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Abstract

Modern FPGAs, such as the Xilinx Virtex-II Series, 

offer the feature of partial and dynamic reconfiguration, 

allowing to load various hardware configurations (i.e., 

HW modules) during run-time. To enable communication 

with these modules and for controlling purposes, 

dedicated access to each module as well as dedicated 

signals to control the global communication are required. 

This paper discusses several ways of implementing 

dedicated signals and addresses the impact on 

dynamically reconfigurable systems. Two new 

approaches are introduced, which allow a permanent 

access to the modules and to the communication 

infrastructure even during reconfiguration. 

1. Introduction 

Dynamic reconfiguration enhances the potential of 

FPGAs by enabling the change of hardware structures 

during run-time. This enables embedded systems based 

on reconfigurable hardware to adapt to changes of the 

environment. Until the rise of reconfigurable hardware 

this has been an exclusive property of microprocessors, 

which can easily change their behavior by processing 

different software. For prototypic implementations of 

dynamically reconfigurable architectures, Xilinx FPGAs 

are used in almost all cases since they offer the highest 

logic density and performance compared to other fine-

grained, dynamically reconfigurable devices. 

As described in detail in the following sections, 

reconfigurable systems are typically divided into static 

and dynamic hardware. While the static hardware consists 

of components which are needed at any time (e.g., 

interface hardware or memory), the dynamic hardware 

provides dynamically reconfigurable resources to which 

hardware modules can be loaded dynamically. A module 

consists of a set of logical resources and memory 

elements with usually rectangular shape. For the 

arrangement of several modules on one reconfigurable 

area different placement approaches are known. In this 

context, the overall resource usage, the amount of 

memory needed to store the configuration data, and the 

possibility to communicate with modules are of special 

interest. In this paper we focus on communication among 

modules or between static and dynamic components. This 

requires communication infrastructures like on-chip 

busses or networks-on-chips to be adapted to the special 

requirements of dynamically reconfigurable systems, such 

as the changing number of modules and the unknown 

module states during the reconfiguration process. All 

kinds of communication structures require dedicated 

control signals per subscriber, e.g., chip-enable or chip-

select lines. We explain the problems that have to be 

solved to load many different modules onto one FPGA 

and common techniques to dynamically place modules in 

chapter 2. In chapter 3, we focus on different routing 

techniques for dedicated signals and their impact on 

module relocation, multiple module instances, and 

possible implementations. Besides known approaches we 

introduce and evaluate two new routing techniques which 

Figure 1. FPGA schematic with 
rectangular 2D module placement 
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allow permanent control of global communication 

infrastructures. We conclude this paper with a summary 

and future work in chapter 4. 

2. Run-time reconfiguration 

Xilinx FPGAs are composed of an array of 

Configurable Logic Blocks (CLBs) surrounded by 

Input/Output Blocks (IOBs), which are connected to the 

FPGA’s pins (see Figure 1). Most common FPGAs 

contain different types of processing elements, some for 

realization of general logic, some more specialized blocks 

for functions often needed in applications, like memory 

and multipliers, or functions that can only be 

implemented in dedicated hardware, like clock generation 

or clock distribution circuitry. The term “run-time 

reconfiguration” in general means to change the function 

of some of these processing elements while leaving the 

rest in functional operation. Configuring a contiguous set 

of processing elements during run-time is also called 

“loading a module”. In principle, all modules could be of 

arbitrary shape. Nevertheless, all implementations known 

to the authors only consider modules with rectangular 

shapes. On the one hand this is caused by the limited 

support for dynamic reconfiguration of currently 

available design tools, which only support rectangular 

shapes. On the other hand, it is much easier to solve the 

task of finding available and suitable resources on a two 

dimensional CLB array for rectangular modules rather 

than for arbitrarily shaped modules. 

2.1. Run-time reconfiguration on Xilinx FPGAs 

In addition to Configurable Logic Blocks, Xilinx 

FPGAs provide, e.g., dedicated memory blocks 

(BlockRAM) and Digital Clock Managers (DCMs). 

These additional elements disrupt the homogeneity of the 

reconfigurable resources, which does not affect the 

communication infrastructures discussed in the following. 

