
Dedicated Module Access in Dynamically Reconfigurable Systems

J. Hagemeyer, B. Kettelhoit, and M. Porrmann

Heinz Nixdorf Institute, University of Paderborn

System and Circuit Technology

33102 Paderborn, Germany

{jenze, kettelhoit, porrmann}@hni.upb.de

Abstract

Modern FPGAs, such as the Xilinx Virtex-II Series,

offer the feature of partial and dynamic reconfiguration,

allowing to load various hardware configurations (i.e.,

HW modules) during run-time. To enable communication

with these modules and for controlling purposes,

dedicated access to each module as well as dedicated

signals to control the global communication are required.

This paper discusses several ways of implementing

dedicated signals and addresses the impact on

dynamically reconfigurable systems. Two new

approaches are introduced, which allow a permanent

access to the modules and to the communication

infrastructure even during reconfiguration.

1. Introduction

Dynamic reconfiguration enhances the potential of

FPGAs by enabling the change of hardware structures

during run-time. This enables embedded systems based

on reconfigurable hardware to adapt to changes of the

environment. Until the rise of reconfigurable hardware

this has been an exclusive property of microprocessors,

which can easily change their behavior by processing

different software. For prototypic implementations of

dynamically reconfigurable architectures, Xilinx FPGAs

are used in almost all cases since they offer the highest

logic density and performance compared to other fine-

grained, dynamically reconfigurable devices.

As described in detail in the following sections,

reconfigurable systems are typically divided into static

and dynamic hardware. While the static hardware consists

of components which are needed at any time (e.g.,

interface hardware or memory), the dynamic hardware

provides dynamically reconfigurable resources to which

hardware modules can be loaded dynamically. A module

consists of a set of logical resources and memory

elements with usually rectangular shape. For the

arrangement of several modules on one reconfigurable

area different placement approaches are known. In this

context, the overall resource usage, the amount of

memory needed to store the configuration data, and the

possibility to communicate with modules are of special

interest. In this paper we focus on communication among

modules or between static and dynamic components. This

requires communication infrastructures like on-chip

busses or networks-on-chips to be adapted to the special

requirements of dynamically reconfigurable systems, such

as the changing number of modules and the unknown

module states during the reconfiguration process. All

kinds of communication structures require dedicated

control signals per subscriber, e.g., chip-enable or chip-

select lines. We explain the problems that have to be

solved to load many different modules onto one FPGA

and common techniques to dynamically place modules in

chapter 2. In chapter 3, we focus on different routing

techniques for dedicated signals and their impact on

module relocation, multiple module instances, and

possible implementations. Besides known approaches we

introduce and evaluate two new routing techniques which

Figure 1. FPGA schematic with
rectangular 2D module placement

1-4244-0054-6/06/$20.00 ©2006 IEEE

allow permanent control of global communication

infrastructures. We conclude this paper with a summary

and future work in chapter 4.

2. Run-time reconfiguration

Xilinx FPGAs are composed of an array of

Configurable Logic Blocks (CLBs) surrounded by

Input/Output Blocks (IOBs), which are connected to the

FPGA’s pins (see Figure 1). Most common FPGAs

contain different types of processing elements, some for

realization of general logic, some more specialized blocks

for functions often needed in applications, like memory

and multipliers, or functions that can only be

implemented in dedicated hardware, like clock generation

or clock distribution circuitry. The term “run-time

reconfiguration” in general means to change the function

of some of these processing elements while leaving the

rest in functional operation. Configuring a contiguous set

of processing elements during run-time is also called

“loading a module”. In principle, all modules could be of

arbitrary shape. Nevertheless, all implementations known

to the authors only consider modules with rectangular

shapes. On the one hand this is caused by the limited

support for dynamic reconfiguration of currently

available design tools, which only support rectangular

shapes. On the other hand, it is much easier to solve the

task of finding available and suitable resources on a two

dimensional CLB array for rectangular modules rather

than for arbitrarily shaped modules.

2.1. Run-time reconfiguration on Xilinx FPGAs

In addition to Configurable Logic Blocks, Xilinx

FPGAs provide, e.g., dedicated memory blocks

(BlockRAM) and Digital Clock Managers (DCMs).

These additional elements disrupt the homogeneity of the

reconfigurable resources, which does not affect the

communication infrastructures discussed in the following.

