
Rapid Development of High Performance
Floating-Point Pipelines for Scientific Simulation1

G. Lienhart, A. Kugel and R. Männer
Dept. for Computer Science V, University of Mannheim, B6-26B, D-68131 Mannheim, Germany

{lienhart,kugel,maenner}@ti.uni-mannheim.de

1 This work is supported by the Volkswagen Foundation.

Abstract

In the last years, FPGAs became capable of perform-
ing complex floating-point based calculations. For many
applications, highly parallel calculation units can be
implemented which deliver a better performance than
general-purpose processors. This paper focuses on appli-
cations where the calculations can be done in a pipeline,
as it is often the case for simulations. A framework for
rapid design of such calculation pipelines is described.
The central part is a Perl based code generator, which
automatically assembles floating-point operators into
synthesizable hardware description code where the gen-
erator is directed by a pipeline description file. The
framework is supplemented by various floating-point
operators and support modules, which allow generating
ready-to-use pipelines. The code generator dramatically
reduces development time and produces high-quality
results. The performance of the framework is demon-
strated by the implementation of pipelines for gravita-
tional forces and hydrodynamics.

1. Introduction

With the progress of computer technology, computa-
tional investigation of physical models by simulation
became a research field of major importance. Due to its
high computational demand special purpose computers
found particular interest.

With current FPGA technology, it became possible to
design custom computing platforms without the need of
constructing ASICs. Even more important for scientific
applications is the option to modify the implementation in
the field as state-of-the-art algorithms are often subject to
change. As the programmable logic resources of today's
FPGAs allows the design of fast and highly complex
computation units, FPGA based reconfigurable comput-
ing attracts more and more attention in the scientific and
engineering community. Already published implementa-
tions of this kind are for example [9] were an FPGA

based coprocessor for astrophysics simulations has been
presented, [2] where the realization of a particle based
hydrodynamics simulation with FPGAs is shown, and [7]
where a force calculation pipeline for molecular dynamics
is discussed.

Simulations of physical models usually require arithm-
etic with high precision and a wide dynamic range. For
that, floating-point arithmetic is commonly used. This
paper focuses on applications where the calculations can
be arranged in a pipeline. If there is enough space on the
target FPGA to implement one calculation unit for each
operation then a direct pipeline approach leads to the
fastest possible implementation. However, high-
performance designs do not only need high-speed opera-
tors but also require that the architecture is carefully as-
sembled. To find the solution, which provides the best
synthesis results, several iterations may be needed. As
physical simulations may easily require 50 or more op-
erations inside the pipeline, the manual design of such
pipelines is a tedious and error-prone task. Our frame-
work automates most of this work and lets the designer
concentrate on the architecture of the calculation unit.

The outline of this paper is as follows. After reviewing
related work, we concretize the demands concerning the
generation of FPGA designs by discussing the structure
of our target applications and our implementation of a
floating-point library. We then describe our framework
design and the pipeline code generator. We will demon-
strate the performance by showing the implementation
results for two highly complex pipelines that are used for
astrophysical simulations. Our approach is not limited to
the FPGA for which we present the results, but works for
any modern FPGA (e.g., Xilinx Virtex4 is already sup-
ported).

2. Related Work

As current developments in FPGA technology makes
the implementation of floating-point computing circuits
more and more attractive there is an ever-increasing ac-
tivity in this field. Therefore, much work has been done

1-4244-0054-6/06/$20.00 ©2006 IEEE

on designing floating-point units on FPGAs and the fol-
lowing can only provide a fragmentary overview. In [1]
the authors presented a parameterized library of floating-
point operators, which supports adders and multipliers up
to single precision. In [2] a parameterized library for
operands up to single precision was described, which
additionally contains divider and square root units. In [3]
the authors pointed out the benefits from hardware multi-
pliers and shift registers for the design of floating-point
adders, multipliers and dividers on modern FPGAs. In [4]
the effects of pipeline depth of floating-point multipliers
and adders for operators up to double precision were
discussed. For comparison with commercial libraries, see
e.g. [5] and [6].

