from the workstation to the processors in the server would hin-
der performance. For that reason, our implementation follows the
SPMD model. The translation from the workstation/co-processor
model to the SPMD model is trivially attained by (1) replicating
the control thread and all non-HTA data on each processor of the
parallel machine and (2) implementing HTA operations or meth-
ods in work-sharing fashion so that each processor carries out a
part of the computation. Thus the system can take advantage of all
the performance benefits of SPMD without any of its productivity
drawbacks.

The rest of this paper is organized as follows. In Section 2, the
HTA data type, including its structure and operations, is discussed.
Then, Section 3 presents the main ideas behind our SPMD imple-
mentation. Section 4 presents our HTA programming approach
using the NAS benchmarks and Section 5 compares HTAs with
other parallel programming paradigms. Finally, Section 6 presents
our conclusions.

2 The HTA Programming Paradigm

In this section, we first describe the syntax and semantics of
the Hierarchically Tiled Array (HTA) [4] (Section 2.1) and then
outline the main characteristics of our approach (Section 2.2).

2.1 Syntax and Semantics

We define a tiled array as an array partitioned into tiles in such
a way that adjacent tiles have the same size along the dimension
of adjacency. A hierarchically tiled array (HTA) is a tiled array
where each tile is either an unpartitioned array or an HTA. The
tiles can be distributed across processors in a distributed-memory
machine. HTAs can be used to facilitate the expression of both
locality and parallelism. We distribute the outermost tiles across
processors for parallelism and utilize the inner tiles to implement
computations that exhibit high locality. Figure 1-(a) shows an ex-
ample of an HTA with two levels of tiling.

HTA operators in our MATLABTM implementation overloads
the standard operators of the language so that HTA storage and
computations can be distributed across the processors of a parallel
system.

2.1.1 Construction of HTAs

An HTA can be created as an empty set of tiles, which we call
empty HTA. Alternatively, an HTA can be the result of tiling an
existing array. Also, HTAs may be local or distributed.

In order to create an empty HTA, the HTA constructor is called
with the number of desired tiles per dimension. For example,

Distributed

Local

Local

Recursive Tiling

C{2,1}(1,4)
C(5,4)

,C{2,1}{1,2}(1,2) or 
, or 

HTA C

C{2,1}
(b)(a)

Figure 1: Pictorial view of a hierarchically tiled array.

hta(3, 3) generates an HTA with 3 × 3 empty tiles. To com-
plete the HTA, each tile must be assigned a content after the empty
shell is created. Alternatively, an HTA can be built by partitioning
an array with a series of delimiters in each dimension. For exam-
ple, if M is a 6 × 6 matrix, the function hta(M, {[1 3 5],[1

3 5]}) creates a 3× 3 HTA resulting from partitioning M in tiles
of 2 × 2 elements each. The second parameter of this function is
an array of vectors that specifies the starting location of the tiles.
The i-th vector contains the partition vector for the i-th dimen-
sion of the source array. The elements of this partition vector mark
the beginning of each sub-tile along the corresponding dimension.
In our example rows 1 , 3 and 5, and columns 1, 3 and 5 are the
partitions points as shown in Figure 2-(a).

To distribute the tiles across a processor, the constructor must
receive as argument a vector defining the dimensions of the mesh.
This way, hta(3, 3, [2, 2]) generates an empty 3×3 HTA
distributed on a 2× 2 processor mesh. Figure 2 shows an example
where a 6 × 6 matrix is distributed on a 2 × 2 mesh of proces-
sors, as the last parameter of the HTA constructor indicates. In our
current implementation, the default distribution is a block cyclic
distribution of the matrix contained in the HTA, with the blocks
defined by the topmost tiling. Other distributions can be speci-
fied by adding as one of the parameters to the HTA constructor
the name of the function that specifies the mapping. For exam-
ple, hta(3, 3, [2, 2], @func)1, will apply the mapping
specified by the function func to the HTA to be distributed on a
2 × 2 mesh of processors.