Although modules always consist of a contiguous set 

of CLBs, the configuration data (i.e. the partial bitstream) 

cannot necessarily be loaded to the FPGA continuously. 

Xilinx Virtex FPGAs can only be (re-)configured in a 

column-wise manner ([1], [2]). This means that 

reconfiguring only a few CLBs (or IOBs, etc.) implicates 

a reloading of the configuration data of all other 

configurable elements in the affected columns. An 

example to this problem can be seen in Figure 1: By 

loading module A to the FPGA, the columns 6 to 10 have 

to be reconfigured. This implicates reloading the 

configuration data of the columns 5 to 10 of module B. 

This means, loading this module will also affect the 

columns 6 to 10 of module B, which currently uses 

columns 5 to 10. Thus, a partial bitstream has to be 

composed from the configuration data of two modules 

sharing identical columns during run-time.  

In general, partial bitstreams consist of command and 

data sequences [2]. The data sequences define the 

functionality of the reconfigurable resources while the 

command sequences define which resources will be 

reconfigured. Speaking of modules this means that the 

command sequences of an according bitstream defines the 

position on the FPGA to which a module will be loaded. 

This means in turn that loading one module to two 

different positions requires two different bitstreams. 

2.2. Communication macros 

Like static FPGA designs, dynamic modules can freely 

use the available resources within a given area. 

Exceptions are the routing resources used for signals, 

which are crossing the module’s borders. These signals, 

e.g., bus signals used for communication, have to be 

continued within neighbouring modules or static 

components. The position on a module’s border where a 

signal leaves or enters the module can be considered a 

module pin. To allow the exchange of modules during 

run-time, all pins used for communication or for 

dedicated signals have to be at the same positions for all 

modules. In the Xilinx design flow this can be realized by 

means of macros that explicitly define the routing 

resources to be used for a given signal. Only if the signals 

that are leaving or entering a module are realized with 

macros, and if the same macros are used for the 

implementation of all modules, a communication across 

module borders can be guaranteed among any 

neighbouring modules. Xilinx introduced the use of 

macros for bus communication signals in [3]. 

2.3. Placement approaches 

As mentioned before, all practically used placement 

approaches are based on rectangular module shapes. 

These approaches can be divided into one-dimensional 

and two-dimensional placement, both of which can be 

realized with fixed module slots or with variable positions 

and module sizes (called fixed 1D/2D and free 1D/2D, 

respectively). The free 2D approach is shown in Figure 1. 

A module can be placed everywhere, as long as it 

provides a rectangular shape. This leads to some non-

trivial problems. First, this approach requires a more 

sophisticated placement algorithm, compared to all other 

approaches. Furthermore, the communication 

infrastructure has to be adapted to the modules during 

each reconfiguration, which is not an easy task and will 

most likely disturb the whole communication structure 

during reconfiguration. As a third issue, the partial 

bitstream for this dynamic reconfiguration has to be 

composed at run-time (see section 2.1) since it cannot be 



known in advance which modules will be involved into 

any occurring reconfiguration. For more details about 

run-time composition of bitstreams see, e.g., [4]. To 

prevent rebuilding the communication infrastructure 

during reconfiguration, either a fixed floorplan is needed 

[4], or a pseudo 2D approach can be chosen. In such an 

approach, the reconfigurable area is divided into fixed 

rectangular areas, e.g. the reconfigurable area will be split 

up into slots at the top and at the bottom, as shown in [4]. 

In this case, 1D communication structures can be used. 