Regarding tools for rapid development of FPGA de-
signs from high-level description, most work has been
done in the area of digital signal processing. In [12] the
authors introduce JHDL, a Java based circuit design envi-
ronment. In [13] an environment is described where
MATLAB code is automatically translated to C code for
CPUs and VHDL sources for the reconfigurable comput-
ing part of an algorithm. Well established approaches,
which use C code with some language extensions at de-
sign entry, are Handel-C and System-C [14]. All these
languages have in common that they aim at producing
FPGA designs for a wide range of applications. This
means that the designer must have a very clear view, how
the compilers translate codes to FPGA designs in order to
produce high-quality results. Further, utilizing param-
eterized external IP cores for arithmetic operations, if at
all possible, means to write non-intuitive code. In contrast
to this, there are block-based design approaches like the
Xilinx system generator for the Mathworks Simulink
interface [15]. Such tools allow a graphical design entry
and simulation, and automated implementation of FPGA
designs. However, introducing new parameterized calcu-
lation units means a high effort. Besides, graphical entry
of pipelines with some 10 operators is much less intuitive
than writing down the formulas like in a programming
language. In [11] the authors presented a Perl based
framework with the aim of generating VHDL code for
calculation units by compiling object oriented Perl code.
Floating-point numbers with parameterized precision
were represented by objects and the computation structure
was set by connecting these objects with overloaded op-
erators. The framework has a built-in optimization algo-
rithm for finding the best parameter set for operand preci-
sion. In [9] a code generator for many-body simulations is
presented which creates both FPGA design code and
software. The tool supports floating-point based pipelines
but is limited to a predefined computation pattern.

In our work, we aim at providing a widely applicable
design environment, which supports many different and
specialized parameterized floating-point operators but has
an easy-to-use design entry and is easy to extend for fu-

ture libraries. None of the mentioned development plat-
forms fits with these requirements. We will present how
our implementation of a design framework achieves our
goals for generating high-quality pipeline calculation
units.

3. Target Applications

We are mainly interested in simulations where a
physical system is represented by particles and the devel-
opment of the system over time shall be investigated.
Applications of that kind can be found e.g. in astrophys-
ics, molecular dynamics and engineering.

In such simulations, usually a time step scheme is ap-
plied and according to Newton's laws, the motion of the
particles is driven by the forces on these particles. Force
calculations commonly consume the main fraction of
computing time. The force on a particle results from the
accumulated contributions from the interaction partners.
These may be all other particles or only a limited number
of neighboring particles.

The abstract computing structure is like in many other
simulation applications too. All data related to a particle
with index k shall be labeled with the same index (xk

1..
xk

n). Computing a physical value yi for a particle with
index i, where a subset of other particles contribute (indi-
ces)(iNj ∈) demands a summation over a term that
depends on variables with index i and j.

()∑
∈

=
)(

11 ..,..
iNj

n
jj

n
iii xxxxFy (1)

This structure of computation leads to the hardware
scheme shown in Figure 1, where the data xk

l is stored in
memory.

Arithmetic Unit

Control

RAM
data x1..xn

F(xi
1 ..xi

n ,xj
1 ..xj

n) Accu-
mulator

i-data j-data

Index i,j

Processing Pipeline

Figure 1. Hardware scheme for abstract
computation pattern.

A well-known example is the treatment of gravita-
tional interactions in astrophysics simulations:

()
∑

≠

−+

−
−=

ji

ji

jij
i

grav
i

rr

rrm
mGF

2

3
22

)(

rr

rr

r

ε

(2)

The constant ε is an artificial smoothing factor that
avoids unphysical high forces for close encounters of
particles (in typical simulations a single particle may
represent thousands of stars). This problem has exactly
the structure of equation (1). The main part developing an
FPGA design for that is to assemble the inner sum as a
pipeline. In the comparatively simple case of equation (2)
the pipeline can be composed using 6 adders, 9 multipli-
ers, 1 square root unit and 1 divider.