Finally, although not shown here because of space limitations,
HTAs can be built with several levels of tiling, like those shown in
Figure 1-(a).

2.1.2 Accessing the Contents

References to HTAs allow access to both tiles and scalar ele-
ments. Curly brackets are used when we index tiles, while paren-
thesis denote the access to scalar elements within the HTA or its
tiles.

Figure 1-(b) shows some examples. The expression C{2,1}

refers to the lower left tile. Also, the element in the fifth row and
fourth column can be referenced using C(5,4), just as if C were

1In MATLABTM the character @ before a function name creates a
pointer to that function.
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Figure 2: Construction of an HTA by partitioning an array-(a). Map-
ping of tiles to processors-(b)

an unpartitioned array. This element can also be accessed by se-
lecting the bottom-level tile that contains it and its relative position
within this tile: C{2,1}{1,2}(1,2). A third expression repre-
senting C(5,4) selects the top-level tile C{2,1} that contains the
element and then flattens or disregards its internal tiled structure:
C{2,1}(1,4).

2.1.3 Binary Operations and Assignments

We generalize the notion of conformability of Fortran 90 for
use on HTA operations. When two HTAs are used in an expres-
sion, they must be conformable. That is, they must have the same
topology (number of levels and shape of each level), and the corre-
sponding tiles in the topology must have sizes that allow to operate
them. In fact, the operation actually takes place tile by tile, and the
output HTA has the same topology as the operands.

An HTA can also be conformable to an array and it is always
conformable to a scalar. In the first case, the array is operated with
each one of the lowest-level tiles of the HTA, provided that the
tiles and the array are conformable in the Fortran 90 sense. That
is, they have the same shape. When the other operand is a scalar,
it is operated with each scalar component of the HTA. Again, the
output HTA has the same topology as the input HTA.

The rules for assignments to HTAs are similar to those regu-
lating binary operations. When a scalar is assigned to a range of
positions within an HTA, the scalar is replicated in all of them.
When an array is assigned to a range of tiles of an HTA, the array
is replicated to create tiles. Finally, an HTA can be assigned to
another HTA (or a range of tiles of it).

2.2 A Paradigm with a Global Unified View

The HTA programming model corresponds to that of a global
view language where the programmer specifies the overall behav-
ior of the algorithm rather than focusing on the behavior on a per
processor basis. Data are also global and are handled in a uni-
fied way. The HTA programming model provides a deterministic
semantics: each statement is completed before the next one be-
gins its execution; and the right hand side of assignments is eval-
uated before assignment takes place. As a result, programmers
need not specify synchronization or be concerned with deadlocks
or race conditions. Thus, HTA syntax and semantics are simpler
and cleaner than those of SPMD approaches. The downside is that

asynchronous overlap cannot be explicitly stated using the current
HTA operations, but much of this overlap can be achieved auto-
matically with the appropriate implementation (see last paragraph
of Section 3).

HTAs improve programmers’ productivity, since they can use
familiar programming languages and sequential modules, perhaps
with small changes. So, programmers can write parallel programs
the same way they write sequential programs and they can gradu-
ally migrate sequential applications to parallel forms.

HTA syntax makes communication explicit, since computa-
tions involving tiles located in different processors will result in
tiles movement. This provides a simple, but powerful performance
model. This is something missing from HPF [12, 15] and other
similar global view parallel programming approaches.

3 Implementation

HTAs can be added to any object-based or object-oriented lan-
guage. We chose the MATLABTM environment as the host for our
first implementation because it is a linear algebra language with
a large base of users who write scientific code. Also, MATLAB
is an object oriented language designed to be extensible. Third
party developers can provide so-called toolboxes of functions for
specialized purposes.