The bitstream composition at run-time can be avoided 

if modules always use the full height of the FPGA, 

leading to the 1D placement approaches, which is well 

suited for column-wise reconfiguration. In addition, the 

task of finding available resources for modules during 

run-time is reduced to a one dimensional problem and 

thus is heavily reduced in complexity. Figure 2 shows 

both 1D placement approaches with variable module 

width and fixed module widths, respectively. When using 

fixed module widths, each module that can possibly be 

loaded to the reconfigurable area has the same shape, 

leading to a rather simple managing task. An example 

communication structure for this 1D approach with fixed 

slots is shown in Figure 2a. The disadvantage of this 

approach is that it fixes the amount of resources available 

and reserved per module. While this wastes resources for 

smaller modules, big modules cannot be implemented if 

they exceed the size of the slots. As an alternative, 1D 

placement with variable module width is a more general 

approach. In this case, a one dimensional module can be 

placed anywhere within a predefined grid in the 

reconfigurable area. In general, this grid is not identical to 

the FPGA columns. A module can have any width (with a 

minimum of one CLB column) and can be placed at any 

location provided by the grid. Current implementations of 

dynamically reconfigurable systems with 1D placement 

usually use grid widths of two or four CLB columns. A 

communication infrastructure for a grid based variable 

placement approach is shown in Figure 2b. Any possible 

module position contains communication connection 

points, typically realized as tristate buffers ([5]), or as a 

slice based communication ([6]). All current 

implementations known to the authors use one of these 

1D communication infrastructures. Thus, we will focus 

on 1D communication infrastructures in this paper. 

2.4. Partial modules – module relocation and 

multiple module instantiations 

As mentioned before, loading a module to two 

different locations generally requires two different partial 

bitstreams. One possibility to deal with this fact is to 

generate separate bitstreams for all possible module 

locations and then downloading the bitstream that 

corresponds to the chosen position during run-time. For 

1D-approaches with only few fixed slots this can be an 

easy to realize possibility. Still, the amount of bitstreams 

that has to be generated and stored for each module 

quickly grows with the number of slots, resulting in rising 

costs for and waste of memory. For free 1D placement 

(without constraints to the position), this multiple 

locations – multiple bitstreams approach is not realizable 

with reasonable effort even for small systems. A solution 

to this is run-time bitstream manipulation, as described in 

[7]. This technique uses the homogeneity of the FPGA’s 

CLB area and relocates modules by changing the address 

information in the command sequences of a partial 

bitstream while keeping the configuration data for all 

configurable elements (CLBs, IOBs, etc.). With module 

relocation all modules can be placed to any position on 

the FPGA (for 1D-placement approaches) while only one 

partial bitstream per module has to be generated and 

stored (multiple locations – single bitstream). Although 

module relocation allows to realize 1D-placement in big 

reconfigurable systems (many modules, many locations), 

its disadvantage is that the reconfigurable area, which 

means every slot, has to be completely homogeneous. In 

case of an inhomogeneous FPGA, the content of the data 

segments in the bitstream need to be adapted in order to 

reinstantiate or relocate a module, which is practically 

impossible at runtime. As a solution to this problem, a set 

of bitstreams can be generated, which, in combination 

with module relocation, cover all possible positions of an 

inhomogeneous FPGA. 

In principle, it is possible to load multiple instances of 

one module to the FPGA. E.g., when using FPGAs for 

digital control it could be sensible to use identical 

controllers to control different plants. In this case, 

however, one has to take care to use separate dedicated 

signals for each instance of one module. Otherwise, a 

reset, for example, would apply to all instances of one 

module, which is not desired in general. 

a) b)

Figure 2: Two 1D placement 
approaches: a) 1D placement with 
fixed slots, b) free 1D placement 



3. Dedicated signals 

In nearly every reconfigurable system, some 

connections are dedicated to each module, which means 

that these signals are unique to a particular slot or 

position on the FPGA. These unique signals can easily 

cause an inhomogeneity in the reconfigurable area, 

preventing the use of principles like module relocation or 

multiple module implementations as described in the 

previous chapter. In this chapter, several ways to deal 

with these dedicated signals are presented. 

3.1. Classification of dedicated signals 

Dedicated signals generally can be divided into two 

classes: dedicated signals for the system’s communication 

infrastructure and dedicated signals for each single 

module. Members of the first class must never be 

interrupted, not even during reconfiguration. Typical 

examples for this type of dedicated signals are enable

signals that have to be driven by the modules in order to 

drive the data lines of a shared bus. For tristate based 

communication, as described in [5], erroneously driving 

the enable signal during reconfiguration will eventually 

cause electrical damage to the device. Erroneously setting 

the select signal of a slice based communication structure, 

will still cause corrupted data. Hence, such signals have 

to be at a defined level at any time. To achieve this, 

dedicated signals of this class are typically included in 

bus macros. If all modules use the same bus macro during 

synthesis, a signal implemented with this macro will 

never be interrupted during reconfiguration. For the 

second class of dedicated signals, the status during 

reconfiguration doesn't matter, since these signals only 

affect the loaded module itself. A typical signal of this 

class is a module dedicated reset signal that resets all 

module internal registers to a reasonable state before 

putting the module into operation. Such a signal is only 

needed after configuration and thus is not affected by any 

configuration issues. 