4. Floating-Point Library

To design pipelines for scientific calculations we im-
plemented a floating-point library with a full set of basic
operators. Besides being parameterized in precision, the
library was developed with the aim to benefit as much as
possible from the algorithm with respect to economical
use of logic resources. Therefore, many special operators
for different constraints concerning input range and out-
put quality were designed. Different operators are used
for the addition of signed and unsigned values. A square
operator instead of a multiplier is used when a square
operation is performed. There are different operators for
different rounding modes (truncation, round to nearest
even, round to nearest number). Area and speed opti-
mized versions of the operators are available. Even op-
erators for special cases like mean value, multiplication
by 3 or multiplication by a power of two have been de-
signed, as well as special operators for vectors like cross
product or norm of vector. Altogether, there are more
than 30 different operators which must be supported by
the pipeline generation.

To demonstrate the value of specializing operators
concerning the savings of logic resources some perform-
ance numbers for different versions of adders and multi-
pliers are collected in Table 1 and 2. For comparison,
only data for single precision operators are shown. It shall
be mentioned, that the IEEE 754 compliant precision of
our operators may vary between 4 and 28 bit mantissa
width. Our library is not limited to Virtex2 FPGAs but
also supports the most recent Xilinx FPGAs as well as
FPGAs from other manufacturers.

In Table 1 four versions of floating-point adders of our
library and two commercial implementations are com-
pared (data sheets of [5] and [6] from 2002 with imple-
mentations for Virtex2-4 FPGAs). The numbers differ
quite remarkably. If speed is less important, e.g. if overall
speed is anyway dominated by external memory, 15-20 %
of the slices can be saved by going from the speed opti-
mized version to the area optimized one. When there are
only unsigned inputs then around 40 % of the slices can
be saved without any loss of performance and even gain-
ing a smaller latency.

Table 2 demonstrates the advantages from diversifica-
tion of multiplier units comparing four units of our library

and two commercial implementations. Squaring requires
about 40 % less slices and saves one block multiplier
compared to multiplying. Another 40 % of the slices can
be saved by using the area optimized designs.

It shall be noted that by using round to nearest number
mode (which is not IEEE 754 compliant) instead of round
to nearest even, as for many algorithms that does not
introduce significant errors, further 8-15 % of the slices
for the adders and up to 15 % for the multipliers can be
saved, depending on the mantissa width of the operators.

From these examples we see that the specialization of
floating-point operators is essential for producing calcu-
lation pipelines that provide the best possible perform-
ance for a given problem. However, the variety of mod-
ules makes manual design of complex arithmetic units an
even more demanding and error prone task. Our design
methodology completely relieves the HDL developer
from caring about module interfaces and operator laten-
cies and therefore allows extremely short development
cycles with ready for production results.

Table 1. Performance of different floating-
point adders with single precision on
Virtex2-4 FPGA2.

Operator Virtex 2
Slices

Speed
(MHz)

Lat.
(cyc.)

Unsigned Add, area opt. 165 81 4
Add, area opt. 276 78 6
Unsigned Add, speed opt. 208 143 6
Add, speed opt. 330 144 12
Nallatech Add 290 152 14
Quixilica Add 365 137 10

Table 2. Performance of different floating-
point multipliers with single precision on
Virtex2-4 FPGA.

Operator Virtex 2
Slices

Block
Mult.

Speed
(MHz)

Lat.
(cyc.)

Square, area opt. 53 3 97 4
Mult, area opt. 97 4 70 4
Square, speed opt. 89 3 143 5
Mult, speed opt. 149 4 138 5
Nallatech Mult 126 4 113 6
Quixilica Mult 358 0 128 7

5. Framework Design

The framework consists of two complementing devel-
opments. The first part is to embed the arithmetic units in
a uniform interface structure in order to simplify the
structural coding of pipelines as much as possible. It will

2 All performance results were gained using a Xilinx Virtex2 FPGA
XC2V6000-4, as we use this chip on our current prototype platform.

be described how this is done, so that the parameteriza-
tion is completely preserved and the calculation units can
easily be simulated. The second part is the code generator
that automatically creates structural code for the pipeline
architecture based on an architecture description file. This
generator will be described in section 6 in detail. Figure 2
shows the overall structure of our framework. The gray
boxes represent the elements, which are independent of
the utilized floating-point core library and target platform.
As can be seen, beside the floating-point library only
some wrapper units need to be modified when new op-
erators shall be supported.