We wrote a toolbox that contains the HTA class with its meth-
ods, such as hta (the constructor of the class), circshift, and
other methods that overload standard MATLABTM operators and
functions. Methods that do not involve communication were writ-
ten in MATLABTM to simplify code development. Small meth-
ods used very frequently were written in C for performance rea-
sons. The communication between the processors is implemented
using MPI [11]. Our framework requires that all the processors
participating in the system have a copy of MATLABTM and the
HTA toolbox. Since MATLABTMis interpreted, our library-based
implementation suffers from the overheads that a compiler could
easily remove [3, 19].

Our approach presents programmers a global view of the code.
However, to implement our toolbox, the resulting code follows the
SPMD execution model for efficiency. In our implementation, all
processors execute the same program. Scalar variables, arrays and
non-distributed HTAs are replicated in each processor. Distributed
HTAs are also created in every processor, even in those that do not
own tiles of the HTA. In this latter case, processors will only keep
information about the structure of the HTA. When a unary opera-
tion on a distributed HTA is executed, each processor acts on the
tiles of the HTA it owns. In the case of binary operations, the tiles
of the right operand not co-located with the tiles of the left operand
are copied (using MPI primitives). Then, the processors that own
the tiles of the left operand perform the desired operation and store
the resulting tiles. In this way, the HTA resulting from a binary op-
eration has always the same mapping as that of the left operand.
Of course, when the HTAs to operate are mapped in the same way,
there is no communication. Similar communication occurs when
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the right hand side (RHS) of an assignment is not mapped in the
same way as the left hand side (LHS). Every tile of the RHS HTA
of the assignment is copied to the processor that owns the corre-
sponding tile of the LHS HTA to which it is assigned. With these
simple rules, the programmers can know at all times where and
how communication takes place.

Our implementation also allows concurrent execution of state-
ments without affecting the sequential deterministic semantics of
our approach. When a processor does not own any of the tiles in
the LHS or RHS of the computation, the statement in this proces-
sor is equivalent to no-op. Those processors can proceed to the
next statement without waiting for the other processors to finish.
Thus, the overlapping of different statements is possible.

4 NAS Benchmarks

The NAS benchmarks are a set of programs that were designed
to evaluate the performance of parallel supercomputers [1]. We
have implemented six of the NAS benchmarks (EP, MG, CG, FT,
BT, and LU) using HTAs. For each benchmark we wrote a se-
rial version using plain MATLABTMand a parallel version using
MATLABTM+ HTAs. In each case our implementation follows
the same strategy as the public-domain MPI implementation of
the NAS benchmarks [1]. Section 4.1 to Section 4.6 discuss the
main characteristics of HTA implementation for each benchmark.
In Section 4.7, we will compare our approach with MPI program-
ming style.

4.1 EP

EP is an Embarrassingly Parallel benchmark. It can be used to
determine the peak parallel performance of a machine. EP gen-
erates pairs of Gaussian random deviates according to the scheme
described in [14]. EP is fully parallel, except at the end of the ap-
plication, where a sum reduction across processors is performed.
EP can be written using HTAs with a special method feval as
shown in Figure 3.

feval applies a function, which may be user-defined, to each
tile of one or several input HTA(s). A call to this method has the
form feval(@func, arg1, arg2, ...), where @func

is a pointer to the function to execute, and arg1, arg2,. . . are
the arguments for its execution. At least one of these arguments
must be an HTA. In EP, the procedure to perform the necessary
computation (ep) is applied to each of the tiles of the input HTA.

reduceHTA is a generalized reduction method that operates
on HTA tiles. It has the form reduceHTA(@func, h, dim,

isAlltoAll) where @func is a pointer to the reduction func-
tion, h is the HTA target of the reduction, dim is the dimen-
sion of reduction with 0 representing reduction along all dimen-
sions, and the boolean isAlltoAll specifies whether it is an
all-to-all reduction. In Figure 3, suppose q is a 2 × 2 HTA,
reduceHTA(@sum, q, 2, false) returns a column HTA
of size 2 × 1 where the upper tile contains the sum of the values
in the upper tiles, and the lower tile contains the sum of the values

q = feval(@ep, in);
r = reduceHTA(@sum, q, 2, false );
sx = reduceHTA(@sum, sx, 0, false );
sy = reduceHTA(@sum, sy, 0, false );