Another classification of dedicated signals can be 

made depending on the requirements to signal latency. As 

will be shown in the following sections, different 

implementation techniques result in different latencies for 

dedicated signals. For some dedicated signals, such as bus 

grant or request signals, a latency of many clock cycles 

cannot be accepted. Other signals, such as a global 

disable for tristate drivers during reconfiguration, have 

much lower demands to signal latency. 

3.2. Position-based dedicated signals 

Figure 3 shows a straightforward approach for 

dedicated signals. As an example, the enable lines for the 

tristate buffer of a shared bus are chosen. To prevent 

modules from unintentionally driving the bus during 

module reconfiguration, in each slot the enable signal for 

all tristate drivers is generated by a logical AND-

operation of an internal enable and a global enable from a 

static supervising component. The logical AND (realized 

as a LUT) and the global enable are implemented as 

macros. This allows the bus arbiter to reliably disable the 

tristate drivers even during partial reconfiguration, since 

the information for the macro is included in all modules 

that will ever be loaded to a specific slot. After a module 

has been loaded successfully, the arbiter activates the 

global enable of the modules position and thus passes the 

control over the tristate drivers to the module. Modules 

with a width bigger than one principally have more than 

one possibility to access the bus (see module A in Figure 

3). Such modules have to choose one access point and 

leave all other possibilities unused. The dedicated signals 

for each bus access have to be routed at different vertical 

positions within the FPGA. Hence, the bus macros differ 

slightly for each grid position. Since the macros are part 

of the module’s partial bitstreams, this means in turn that 

module relocation, as described above, is not possible. 
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Figure 3: Position-based dedicated enable signals 



Thus, choosing a module’s position during run-time 

requires a separate bitstream for each module at any 

possible position. In general, this method of routing 

dedicated signals is applicable to both free 1D placement 

and 1D placement with fixed slots. 

3.3. Module-based dedicated signals 

Instead of using dedicated signals for every position, 

the module-based dedicated signal approach uses one 

dedicated signal per module (see Figure 4). As for the 

position-based approach, all dedicated signals are routed 

horizontally at different vertical positions. If these 

vertical routing resources are spanned across the whole 

FPGA, any module can connect to its dedicated signals at 

any position on the FPGA. The vertical connection from 

the horizontal routing resources to, e.g., a tristate enable 

port, is different for each module and hence no macro can 

be used for this connection. This means in turn that 

during reconfiguration, an external control over the bus 

enables is not possible and, even worse, an erroneous 

driving of the bus cannot be prevented. This of course 

means that module-based dedicated signals should not be 

used for signals which need a permanent connection 

during configuration, such as the tristate enables used in 

the example. For other signals, though, this can be an 

easy to realize alternative, which needs only very few 

resources.

Loading multiple instances of one module also is not 

possible with this approach, since all instances would be 

controlled via the same dedicated signal. However, since 

the connection to the dedicated signals is not dependent 

on the position to which a module will be loaded, module 

relocation can easily be used. 

In this approach, the number of modules has to be 

known at design time of the system in order to provide 

sufficient signals for all modules. Furthermore, the 

associations between the dedicated signals and the 

modules have to be made in advance to be able to 

synthesize the modules. Hence, it is not possible to load 

modules to the system, which were not known at design 

time. A separate development of static hardware and 

software (modules) thus is not possible. 

3.4. Slot dedicated signals 

As one alternative to the straight forward approaches 

presented before, Figure 5 shows the same example 

implemented as a system using slot-based dedicated 

enable signals. Next to each slot, an adaptor CLB column 

redirects the enable signal from its vertical routing 

resources to another vertical position. From this position, 

the signal is then handed over vertically to the slot and 

thus to a module. Within the module, the global enable 

Figure 4: Module-based dedicated signals 
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Figure 5: Slot-dedicated enable signals with adaptor 



signal is routed to a logical AND, which in turn controls 

the tristate enable. As in 3.2, these signals have to be 

implemented with macros to prevent the tristate drivers 

from accidentally driving the bus. 