In the current framework, all floating-point operators
are grouped into five different classes of operators:

1. Unary operators
2. Binary operators
3. Operators with two input vectors and result vector
4. Operators with two input vectors and scalar output
5. Operators with one input vector and scalar output

The vector dimension is currently fixed to 3. All sup-
ported operators must comply with some design condi-
tions. For each operator there must be a function which
returns the latency according to parameters like mantissa
width and pipeline depth. Beside signals for floating-point
values, only a limited number of control signal inputs and
outputs are supported (currently 4 in both directions).
Any operator may have only one clock.

For enclosing operators into a uniform interface three
elements of abstraction are used:

1. Enclose all signals which are related to a floating-
point number into a record

2. Enclose all information related to the implemen-
tation of an operator into an operator descriptor
record

3. Use a small number of wrapper components for
instantiating the floating-point operators

Pipeline
Description
Language

Pipeline
Generator

Floating-point
Module Library

Wrappers

Library
Independent

Interface

Auto Generated
Pipeline

HDL Code
Generator

Figure 2. Framework for automatic pipeline
generation.

In Figure 3 the hierarchical structure of the HDL part
of the framework is drawn, which will be described in the
following. The white boxes are the only ones which need
to be modified when the floating-point library changes.
The gray boxes exist in two versions, one for simulation
and one for synthesis. The bold written types, functions
and entities are used for assembling the pipelines.

The first element of abstraction, enclosing the floating-
point number signals, is done via a VHDL record called
floPValType. It consists of signals for mantissa, exponent
and sign, an additional flag which shows if the number is
equal to zero, and in the simulation library also a signal of
type real. The latter takes the value of the represented
number, which makes simulation much easier. The width
of the mantissa and exponent is set to the maximum sup-
ported value, but usually only a fraction of it is used. In
order to describe how many bits of the signals in floP-
ValType are actually used, a record called floPValDef is
created. There the size of the mantissa and exponent is
stored, and the information if the sign and zero informa-
tion are used. All types and support functions for dealing
with the abstract floating-point representation are col-
lected in the library part called floPVal. Regarding the
descriptor record for floating-point operations, the fol-
lowing information is needed to completely describe any
operator of our floating-point library:

• Type of operator
• Number of arguments and for each argument a de-

scriptor record floPValDef
• Number of results and for each result a descriptor

record floPValDef
• Pipeline depth
• Latency of operator
• Number of auxiliary input and output signals (e.g.

reset, strobe, ready, error …)

All this information is stored in a record called flo-
POpDescriptor. The operator type is encoded with identi-
fiers via an enumeration type floPOpType. Special fea-
tures like non-standard rounding mode are defined by the
type of the operator. Operator descriptors are generated
via functions, one for each class of operators, according
to the operator type and parameters. The latency informa-
tion is calculated by calling the according function of the
floating-point library (the presence of such a function was
presupposed above).

All operators are enclosed inside two wrapper compo-
nents, one for scalar operators and one for vector opera-
tors. There, the instantiation of an operator as well as its
parameterization is selected by the floPOpDescriptor
record, given as a generic in VHDL. The wrapper com-
ponents do not use the floPValType records for floating-
point ports (they are introduced in a second abstraction
layer, see below). The operator type and descriptor rec-
ords together with the wrapper components and operator

specific functions are collected in the library part called
enclosedFloPOp. This part is the only one which changes
when the floating-point library changes.