Figure 3: HTA implementation of EP

r5 r4 r3 r2

d=[1,1]

d=[1,1]

d=[2,2]

r1

d=[2,1]

(b)

(a)

uout =u{k}
end

u{1}   = psinv({r(1},u{1})
else

function [uout] = mgrid(r,u,k)

if (k>1) 

  u{k−1} = interp(u{k−1},u{k})

u{k}   = psinv(r{k},u{k})

r{k}   = resid(u{k},r{k})

  u{k−1} = mgrid(r,u,k−1)
  r{k−1} = project(r{k}, r{k−1})

Figure 4: MG Benchmark. (a) Pictorial view. (b) Code for MG.

of the lower ones. The resulting column HTA maps to processors
containing the tiles in the first column of HTA h.

4.2 MG

MG solves the 3D Poisson’s equation, ∇2u = v, using
the finite-difference method. The system of equations result-
ing from the finite-difference method is solved using the multi-
grid V-cycle algorithm. The major steps in the algorithm are the
two inter-grid operations projection and interpolation.
Projection projects the residual value from a grid to a coarser
grid. Interpolation interpolates the error solution from a grid
back to a finer grid. The various levels of grids are represented
using an array of HTAs, where each HTA hk has half as many ele-
ments as HTA hk+1. The core computation in MG is the stencil
computation.

A pictorial view of the projection function is shown in Fig-
ure 4-(a) for a 2D grid. Each highlighted grid point in HTA r4 in
Figure 4-(a) is computed as the weighted average of the corre-
sponding highlighted grid point and all its neighbors in HTA r5,
as shown in the zoomed HTA, where the shadow regions to allo-
cate the data from the neighbors HTA are also shown. Figure 4-(b)
shows the code for MG implemented as a recursive function. For
each grid at level k, the projection function is called until it
reaches the grid at level 1. At this point the recursion ends and
the interpolation, resid and psinv functions are called
on increasingly finer grids.

4.3 CG

CG uses inverse power method to find an estimate of the largest
eigenvalue of a symmetric positive definite sparse matrix with a
random pattern of zeros. The core of CG consists of a 2-D sparse
matrix-vector multiplication, three saxpy operations and two vec-
tor additions. For lack of space, we only describe here the matrix-
vector multiplication shown in Figure 5
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A = hta(MX,{partition_A}, [M N]);
B = repmat(hta(x,{partition_B},[1 N]),[M 1]);
C = A * B;
y = reduceHTA(@sum, C, 2, true);

Figure 5: HTA code for sparse matrix-vector multiplication

The implementation of this benchmark is greatly simplified by
MATLABTM’s support for sparse computations. The objective of
the code in Figure 5 is to multiply sparse matrix MX by a vector x.
The matrix MX is tiled along both dimensions and distributed on a
M × N mesh of processors. The result is stored in A.Vector x is
replicated to create a copy on each row of processors and is parti-
tioned along each row of processors to conform to the horizontal
partitioning of A. The array consisting of the copies of x is called
B. To obtain the result of multiplying A by x, first B is multiplied
by A on a per-tile basis. This is followed by a all-to-all sum reduc-
tion of the result across the columns and vector y receives the final
result.

4.4 FT

FT solves partial differential equations (PDE) using forward
and inverse Fourier transform (FT). The parallel Fourier transform
for an n-dimensional array of size (N1×N2 ···×Nn), decomposes
the array into tiles of size (N1 × N2

d2

· · · ×Nn

dn

), where di ≥

1. FT along the first dimension (unpartitioned) is just a local FT
operation. To compute the FT along dimension i where di > 1,
the i− th dimension is transposed with the first dimension and the
local FT is applied along the first dimension.