Since each slot provides the access to the enable signal 

at the same position, all modules can use the same hard 

macro, no matter to which slot they are loaded, i.e., 

module relocation can be used. The association of a 

dedicated signal and a module has to be made during run-

time, allowing for a separate development of static 

hardware and modules. It is possible to use different sets 

of modules in the same static environment, i.e., the static 

hardware can be reused for different tasks. Loading 

multiple instances of one module into different slots at the 

same time is also possible. The main disadvantage of this 

approach is a certain waste of resources. At least one 

CLB column per slot is needed additionally and can not 

be used for module dedicated logic, but only very few 

routing resources are actually used in these columns. So 

this approach is better suited for implementations with a 

big number of columns per slot. An interesting issue is 

the possibility of implementing multiplexed busses in a 

reconfigurable system using slot-dedicated signals. In 

future FPGAs, possibly supplying much more logic and 

routing resources, this approach could be able to use the 

benefits of multiplexed buses to reconfigurable systems 

without relocation or multiple instantiation trouble. 

3.5. Shift register based module access 

The approaches introduced in the last chapters used 

direct connections from a supervising component to the 

modules. These connections have to use routing resources 

on different vertical positions and thus either cause 

inhomogeneity (through the vertical routing) or do not 

support permanent connectivity. This leads either to 

additional effort to compensate this inhomogeneity (as for 

the slot-dedicated enable signals) or does not allow 

multiple module instantiations or module relocation. 

Figure 6 shows a fourth approach, again using the tristate 

enable example, which has no such inhomogeneity and 

thus does not share the mentioned disadvantages. The 

main idea is that the enable signals are not connected 

directly to the modules, but are stored locally in registers 

within the modules (the registers are part of the 

communication hard macro). These registers are cascaded 

to a shift register, which can be filled by the arbiter. The 

number of registers corresponds to the number of slots or 

possible module positions, respectively. If any of the slots 

shall be enabled or disabled, a new corresponding content 

is written to the shift register. To avoid glitches on the 

enable signals during a write process to the shift register, 

a second stage of enable registers is inserted. After 

writing to the shift register, its content is copied to the 

enable registers and thus the tristate enables are enabled 

or disabled, respectively. Modules, whose enable state is 

not changed, are not affected by the whole process at all. 

As an example, let us imagine that slot 1 and 3 are 

actually used on the FPGA and communicating via the 

tristate bus. Slot 2 now gets used by loading a module to 

its place. Before the reconfiguration, both contents of the 

shift register (SR) and the enable registers (ER) are SR = 

ER = (1, 0, 1, 0, ...). After loading a module to slot 2, its 

global enable is activated by writing (1, 1, 1, 0, ...) to SR. 

In a second step this vector is loaded to ER and thus 

module two gains access to the bus (ER = 1, 1, 1, 0, ...). 

To ensure that the enable register of any newly loaded 

module is initially set to 0 (i.e. to prevent the tristate 

drivers from driving the bus during reconfiguration), the 

enable registers have to be part of the hard-macro used 

for the tristate drivers and the logical AND. This enables 

writing a new content to the shift register even during 

reconfiguration. The activation delay of n clock cycles 

needed to load the shift register plus one cycle to load the 

enable registers thus can be reduced to one clock cycle. 

Still, it is this rather high delay, which is the biggest 

disadvantage of the shift register based dedicated signals. 

For signals like bus grant signals, such a delay is 

probably not acceptable. 

Figure 6: Enabling/Disabling of bus accesses via shift registers 



The shift register based approach supports both 

module relocation as well as multiple module 

instantiations. Although it was presented as 

implementation possibility for 1D placement with fixed 

slots, it can also be used for free 1D placement without 

any remarkable waste of resources. In this case, though, 

every possible vertical position within the grid needs a 

separate access point (comparable to the position-based 

dedicated signals), quickly leading to big registers and 

big delays. For the chosen example, the global tristate 

enable, this might still be a good solution, since even big 

shift registers (> 100 stages) can be loaded within 

microseconds, whereas the configuration time for a 

module is in the order of a millisecond. 