Although modules always consist of a contiguous set

of CLBs, the configuration data (i.e. the partial bitstream)

cannot necessarily be loaded to the FPGA continuously.

Xilinx Virtex FPGAs can only be (re-)configured in a

column-wise manner ([1], [2]). This means that

reconfiguring only a few CLBs (or IOBs, etc.) implicates

a reloading of the configuration data of all other

configurable elements in the affected columns. An

example to this problem can be seen in Figure 1: By

loading module A to the FPGA, the columns 6 to 10 have

to be reconfigured. This implicates reloading the

configuration data of the columns 5 to 10 of module B.

This means, loading this module will also affect the

columns 6 to 10 of module B, which currently uses

columns 5 to 10. Thus, a partial bitstream has to be

composed from the configuration data of two modules

sharing identical columns during run-time.

In general, partial bitstreams consist of command and

data sequences [2]. The data sequences define the

functionality of the reconfigurable resources while the

command sequences define which resources will be

reconfigured. Speaking of modules this means that the

command sequences of an according bitstream defines the

position on the FPGA to which a module will be loaded.

This means in turn that loading one module to two

different positions requires two different bitstreams.

2.2. Communication macros

Like static FPGA designs, dynamic modules can freely

use the available resources within a given area.

Exceptions are the routing resources used for signals,

which are crossing the module’s borders. These signals,

e.g., bus signals used for communication, have to be

continued within neighbouring modules or static

components. The position on a module’s border where a

signal leaves or enters the module can be considered a

module pin. To allow the exchange of modules during

run-time, all pins used for communication or for

dedicated signals have to be at the same positions for all

modules. In the Xilinx design flow this can be realized by

means of macros that explicitly define the routing

resources to be used for a given signal. Only if the signals

that are leaving or entering a module are realized with

macros, and if the same macros are used for the

implementation of all modules, a communication across

module borders can be guaranteed among any

neighbouring modules. Xilinx introduced the use of

macros for bus communication signals in [3].

2.3. Placement approaches

As mentioned before, all practically used placement

approaches are based on rectangular module shapes.

These approaches can be divided into one-dimensional

and two-dimensional placement, both of which can be

realized with fixed module slots or with variable positions

and module sizes (called fixed 1D/2D and free 1D/2D,

respectively). The free 2D approach is shown in Figure 1.

A module can be placed everywhere, as long as it

provides a rectangular shape. This leads to some non-

trivial problems. First, this approach requires a more

sophisticated placement algorithm, compared to all other

approaches. Furthermore, the communication

infrastructure has to be adapted to the modules during

each reconfiguration, which is not an easy task and will

most likely disturb the whole communication structure

during reconfiguration. As a third issue, the partial

bitstream for this dynamic reconfiguration has to be

composed at run-time (see section 2.1) since it cannot be

known in advance which modules will be involved into

any occurring reconfiguration. For more details about

run-time composition of bitstreams see, e.g., [4]. To

prevent rebuilding the communication infrastructure

during reconfiguration, either a fixed floorplan is needed

[4], or a pseudo 2D approach can be chosen. In such an

approach, the reconfigurable area is divided into fixed

rectangular areas, e.g. the reconfigurable area will be split

up into slots at the top and at the bottom, as shown in [4].

In this case, 1D communication structures can be used.

The bitstream composition at run-time can be avoided

if modules always use the full height of the FPGA,

leading to the 1D placement approaches, which is well

suited for column-wise reconfiguration. In addition, the

task of finding available resources for modules during

run-time is reduced to a one dimensional problem and

thus is heavily reduced in complexity. Figure 2 shows

both 1D placement approaches with variable module

width and fixed module widths, respectively. When using

fixed module widths, each module that can possibly be

loaded to the reconfigurable area has the same shape,

leading to a rather simple managing task. An example

communication structure for this 1D approach with fixed

slots is shown in Figure 2a. The disadvantage of this

approach is that it fixes the amount of resources available

and reserved per module. While this wastes resources for

smaller modules, big modules cannot be implemented if

they exceed the size of the slots. As an alternative, 1D

placement with variable module width is a more general

approach. In this case, a one dimensional module can be

placed anywhere within a predefined grid in the

reconfigurable area. In general, this grid is not identical to

the FPGA columns. A module can have any width (with a

minimum of one CLB column) and can be placed at any

location provided by the grid. Current implementations of

dynamically reconfigurable systems with 1D placement

usually use grid widths of two or four CLB columns. A

communication infrastructure for a grid based variable

placement approach is shown in Figure 2b. Any possible

module position contains communication connection

points, typically realized as tristate buffers ([5]), or as a

slice based communication ([6]). All current

implementations known to the authors use one of these

1D communication infrastructures. Thus, we will focus

on 1D communication infrastructures in this paper.