Figure 6-(b) shows an outline of our implementation of this al-
gorithm for a 3-D array where only the third dimension of the HTA
u is distributed, as shown in Figure 6-(a). FT along the first and
second dimension of an HTA is computed using the overloaded
version of the standard MATLABTMfft operator which applies
the standard MATLABTM fft to each of the tiles of the HTA
along the dimension specified in the third parameter. To apply
the fft along the third dimension, we need to make this dimen-
sion local to a processor. For that, we transpose the HTA using the
HTA dpermute operator. The dpermute operation transposes
the data, but the shape of the containing HTA remains constant.

4.5 BT

BT solves the Navier-Stoke’s equation for 3-D grids using
Alternating-Direction Implicit (ADI) method. Finite-difference
approximation on a 3D grid leads to a 7-diagonal banded system.

u = fft( u, [],1);

(a)

u = fft (u, [],1);

(b)

u = fft (u, [],2);
u = dpermute( u,[3 1 2]);

Figure 6: FT Benchmark.(a) Pictorial View. (b) HTA code.
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Figure 7: BT Benchmark. (a) Flow of Computation. (b) Processor
Mapping.

To solve such a system, the implicit 3-D finite difference equation
is split into three separate equations. The results are tri-diagonal
systems which are solved using Gaussian elimination. This leads
to three sweeps in different directions - first across the x dimension
(xsweep), the second along the y dimension (ysweep) and the
third along the z dimension (zsweep). The flow of computation
in the HTA program for a 2D case is shown in Figure 7-(a), where
xsweep and ysweep are shown. In each case, tiles of the same
color can be operated at the same time. Thus, the key to achieve
parallelism in this benchmark is to have multiple tiles assigned to
a processor and a cyclic mapping of processors as shown in Fig-
ure 7-(b). Such a mapping ensures that during each sweep, all the
processors are working in parallel.

4.6 LU

LU solves the Navier-Stoke’s equation for 3-D rectangular
grids. LU uses Symmetric Successive Over Relaxation (SSOR)
algorithm to solve the problem, which at the end is resolved by
forming the sub-block and super-block diagonal matrices (carried
out by methods jacld and jacu) and solving the lower and up-
per triangular systems (carried out by methods blts and buts).
Methods jacld and jacu are completely data parallel, while
blts has dependences where the grid point (i, j, k) depends on
points (i − 1, j, k), (i, j − 1, k) and (i, j, k − 1). In buts the
grid point (i, j, k) depends on grid points (i+1, j, k), (i, j +1, k)

and (i, j, k + 1). The computation can be carried out in parallel
following a wavefront strategy [16].

A parallel wavefront computation appears when the value of an
element depends on the value or values of neighboring elements
computed in previous iterations. These codes can be efficiently
parallelized by computing in parallel the element of each “diago-
nal” of the matrix, where the angle of the diagonal is a function
of the dependences [16]. The processors compute local data be-
fore sending them to the processors containing the dependent data.
Similarly, wavefront computations can be parallelized in tiled fash-
ion. Figure 8-(a) shows a serial 2D wavefront computation. The
tiled, HTA version is shown in Figure 8-(c), where logical index-
ing is used to determine the tiles that can operate in each iteration
of the K loop. The expression I+J==K composes a boolean array.
Tiles with true value in the boolean array will be selected to do the
2D wavefront computation.

A pictorial view of how the computation advances across tiles
is shown in Figure 8-(b), where the values of the I and J matrices
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are also shown. In the Figure, a is a M × N HTA, distributed on
a M × 1 processor mesh, so that each row of tiles is mapped to
the same processor. The last two statements in Figure 8-(c) copy
the last row and column of the tiles of the K-th diagonal to the first
row and column of the corresponding tiles in the K+1-th diagonal.
This is done to initialize the shadow of these tiles which guarantee
that all the data needed for each computation is in the same tile.