Therefore, the framework is very easy to extend. In or-
der to add a new operator only the following little modifi-
cations must be done:

• Add a new identifier to floPOpType
• Extend function for generating floPOpDescriptor
• Extend wrapper component

Finally, a second abstraction layer is put over the en-
closedFloPOp library part, called abstractFloPOps.
There, basically floating-point component generators are
implemented, one for each class of operators, which in-
stantiate the wrapper component from enclosedFloPOp,
but now use the abstract floating-point representation
floPValType. Additionally there is a module for generat-
ing delay elements for floating-point numbers. The reason
for introducing a second abstraction layer is that this part
needs no changes when the floating-point library is ex-
tended. Therefore, this is a good place for including spe-
cial simulation-only features by splitting the codes into a
simulation and synthesis version. The simulation version
takes care that for each floating-point signal a real value
is kept up-to-date, which makes simulation of complex
pipelines much easier.

floPVal abstract-
FloPOps

enclosed-
FloPOp

Floating-point
operator library

Entities:
 floPMult,floPAdd...

Types:
 - floPOpType
 - floPOpDescriptor

Functions:
 - getUnaryOpDescriptor
 - getBinaryOpDescriptor
 - ...
Entities:
 - genUnaryOp
 - GenBinaryOp
 - ...

Types:
 - floPValDef
 - floPValType
Functions:
 - mapFloPVal,
 - unmapFloPVal,
 - getSign, absolute ...
 - gate, latch, reg, ...

Pipeline
design

Entities:
 - enclosedFloPOp
 - enclosedFloPVecOp
Functions:
 - getUnaryFloPOpDescriptor
 - getBinaryFloPOpDescriptor
 - ...

Figure 3. HDL framework for pipeline generator.

6. Pipeline Code Generator

With the HDL part of the framework as described in
the last section, it is possible to assemble parameterized
floating-point calculation pipelines with many different
operators by using only a very small number of interfaces.
However, it is still a time consuming and error prone task
to create pipelines consisting of some 10 operators where-

fore many hundreds of lines of HDL codes have to be
written.

Our pipeline code generator completely takes on this
part and only a pipeline description file in a simple to use
language needs to be written. The generator is imple-
mented in Perl. The decision to use Perl was made be-
cause of following qualities:

• Available on almost any platform
• Very capable built-in text manipulation features
• Very little language overhead allows compact code

and fast development
• No need to care about variables for dynamic data

structures

The VHDL code output of the generator was designed
to benefit as much as possible from the capabilities of
VHDL concerning calculation of parameters at the time
of component instantiation and conditional elaboration of
code. As the framework aims at assisting the FPGA de-
signer with the HDL design flow, a key feature is, that the
generated code is well readable and easy to simulate. The
resulting generator implementation is very fast, robust
and provides helpful error messages. Generating pipelines
with 50 operations takes only a fraction of a second.

The language for describing the target pipeline archi-
tecture basically consists of three elements:

1. Define parameter sets for floating-point values
2. Declare variables
3. Set operations via expressions

Any floating-point parameterization is set via a de-
scriptor floPValDef like in following example, where the
mantissa and exponent width for a signed single-precision
number without a zero-flag are defined:

floPValDef spDef(signifLength => 24,
 expLength => 8,
 useSign => 1, useIsZero => 0);

Both signals and floating-point variables can be de-
clared. The type for floating-point values is called floPVal
and any declaration of this type must contain an attached
floPValDef descriptor:

FloPVal (a,b)(spDef);

Expressions for operations are written in the form of
an equation. Signals can be treated with logical equations
like in a hardware description language:

signal (a,b,c);
a = b xor c;

Expressions for floating-point values are written with
the <...> construct were the name of the operator is pro-
vided inside the angle brackets and the operator class is
chosen by the number of operands on the left and right
side as well as the number of results.