2.4. Partial modules – module relocation and

multiple module instantiations

As mentioned before, loading a module to two

different locations generally requires two different partial

bitstreams. One possibility to deal with this fact is to

generate separate bitstreams for all possible module

locations and then downloading the bitstream that

corresponds to the chosen position during run-time. For

1D-approaches with only few fixed slots this can be an

easy to realize possibility. Still, the amount of bitstreams

that has to be generated and stored for each module

quickly grows with the number of slots, resulting in rising

costs for and waste of memory. For free 1D placement

(without constraints to the position), this multiple

locations – multiple bitstreams approach is not realizable

with reasonable effort even for small systems. A solution

to this is run-time bitstream manipulation, as described in

[7]. This technique uses the homogeneity of the FPGA’s

CLB area and relocates modules by changing the address

information in the command sequences of a partial

bitstream while keeping the configuration data for all

configurable elements (CLBs, IOBs, etc.). With module

relocation all modules can be placed to any position on

the FPGA (for 1D-placement approaches) while only one

partial bitstream per module has to be generated and

stored (multiple locations – single bitstream). Although

module relocation allows to realize 1D-placement in big

reconfigurable systems (many modules, many locations),

its disadvantage is that the reconfigurable area, which

means every slot, has to be completely homogeneous. In

case of an inhomogeneous FPGA, the content of the data

segments in the bitstream need to be adapted in order to

reinstantiate or relocate a module, which is practically

impossible at runtime. As a solution to this problem, a set

of bitstreams can be generated, which, in combination

with module relocation, cover all possible positions of an

inhomogeneous FPGA.

In principle, it is possible to load multiple instances of

one module to the FPGA. E.g., when using FPGAs for

digital control it could be sensible to use identical

controllers to control different plants. In this case,

however, one has to take care to use separate dedicated

signals for each instance of one module. Otherwise, a

reset, for example, would apply to all instances of one

module, which is not desired in general.

a) b)

Figure 2: Two 1D placement
approaches: a) 1D placement with
fixed slots, b) free 1D placement

3. Dedicated signals

In nearly every reconfigurable system, some

connections are dedicated to each module, which means

that these signals are unique to a particular slot or

position on the FPGA. These unique signals can easily

cause an inhomogeneity in the reconfigurable area,

preventing the use of principles like module relocation or

multiple module implementations as described in the

previous chapter. In this chapter, several ways to deal

with these dedicated signals are presented.

3.1. Classification of dedicated signals

Dedicated signals generally can be divided into two

classes: dedicated signals for the system’s communication

infrastructure and dedicated signals for each single

module. Members of the first class must never be

interrupted, not even during reconfiguration. Typical

examples for this type of dedicated signals are enable

signals that have to be driven by the modules in order to

drive the data lines of a shared bus. For tristate based

communication, as described in [5], erroneously driving

the enable signal during reconfiguration will eventually

cause electrical damage to the device. Erroneously setting

the select signal of a slice based communication structure,

will still cause corrupted data. Hence, such signals have

to be at a defined level at any time. To achieve this,

dedicated signals of this class are typically included in

bus macros. If all modules use the same bus macro during

synthesis, a signal implemented with this macro will

never be interrupted during reconfiguration. For the

second class of dedicated signals, the status during

reconfiguration doesn't matter, since these signals only

affect the loaded module itself. A typical signal of this

class is a module dedicated reset signal that resets all

module internal registers to a reasonable state before

putting the module into operation. Such a signal is only

needed after configuration and thus is not affected by any

configuration issues.

Another classification of dedicated signals can be

made depending on the requirements to signal latency. As

will be shown in the following sections, different

implementation techniques result in different latencies for

dedicated signals. For some dedicated signals, such as bus

grant or request signals, a latency of many clock cycles

cannot be accepted. Other signals, such as a global

disable for tristate drivers during reconfiguration, have

much lower demands to signal latency.