Our implementation of the NAS LU benchmark is similar to
the code shown in the Figure 8 using logical indexing. The only
difference is that Figure 8 shows a 2-D wavefront, while the NAS
LU benchmark is a 3-D wavefront and, as a result, the execution
advances through a hyper-plane instead of a diagonal line. In LU
data are partitioned into M × N × K tiles, and distributed across
M × N processors, so that the third dimension is local to each
processor. The code in Figure 8 corresponds to blts, while the
code for buts would be similar but in the opposite direction.

4.7 Summary and Comparison with MPI codes

One of the goals of our work is to facilitate parallel program-
ming. Unfortunately, measuring productivity directly is not easy.
Instead, we have measured the number of lines of code of the HTA
and MPI programs and use this figure as an indirect measurement
of productivity. Clearly, the number of lines of code is not the
best metric of ease of programming, but in our case, it provides
a reasonable estimate of the relative complexity of the programs.
The plot in Figure 9 shows the lines of code for HTA and MPI
codes. Each bar shows the lines of code for the Computation,
Communication and Data Decomposition sections of the codes.
As Figure 9 shows, HTA programs require significantly fewer
lines of code. HTA programs have less computation lines than
the MPI programs due to the use of vector operations, overloaded
MATLABTMfunctions (CG and FT) and recursion (MG). Vector op-
erations were used in all the applications when possible. However,
we found that the MATLABTMJIT (Just In Time) compiler did
not work on loops that contained vectorized and non-vectorized
portions of code. As a result, some inner-loops that could have
been vectorized were left non-vectorized for performance reasons.
The lines of code for communication are significantly lower in
HTA programs. HTA programs only need assignment instructions
to perform communication, while in MPI programs, in addition
to the send and receive instructions, packing and unpacking data
and checking boundary conditions in the communication are also
needed. HTA programs also have significantly fewer data decom-
position instructions. HTA are partitioned and distributed using
the single HTA constructor, while MPI programs need to compute
a number of values including the limits of data owned by each pro-
cessor, neighbors of a given processor, active set of processors in
a given step of the program.
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Figure 9: Linecount of key sections of HTA and MPI programs.

5 Related Work

There has been significant research in parallel programming
languages and libraries as mechanisms to efficiently utilize the
computing power of distributed systems. Both programming lan-
guages and libraries can be classified by the view the programmer
has of the computation. This sections discusses related work in
two sections covering local and global views approaches.

5.1 Local View Approaches

In local view approaches, the programmer specifies the pro-
gram execution path for each processor. SPMD programs which
include calls to the standard message passing libraries such as
MPI [11] or PVM [7] belong to this approach. This strategy usu-
ally delivers good performance, but at the expense of high pro-
gramming costs because of the need to manually distribute data
and synchronize processes. The SPMD model may lead to un-
structured code where explicit communication is mixed with com-
putations in the program. These features may make these programs
difficult to write, understand and maintain. As a result, message-
passing programming (or, more specifically, MPI programming)
has been called the assembly language of the parallel program-
ming.

A similar approach is followed by some programming lan-
guages such as Co-Array FORTRAN (CAF) [18], UPC [10] and
Titanium [22]. These languages ease the development and read-
ability of SPMD programs basically by replacing the calls to the
message passing libraries with array declarations and assignments
under the distributed shared memory model they provide. For
instance, CAF adds an additional set of subscripts within square
brackets to provide a straightforward representation of any access
to non local data. CAF and UPC follow the SPMD model where
data distribution and synchronization require much involvement
from the programmer. For instance, in CAF each replication of the
program is called an image. CAF programmers must determine
the actual path of the program with the help of a unique image in-
dex by using normal sequential control constructs, which, as in the
case of MPI, may lead to unstructured code.

6



for i=2:dimx−1

for j=2:dimy−1

for K=2:M+Nfor j=2:n−1

for i=2:m−1

a(i,j)= a(i−1,j) + ...

end
end

a(i,j−1);

end
end

end

(c)(b)(a)

2

33

2

3

1 1

2

3

2

11

2

1

1

2 3

2

3

3

4

4

4

1I = J =

a{I+J == K}(i, j) = a{I+J == K}(i−1, j) + ...

    a{I+J == K}(i, j−1);

a{I+J == K+1 & I>1}(1, :) = a{I+J == K & I<M}(dimx−1,:);

a{I+J == K+1 & J>1}(:, 1) = a{I+J == K & J<N}(:, dimy−1);

Figure 8: 2-D wavefront computation.(a) Fortran code. (b) Pictorial view. (c) HTA code.