Examples are:

z = <floPSquare> x; Unary operator
z = x <floPAdd> y; Binary operator

(rx,ry,rz)=
(x,y,z)<floPVecDiff>(r,s,t);

Operator with 2
vectors input and
result vector

d = (x,y,z)<floPVecDistance>
(r,s,t)

Operator with 2
vectors input and
scalar output

q = <floPVecSquare>(x,y,z)
Operator with
vector input and
scalar output

Operator specific parameters, e.g. the pipeline depth,
are set by a construct like follows:

<>.parameter_name = parameter_value;

The therewith-defined parameter is used for the pre-
ceding operator and all succeeding operators. There is
also a custom module operator which allows to introduce
modules which are not covered by the above described
library part abstractFloPOps. The syntax is like follows:

<<entityName>(list_of_generics), list_of_ports>;

This construct can be applied to instantiate any VHDL
component which has a generic declaration consisting of
integers and floPValDef descriptors, and a list of ports
with logic signals and floPValType signals.

A number of support modules are provided via func-
tions like the following examples:

s = getSign(x) signal s, return sign of floPVal x
l = abs(x) return absolute value of x
z = latch(x,s) save x when s is high
q = gated(x,s) return x when s is low, else 0

Figure 4 shows an example for a pipeline description
file which can be processed by the pipeline generator. The
pipeline implements the calculation of the electrostatic
potential from particles within a sphere of radius rmax:

∑
<− −

=
rmaxxxj ji

j
ik

ji
xx

q
xV

rr

rr

r

:

1)((3)

Figure 5 shows the architecture of the resulting design.
The delay elements have been introduced automatically
according to the latencies of the operators, and the control
signal flow is generated correctly. The operator
unsignedFloPValGE was implemented via the custom
module operator, as it is not part of the floating-point
library interface. This operator requires the presence of a
package floPValCmpPack, which has been declared by
the package statement. The name of the resulting pipeline
module is provided via the entity statement and the de-
fault clock is set by the clock statement.

All signals, which are not assigned, are automatically
treated as inputs to the module. Signals, which are not
used at the right side of any expression, are treated as
outputs. Type descriptors which are used for inputs or
outputs are taken into the generic part of the resulting
entity definition. Any other parameters can be put on the
generic part when the specifier generic is used like with
pipelineDepth in the example. The generator allows im-
plicit declaration of variables when the type can be de-
rived from the context. Signals may be declared static,
which means that they do not need to be synchronized
(like the signals reset and maxr in the example).

entity electrostaticPotential;

package floPLib.floPValCmpPack;

clock clk;

parameters
floPValDef fpDef(signifLength => 24,
 expLength => 8,useSign => 1,useIsZero => 0);

generic int pipelineDepth = 1;

inputs
signal (validIn_i,validIn_j,lastIn_j);
static signal reset;
floPVal (xIn,yIn,zIn,qIn)(fpDef);
static floPVal maxr(fpDef);

outputs
floPVal potOut(fpDef);
signal validOut;

save i-position
ix = latch(xIn,validIn_i);
iy = latch(yIn,validIn_i);
iz = latch(zIn,validIn_i);

calculate distance
rij =(ix,iy,iz)<floPVecDistance>(xIn,yIn,zIn);
<>.pipelineDepth = pipelineDepth;

suppress when rij > maxr
<<unsignedFloPValGE>(argDef=>fpDef),
 in argA(argDef)=>maxr, in argB(argDef)=>rij,
 out res(argDef)=>open, out A_ge_B=>suppress
>;
<>.latencyFunction = unsignedFloPValGELatency;

#calculate contribution to potential
pij = qIn <floPDiv> rij;
ppij = gated(pij, suppress);

generate 'isFirst' strobe
isValid = validIn_i or validIn_j;
savedStrobe_i = latch(validIn_i,isValid);
isFirst = savedStrobe_i and validIn_j;

#accumulate
(potOut,validOut) = accu(ppij,validIn_j,
 isFirst,lastIn_j,reset);

Figure 4. Example for pipeline description file.