3.2. Position-based dedicated signals

Figure 3 shows a straightforward approach for

dedicated signals. As an example, the enable lines for the

tristate buffer of a shared bus are chosen. To prevent

modules from unintentionally driving the bus during

module reconfiguration, in each slot the enable signal for

all tristate drivers is generated by a logical AND-

operation of an internal enable and a global enable from a

static supervising component. The logical AND (realized

as a LUT) and the global enable are implemented as

macros. This allows the bus arbiter to reliably disable the

tristate drivers even during partial reconfiguration, since

the information for the macro is included in all modules

that will ever be loaded to a specific slot. After a module

has been loaded successfully, the arbiter activates the

global enable of the modules position and thus passes the

control over the tristate drivers to the module. Modules

with a width bigger than one principally have more than

one possibility to access the bus (see module A in Figure

3). Such modules have to choose one access point and

leave all other possibilities unused. The dedicated signals

for each bus access have to be routed at different vertical

positions within the FPGA. Hence, the bus macros differ

slightly for each grid position. Since the macros are part

of the module’s partial bitstreams, this means in turn that

module relocation, as described above, is not possible.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

Figure 3: Position-based dedicated enable signals

Thus, choosing a module’s position during run-time

requires a separate bitstream for each module at any

possible position. In general, this method of routing

dedicated signals is applicable to both free 1D placement

and 1D placement with fixed slots.

3.3. Module-based dedicated signals

Instead of using dedicated signals for every position,

the module-based dedicated signal approach uses one

dedicated signal per module (see Figure 4). As for the

position-based approach, all dedicated signals are routed

horizontally at different vertical positions. If these

vertical routing resources are spanned across the whole

FPGA, any module can connect to its dedicated signals at

any position on the FPGA. The vertical connection from

the horizontal routing resources to, e.g., a tristate enable

port, is different for each module and hence no macro can

be used for this connection. This means in turn that

during reconfiguration, an external control over the bus

enables is not possible and, even worse, an erroneous

driving of the bus cannot be prevented. This of course

means that module-based dedicated signals should not be

used for signals which need a permanent connection

during configuration, such as the tristate enables used in

the example. For other signals, though, this can be an

easy to realize alternative, which needs only very few

resources.

Loading multiple instances of one module also is not

possible with this approach, since all instances would be

controlled via the same dedicated signal. However, since

the connection to the dedicated signals is not dependent

on the position to which a module will be loaded, module

relocation can easily be used.

In this approach, the number of modules has to be

known at design time of the system in order to provide

sufficient signals for all modules. Furthermore, the

associations between the dedicated signals and the

modules have to be made in advance to be able to

synthesize the modules. Hence, it is not possible to load

modules to the system, which were not known at design

time. A separate development of static hardware and

software (modules) thus is not possible.

3.4. Slot dedicated signals

As one alternative to the straight forward approaches

presented before, Figure 5 shows the same example

implemented as a system using slot-based dedicated

enable signals. Next to each slot, an adaptor CLB column

redirects the enable signal from its vertical routing

resources to another vertical position. From this position,

the signal is then handed over vertically to the slot and

thus to a module. Within the module, the global enable

Figure 4: Module-based dedicated signals

Slot 1

slot enable

(n:1)

Dout

bus arbiter &

control Slice

TBUF

CLB

static

module

Slot 2 Slot 3 Slot n

Module

dependent

enable logic

Din Dout

Slice

TBUF

CLB
Module

dependent

enable logic

Din Dout

Slice

TBUF

CLB
Module

dependent

enable logic

Din Dout

Slice

TBUF

CLB
Module

dependent

enable logic

Din

...........

...........

...........

...........

...........

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

..
..

..
..

..
.

Figure 5: Slot-dedicated enable signals with adaptor

signal is routed to a logical AND, which in turn controls

the tristate enable. As in 3.2, these signals have to be

implemented with macros to prevent the tristate drivers

from accidentally driving the bus.

Since each slot provides the access to the enable signal

at the same position, all modules can use the same hard

macro, no matter to which slot they are loaded, i.e.,

module relocation can be used. The association of a

dedicated signal and a module has to be made during run-

time, allowing for a separate development of static

hardware and modules. It is possible to use different sets

of modules in the same static environment, i.e., the static

hardware can be reused for different tasks. Loading

multiple instances of one module into different slots at the

same time is also possible. The main disadvantage of this

approach is a certain waste of resources. At least one

CLB column per slot is needed additionally and can not

be used for module dedicated logic, but only very few

routing resources are actually used in these columns. So

this approach is better suited for implementations with a

big number of columns per slot. An interesting issue is

the possibility of implementing multiplexed busses in a

reconfigurable system using slot-dedicated signals. In

future FPGAs, possibly supplying much more logic and

routing resources, this approach could be able to use the

benefits of multiplexed buses to reconfigurable systems

without relocation or multiple instantiation trouble.