5.2 Global View Approaches

In global view approaches programmers specify the global be-
havior of the algorithm from which the local, or per-processor, be-
havior is automatically obtained. Data are also global, and are
dealt in a unified way. ¿From the programmer point of view, global
view approaches are desirable, since they usually produce simpler
code, what facilitates development and maintenance. The main
concern with global view approaches is whether the resulting code
performs well.

Global view languages include sequential language extended
with directives for array distribution and alignment, loop schedul-
ing and other details relevant to parallel computation. This is the
approach followed by High Performance Fortran (HPF) [12, 15],
where directives are used to annotate Fortran codes. One of the
drawbacks of HPF is the gap between the goals programmers want
to reach and the translation of the HPF compilers, aggravated by
the fact that HPF directives are optional, so the compiler is free
to ignore them. As a result, programmers may have difficulties
controlling the execution of their HPF programs because it is not
always easy to know the form of the target SPMD code. The lack
of a clear performance model makes it difficult for programmers to
reason about an algorithm’s performance without a detailed knowl-
edge of the compiler, and leads to unpredictable performance [17].

ZPL [8] is an example of a global view parallel language. A dif-
ference with HPF, is that ZPL has an explicit performance model
that indicates where interprocessor communication takes place, as
well as the type of communication that is needed. A character-
istic of ZPL is the use of regions to refer to a collection of array
indices. Region and region operators give programmers a mecha-
nism for referring and operating on set of array elements, remov-
ing the need for explicit array indexing. The main disadvantage of
ZPL is that it requires programmers to rewrite from scratch their
applications to take advantage of this approach.

Another way to express parallelism is the approach followed in
the project described above which uses classes that encapsulate the
parallelism. These classes take care of the distribution of the data
stored in their objects as well as the parallel computation, hiding
the details from the programmer. STAPL [9] is another example of
the use of classes to encapsulate parallelism The main differences
with the approach discussed above is that STAPL focuses on data
structures for symbolic computation while the focus of the HTA
class is mainly numerical computations.

6 Conclusions

Most programmers today use low-level message-passing
SPMD programming to implement their applications in
distributed-memory systems because of its ability to attain high
performance and because it allows them to reuse existing libraries
and applications, since it is based on well-established sequential
languages. Unfortunately, following the SPMD approach may
lead to unstructured code, difficult to write and maintain.

We believe that the paradigm to program parallel computers
should be based on a single-threaded global view of the applica-
tion and its data. For this approach to succeed three issues must
be addressed. First, parallel programming constructs should be
compatible with sequential constructs. Reuse of existing appli-
cations and libraries is essential to users. Second, high-level ap-
proaches will only be widely adopted when their performance is
competitive with that of the low-level message-passing program-
ming. Since current compiler technology has many limitations,
this means these approaches must be designed to give program-
mers control of execution and facilitate the task of compilers as
much as possible. Finally, just as in the sequential languages, pro-
grammers should be able to statically determine, at least qualita-
tively, the performance behavior of their codes.

This paper reported on one approach that attempts to address
these three issues. We argue that 1) the single thread execution
model of the HTA not only releases programmers from the poten-
tial difficulties of SPMD parallel programming, but also provides
high quality codes which are easy to develop and maintain. 2) HTA
contains explicit information about tiling which could be used by a
compiler to partition loops for locality or parallelism. 3) HTA en-
capsulates the parallelism and unifies the programming styles for
single processor and multiprocessors. 4) HTA gives programmers
clear information on when communication takes place and its cost
based on its syntax and function calls, which are the basis for a
well-defined performance model.
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