The following is the resulting entity header:

entity electrostaticPotential is
generic(
 pipelineDepth: integer := 1;
 fpDef: floPValDef := init(signifLength=>24,
 expLength=>8, useSign=>true, useIsZero=>false)
);
port(
 clk: in std_logic;
 validIn_i: in std_logic;
 validIn_j: in std_logic;
 lastIn_j: in std_logic;
 reset: in std_logic;
 xIn: in floPValType;
 yIn: in floPValType;
 zIn: in floPValType;
 qIn: in floPValType;
 maxr: in floPValType;
 potOut: out floPValType;
 validOut: out std_logic
);
end electrostaticPotential;

The generated component is still fully parameterized.
Additionally to the entity, a function called getElec-
trostaticPotentialLatency is produced for calcu-
lating the total latency according to the parameters. This
makes the integration into the top-level designs very easy
and moreover enables the hierarchical design of very
complex parameterized calculation pipelines.

7. Results

We demonstrate the capability of our approach with
two implementations of calculation pipelines. The first is
related to gravity calculation for astrophysical N-body
simulation. A pipeline has been generated which imple-
ments equation (2) and additionally the potential and the
time derivative of the force as these are required for state
of the art simulation codes. The resulting pipeline consists

of 21 adders, four of them for unsigned inputs, 16 multi-
pliers and 3 square units, one divider, one square root and
one multiply-by-3 element, in total 43 operators. The
second example is the calculation unit for hydrodynamic
forces by the smoothed particle hydrodynamics algorithm
(see e.g. [16]). This is a standard method to deal with
gaseous matter in astrophysics simulations. The pipeline
consists of 65 operators and special operators are exten-
sively used. Operators with 16 mantissa bits precision
were used, as this is sufficient for the target application.

Table 3 shows the implementation results for both
pipelines comparing different settings.

Table 3. Implementation results for different
pipelines. The number of adds #A, unsigned
adds #U, mults #M, squares #S, square roots
and divisions #R and special operators #X
are shown (one operator of category X may
merge several operations). The area and
speed results for a Virtex2-4 FPGA and the
number lines in the pipeline description file
and VHDL code are shown (#PPL/#VHDL).

#A #M #R Slices #PPLPipeline
#U #S #X

Tot.
#Ops BM

Freq.
/MHz #VHDL

17 16 2 9872 237Grav.
(area) 4 3 1

43
73

71
3630

17 16 2 12527 271Grav.
(speed) 4 3 1

43
73

102
4558

21 19 2 15412 264Grav.
Xilinx - - 1

43
76

99
4255

8 17 5 7170 -SPH
(manual) 7 8 8

65
25

79
3302

8 17 5 6972 188SPH
(auto) 7 8 8

65
25

82
3137

Latch
 dIn dOut
 save

floPVecDistance

Latch
 dIn dOut
 save

Latch
 dIn dOut
 save AX

 AY
 AZ
 BX

 BY

 BZ

 dIn

dOut Delay

Delay

accu

 dIn

 dIn

 firstIn

 validIn

dOut

dOut

Q

Q

Delay
 dIn dOut

 validIn_i
 validIn_j

 qIn

 maxr

 xIn

 zIn

 yIn potOut

 dIn

DFF

 D
Q E

Delay

S1

0

0.0

 dIn dOut

unsigned
floPValGE

 A

 B A B

Delay

 lastIn

 lastIn_j

 dIn dOut

floPDiv

 B

 A

 A

 B

reset

reset

 validOutValid

Figure 5. Synthesis result of example code from Figure 4.

The gravitation calculation pipeline was implemented
with our framework using area and speed optimized
floating-point units of our own library and the speed-
optimized modules from the new XILINX core library
(but still using the multiply-by-3 element). Using our
library led to a saving of 19 % slices and 3 block multi-
pliers at equal performance. Going to the area-optimized
designs even a saving of 36 % resulted.

The results for the SPH pipeline contrasts a manually
generated pipeline and the corresponding automatically
generated one, using the same operators in both cases.
While achieving the same speed, the automatic process
led to an even more efficient design concerning the num-
ber of slices due to more efficient use of delay elements,
although the difference is not dramatic. But the saving in
development time (about 10x), measured by a saving in
written code lines of about 15x is quite impressive.