3.5. Shift register based module access

The approaches introduced in the last chapters used

direct connections from a supervising component to the

modules. These connections have to use routing resources

on different vertical positions and thus either cause

inhomogeneity (through the vertical routing) or do not

support permanent connectivity. This leads either to

additional effort to compensate this inhomogeneity (as for

the slot-dedicated enable signals) or does not allow

multiple module instantiations or module relocation.

Figure 6 shows a fourth approach, again using the tristate

enable example, which has no such inhomogeneity and

thus does not share the mentioned disadvantages. The

main idea is that the enable signals are not connected

directly to the modules, but are stored locally in registers

within the modules (the registers are part of the

communication hard macro). These registers are cascaded

to a shift register, which can be filled by the arbiter. The

number of registers corresponds to the number of slots or

possible module positions, respectively. If any of the slots

shall be enabled or disabled, a new corresponding content

is written to the shift register. To avoid glitches on the

enable signals during a write process to the shift register,

a second stage of enable registers is inserted. After

writing to the shift register, its content is copied to the

enable registers and thus the tristate enables are enabled

or disabled, respectively. Modules, whose enable state is

not changed, are not affected by the whole process at all.

As an example, let us imagine that slot 1 and 3 are

actually used on the FPGA and communicating via the

tristate bus. Slot 2 now gets used by loading a module to

its place. Before the reconfiguration, both contents of the

shift register (SR) and the enable registers (ER) are SR =

ER = (1, 0, 1, 0, ...). After loading a module to slot 2, its

global enable is activated by writing (1, 1, 1, 0, ...) to SR.

In a second step this vector is loaded to ER and thus

module two gains access to the bus (ER = 1, 1, 1, 0, ...).

To ensure that the enable register of any newly loaded

module is initially set to 0 (i.e. to prevent the tristate

drivers from driving the bus during reconfiguration), the

enable registers have to be part of the hard-macro used

for the tristate drivers and the logical AND. This enables

writing a new content to the shift register even during

reconfiguration. The activation delay of n clock cycles

needed to load the shift register plus one cycle to load the

enable registers thus can be reduced to one clock cycle.

Still, it is this rather high delay, which is the biggest

disadvantage of the shift register based dedicated signals.

For signals like bus grant signals, such a delay is

probably not acceptable.

Figure 6: Enabling/Disabling of bus accesses via shift registers

The shift register based approach supports both

module relocation as well as multiple module

instantiations. Although it was presented as

implementation possibility for 1D placement with fixed

slots, it can also be used for free 1D placement without

any remarkable waste of resources. In this case, though,

every possible vertical position within the grid needs a

separate access point (comparable to the position-based

dedicated signals), quickly leading to big registers and

big delays. For the chosen example, the global tristate

enable, this might still be a good solution, since even big

shift registers (> 100 stages) can be loaded within

microseconds, whereas the configuration time for a

module is in the order of a millisecond.

3.6. Summary

In table 1 the different routing techniques for dedicated

signals are compared. Position-based dedicated signals

provide a direct connection, which can be controlled even

during reconfiguration. Since this technique does not

resolve the inhomogeneity caused by dedicated signals,

module relocation is not possible. Module-based

dedicated signals forgo the use of bus macros for vertical

routing. This makes the problem of inhomogeneity

obsolete and thus allows module relocation. The prize to

pay is that the dedicated signals are not connected during

reconfiguration and that multiple instances of one module

cannot be controlled independently. Still, both position-

based and module-based dedicated signals require simple

bus macros only and can easily be implemented.

The slot-based approach moves the inhomogeneity

from the modules (and the partial bitstreams) to adaptor

columns, which are not reconfigured during run-time.

This allows the use of module relocation. Since the

dedicated signals are not dedicated per module but per

slot, multiple instances of one module can be loaded to

the FPGA. The unique bus macro, which is used to

implement all modules, enables a direct connection, also

during configuration. The disadvantage of this slot-based

approach is that a whole CLB column per slot has to be

used for rerouting and cannot be used for other purposes.