3.6. Summary 

In table 1 the different routing techniques for dedicated 

signals are compared. Position-based dedicated signals 

provide a direct connection, which can be controlled even 

during reconfiguration. Since this technique does not 

resolve the inhomogeneity caused by dedicated signals, 

module relocation is not possible. Module-based 

dedicated signals forgo the use of bus macros for vertical 

routing. This makes the problem of inhomogeneity 

obsolete and thus allows module relocation. The prize to 

pay is that the dedicated signals are not connected during 

reconfiguration and that multiple instances of one module 

cannot be controlled independently. Still, both position-

based and module-based dedicated signals require simple 

bus macros only and can easily be implemented. 

The slot-based approach moves the inhomogeneity 

from the modules (and the partial bitstreams) to adaptor 

columns, which are not reconfigured during run-time. 

This allows the use of module relocation. Since the 

dedicated signals are not dedicated per module but per 

slot, multiple instances of one module can be loaded to 

the FPGA. The unique bus macro, which is used to 

implement all modules, enables a direct connection, also 

during configuration. The disadvantage of this slot-based 

approach is that a whole CLB column per slot has to be 

used for rerouting and cannot be used for other purposes. 

This is only acceptable for wide slots, making this 

approach inapplicable for free 1D placement. 

As a last alternative we have discussed a shift register 

based variant. By locally storing the signals in each 

module, all signals can be transmitted via the same 

routing resources, preventing the occurrence of 

inhomogeneity. The complete routing of the dedicated 

signals can be made via one unique bus macro, allowing 

module relocation, multiple module instances, and 

permanent connection. The two registers needed per slot 

can be implemented in one slice only, so that this 

approach can be used for both free 1D and fixed slots 

placement. Still, the registers cause an additional signal 

delay per slot. This indirect control cannot be used for a 

certain group of dedicated signals. 

To solve the tristate enable problem, Blodget et al. 

suggest in [4] to configure a module in two steps. In a 

first step, the module with all internal logic and tristate 

drivers is loaded onto the FPGA. In a second, additional 

configuration step only the connections between the 

tristate drivers and the tristate lines are activated. This 

makes dedicated signals for controlling the tristate drivers 

obsolete. Still, with this solution two bitstreams and two 

configuration steps are required to configure only one 

module. 

A very important issue for all approaches, which has 

not been addressed yet, is the development effort needed 

to implement the macros. In most current applications, 

one macro contains a small number (e.g four or eight) 

Table 1: Comparison of the three approaches 

placement 

approach

permanent 

connection 

module 

relocation 

multiple 

instantiation

s

area costs signal latency 

position-based 
free 1D, 

fixed slots 
- 1

module-based 
free 1D, 

fixed slots 
- 1

slot-based fixed slots 
one column 

per slot 
1

shift register 
free 1D, 

fixed slots 

two registers 

per slot 

N + 1 

(1)

N: number of modules loaded 



signal lines per row. These macros are then instantiated 

multiple times to realize a complete bus structure. In case 

of the global enable signal, which is used as an example 

above, where one signal controls 32 or 64 tristate drivers, 

this “copy and paste” design flow for the bus macros is 

not possible any more. Instead, one big bus macro has to 

be generated. Doing this manually is a tough, error-prone 

job. EDA tools for an automated macro design are still 

not available, but would be a great help for the 

implementation of dynamically reconfigurable systems. 

4. Conclusion and further work 

In this paper we have discussed different methods of 

routing dedicated signals to dynamic modules in 

reconfigurable systems. We have analyzed the 

requirements of currently used placement approaches 

such as support for module relocation, multiple module 

instantiations, and connectivity during reconfiguration. 

With regard to these requirements we have shown 

different ways of routing dedicated signals to dynamic 

modules and we have classified them by means of area 

costs and signal latency. For the use of dynamically 

reconfigurable hardware and for the evaluation of 

different placement approaches, communication via 

module specific dedicated signals is a basic requirement, 

which has been ignored in many studies in the past. 

We are currently developing a tool, which is able to 

automatically generate various kinds of macros and which 

supports all of the placement approaches and routing for 

dedicated signals shown in this paper. This framework 

will significantly reduce the time needed for the 

implementation and evaluation of different placement 

approaches for FPGA-based dynamically reconfigurable 

systems. 
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