8. Conclusions

We presented a methodology for the design of float-
ing-point based calculation pipelines. We introduced a
HDL framework design for embedding parameterized
floating-point modules in a uniform abstract interface,
independent of the actually used calculation cores. It
enables systematically building compact code, which is
easy to simulate.

Based on this abstraction layer a tool for automatically
generating VHDL code for arbitrary complex calculation
pipelines was presented. By designing an architecture in a
very intuitive programming-like way with a specially
designed pipeline description language, ready-to-use
FPGA designs with production quality are generated.
Even arbitrary control signal flow is supported which
means that designs can be generated which fit without
modification to any top-level control architecture. The
design examples were presented for Virtex2 FPGAs but
up-to-date FPGAs like Virtex4 are already supported.

Our approach frees the FPGA designer from the tedi-
ous and error-prone process of producing calculation
pipelines. With this work, the design of highly complex
calculation pipelines for scientific simulation applications
can be done at the speed of writing software.

References

[1] P. Belanovic, M. Leeser, "A Library of Parameterized
Floating-Point Modules and Their Use", Proc. of the 12th
International Conference on Field-Programmable Logic
and Applications (FPL), 2002, pp. 657-666.

[2] G. Lienhart, A. Kugel, and R. Männer, "Using Floating-
Point Arithmetic on FPGAs to Accelerate Scientific N-
Body Simulations", Proc. of the 10th International sympo-
sium on Field Programmable Custom Computing Machi-
nes, 2002, pp. 182-191.

[3] E. Roesler, B.E. Nelson, "Novel Optimizations for Hard-
ware Floating-Point Units in a Modern FPGA Architec-
ture", Proc. of the 12th International Conference on Field-
Programmable Logic and Applications (FPL), 2002, pp.
637-646.

[4] G. Govindu, L. Zhuo, S. Choi and V. Prasanna, "Analysis
of High-performance Floating-point Arithmetic on
FPGAs", Proc. of the 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2004.

[5] Nallatech Limited, "IEEE-754 compatible floating point
cores for Virtex-II FPGAs", www.nallatech.com, 2002.

[6] Quixilica Limited, "Quixilica Floating Point FPGA Cores
DataSheet", www.QinetiQ.com/quixilica, 2002.

[7] R. Scrofano and V.K. Prasanna, "Computing Lennard-
Jones Potentials and Forces with Reconfigurable Hard-
ware", International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA), 2004.

[8] K.H. Tsoi, C.H. Ho, H.C. Yeung and P.H.W. Leong, "An
Arithmetic Library and its Application to the N-body
Problem", Proc. FCCM'04, 2004, pp. 68-78.

[9] T. Hamada and N. Nakasato, "PGR: A Software Package
for Reconfigurable Super-Computing", Proc. of the 15th
International Conference on Field Programmable Logic
and Applications (FPL), 2005, pp. 366-373.

[10] K. Underwood, "FPGAs vs. CPUs: trends in peak floating-
point performance", Proc. of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate ar-
rays, 2004, pp. 171-180.

[11] C.H. Ho et al., "Rapid Prototyping of FPGA Based Float-
ing Point DSP Systems", IEEE International Workshop on
Rapid System Prototyping 2002, pp. 19-24.

[12] B.L. Hutchings, B.E. Nelson, "Using general-purpose
programming languages for FPGA design", Proc. of the
37th Conference on Design Automation, 2000, pp. 561-
566.

[13] P. Banerjee et al., "Overview of a Compiler for Synthesiz-
ing MATLAB Programs onto FPGAs", IEEE transactions
on VLSI, vol. 12, no. 3, 2004, pp. 312-324.

[14] Celoxica Ltd, http://www.celoxica.com/technology/fpga/,
2005.

[15] "Xilinx System Generator v7.1 User Guide", Xilinx Inc. ,
2005.

[16] W. Benz, “Smooth Particle Hydrodynamics: A Review”,
J.R.Buchler(ed), The Numerical Modelling of Nonlinear
Stellar Pulsations, J. R. Buchler (ed.), Kluwer Academic
Publishers, 1990, pp. 269-288.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