This is only acceptable for wide slots, making this

approach inapplicable for free 1D placement.

As a last alternative we have discussed a shift register

based variant. By locally storing the signals in each

module, all signals can be transmitted via the same

routing resources, preventing the occurrence of

inhomogeneity. The complete routing of the dedicated

signals can be made via one unique bus macro, allowing

module relocation, multiple module instances, and

permanent connection. The two registers needed per slot

can be implemented in one slice only, so that this

approach can be used for both free 1D and fixed slots

placement. Still, the registers cause an additional signal

delay per slot. This indirect control cannot be used for a

certain group of dedicated signals.

To solve the tristate enable problem, Blodget et al.

suggest in [4] to configure a module in two steps. In a

first step, the module with all internal logic and tristate

drivers is loaded onto the FPGA. In a second, additional

configuration step only the connections between the

tristate drivers and the tristate lines are activated. This

makes dedicated signals for controlling the tristate drivers

obsolete. Still, with this solution two bitstreams and two

configuration steps are required to configure only one

module.

A very important issue for all approaches, which has

not been addressed yet, is the development effort needed

to implement the macros. In most current applications,

one macro contains a small number (e.g four or eight)

Table 1: Comparison of the three approaches

placement

approach

permanent

connection

module

relocation

multiple

instantiation

s

area costs signal latency

position-based
free 1D,

fixed slots
- 1

module-based
free 1D,

fixed slots
- 1

slot-based fixed slots
one column

per slot
1

shift register
free 1D,

fixed slots

two registers

per slot

N + 1

(1)

N: number of modules loaded

signal lines per row. These macros are then instantiated

multiple times to realize a complete bus structure. In case

of the global enable signal, which is used as an example

above, where one signal controls 32 or 64 tristate drivers,

this “copy and paste” design flow for the bus macros is

not possible any more. Instead, one big bus macro has to

be generated. Doing this manually is a tough, error-prone

job. EDA tools for an automated macro design are still

not available, but would be a great help for the

implementation of dynamically reconfigurable systems.

4. Conclusion and further work

In this paper we have discussed different methods of

routing dedicated signals to dynamic modules in

reconfigurable systems. We have analyzed the

requirements of currently used placement approaches

such as support for module relocation, multiple module

instantiations, and connectivity during reconfiguration.

With regard to these requirements we have shown

different ways of routing dedicated signals to dynamic

modules and we have classified them by means of area

costs and signal latency. For the use of dynamically

reconfigurable hardware and for the evaluation of

different placement approaches, communication via

module specific dedicated signals is a basic requirement,

which has been ignored in many studies in the past.

We are currently developing a tool, which is able to

automatically generate various kinds of macros and which

supports all of the placement approaches and routing for

dedicated signals shown in this paper. This framework

will significantly reduce the time needed for the

implementation and evaluation of different placement

approaches for FPGA-based dynamically reconfigurable

systems.

5. References

[1] Xilinx. Virtex Series Configuration Architecture User

Guide, Xilinx Application Note 151. Xilinx, March 2003.

[2] Xilinx. Xilinx Virtex-II Platform FPGA User Guide.

March 2005.

[3] D. Lim and M. Peattie. Two flows for partial

reconfiguration: module based or small bit manipulation,

Xilinx Application Note 290. Xilinx, 2002.

[4] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght and T.

Becker. Modular partial reconfiguration in Virtex FPGAs.

In Proceedings of the 15th International Conference on

Field Programmable Logic and Applications, Tampere,

Finland, August 2005.

[5] H. Kalte, M. Porrmann and U. Rückert. System-on-

Programmable-Chip Approach Enabling Online Fine-

Grained 1D-Placement. In Proceedings of the 11th

Reconfigurable Architectures Workshop, 2004.

[6] J. Becker, T. Becker and M. Hübner. Real-Time LUT-

based Network Topologies for Dynamic and Partial Self-

Reconfiguration. In Proceedings of the 12th International

Conference on Very Large Scale Integration VLSI-SoC,

Darmstadt, December 2003.

[7] H. Kalte, L. Gareth, M. Porrmann and U. Rückert.

REPLICA: A bitstream manipulator filter for module

relocation in partial reconfigurable systems. In

Proceedings of the 19th International Parallel and

Distributed Processing Symposium, Reconfigurable

Architectures Workshop, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

