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Abstract

FPGA chips in reconfigurable computer systems are used 
as malleable coprocessors where components of a 
hardware library of functions can be configured as 
needed. As the number of hardware functions to be 
configured typically exceeds the underlying chip area 
during the execution of an application, previous efforts 
have introduced configuration caching.  Those efforts, 
however, have focused on two run-time-reconfiguration 
scenarios, which consider a single application running on 
the reconfigurable system.  In the full reconfiguration 
scenario, functions of an application are arranged into 
blocks each of which has enough functions to fill the 
entire chip.  The blocks are configured in a deterministic 
sequence needed by the application based on the a priori 
knowledge about the application.  In the partial 
reconfiguration scenario, each function is configured or 
replaced on a function-by-function basis, based on the 
application needs.   In the former technique, spatial 
processing locality is well exploited.  In the latter, only 
temporal processing locality is exploited.   In this work, 
we propose a technique suitable for multitasking and for 
cases of single applications that can change the course of 
processing in a non-deterministic fashion based on data.  
In order to exploit processing locality, both spatial and 
temporal simultaneously, the proposed model groups 
hardware functions into hardware configuration blocks 
(pages) of fixed size, where multiple pages can be 
configured on a chip simultaneously.  By grouping only 
related functions that are typically requested together, 
processing spatial locality can be exploited.  Temporal 
locality is exploited through page replacement 
techniques.  Data mining techniques were used to group 
related functions into pages.  Standard, replacement 
algorithms as those found in caching were considered.  
Simulations, as well as emulation using the Cray XD1 
reconfigurable high-performance computer were used in 
the experimental study.  The results show a significant 
improvement in performance using the proposed paging 
technique. 

1.  Introduction 

Reconfigurable Computers (RCs) have recently 
evolved from accelerator boards to stand-alone general-
purpose RCs and parallel reconfigurable supercomputers 

[1, 2]. Examples of such supercomputers are the Cray 
XD1, SRC, and the SGI Altix with FPGA bricks [2].  

Although Reconfigurable Computers can leverage the 
synergism between conventional processors and FPGAs, 
there exist multiple challenges that must be resolved [3]. 
One of the challenges is that some large circuits require 
more hardware resources than what is available, and the 
design cannot fit in a single FPGA chip. One solution to 
this problem is run-time reconfiguration (RTR). RTR 
allows large modular applications to be implemented by 
reusing the same configurable resources. Each application 
is implemented as a set of hardware functions (modules) 
that do not need concurrent execution. Each hardware 
function is implemented as a partial configuration which 
can be uploaded onto the reconfigurable hardware as it is 
needed to implement the application. Partial 
reconfiguration allows configuring and executing a task 
onto an FPGA without affecting other currently running 
tasks, which can increase device utilization. On the other 
hand, the problem of the reconfiguration time overhead 
has always been a concern in RTR. As configuration time 
could be significant, eliminating, reducing, or hiding this 
overhead becomes very critical for reconfigurable 
systems.  

Locality of references has been used to provide high 
average memory bandwidths in conventional 
microprocessor-based architectures through caching and 
memory hierarchy techniques.  A parallel concept can be 
defined within the context of reconfigurable computing 
[3]. Considering applications that are built out of small 
reusable functional modules,   the use of such modules 
can exhibit spatial and temporal localities.  In this context, 
spatial locality refers to the fact that certain hardware 
functions may be correlated in the way they are used by 
applications and therefore appear together during 
execution.  Temporal locality, mainly due to loops, refers 
to the fact that functions used in the past may be used 
again in the near future. To contrast these from the 
standard address-based locality of references, we call 
them processing spatial locality, processing temporal 
locality, or processing locality in general. 

Li and Hauck [4, 5] proposed several techniques to 
cache the configuration for different FPGA models, e.g. 
single context and partial RTR (PRTR). For the case of 
single context FPGAs, their technique groups the 
configurations into several groups and configures the 
whole FPGA chip with one of these groups as required.  
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This method works well for a single application. A 
simulated annealing algorithm was used to create the 
groups, out of an application. This method assumes that 
the configurations sequence is known in advance 
(deterministic behavior). They also proposed a method for 
creating the groups based on the statistical behavior of the 
applications. However, this method considers pair-wise 
function correlations. This guarantees that each newly 
added function appears with every function, which has 
been pre-selected in the group, individually but does not 
place a weight on the probability that all functions of the 
same group will appear together. For the case of PRTR 
FPGAs, they used the Least-Recently-Used (LRU) 
replacement technique to replace the victim function on a 
function-by-function basis, according to the application 
needs.

In this work, we propose a technique suitable for 
multitasking and for cases of single applications that can 
change the course of processing in a non-deterministic 
fashion based on data.  In the proposed model, hardware 
functions are grouped into hardware reconfiguration 
blocks (pages) of fixed size, where multiple pages can be 
configured on a chip simultaneously.  By grouping only 
related functions that are typically requested together, 
processing spatial locality can be exploited.  In addition, 
temporal locality can consecutively be exploited through 
page replacement techniques.  Data mining techniques are 
used to group related functions into pages.  Standard, 
replacement algorithms as those found in caching can also 
be considered.   

Simulation and emulation, using the Cray XD1 
reconfigurable high-performance computer, were used for 
the experimental study.  The results showed a significant 
improvement in performance using the proposed paging 
technique. 

2. Performance Limitations 
One limitation of reconfigurable computing is that 

some large applications require more hardware resources 
than are available, and the complete design cannot fit into 
a single FPGA chip. One solution to this problem is run-
time reconfiguration (RTR). RTR is   an   approach   that   
divides applications into a number of modules with each 
module implemented as a separate circuit. These modules 
are uploaded onto the reconfigurable hardware as they 
become needed to implement the application. However, 
this also increases the reconfiguration latency overhead.  

The time needed to download the binary bitstream into 
an FPGA introduces a significant overhead for RTR. In 
other words, reconfiguration latency as a challenge in 
reconfigurable computing can offset the performance 
improvement achieved by hardware acceleration when 
RTR is considered [3].  

Reconfiguration methods in current systems are not  

Figure 1. RTR Example. 

fully dynamic. Although reconfiguration in these systems 
happens at runtime, it follows a fixed (static) schedule 
that has been determined off-line.  

3. Model Assumptions

In this paper, only partial run-time reconfiguration 
(PRTR) is considered. In this scenario, the application is 
divided into a set of independent modules that need not to 
operate concurrently. Each module is implemented as a 
distinct configuration (function) which can be 
downloaded into the FPGA as necessary at run-time.  

Developing applications for PRTR requires both 
hardware and software programming. The application is 
written in a sequential high level language like C with 
calls to some HW functions (modules) from a predefined 
domain-specific hardware library. At the reconfigurable 
hardware level, the HW functions library can be 
developed using a hardware description language. This 
Library contains the fine-grain processing basic building 
blocks (e.g. FFT, edge detection, and/or Wavelet 
decomposition) independent of the applications. 
Applications only deal with the application program 
interface (API) for the library.  Fig. 1 shows an example 
of an image processing application. The application uses 
the Fourier theorem to convolve an input image with a 
filter image through a combination of Fourier transforms 
and matrix multiplication followed by the inverse Fourier 
transform. The HW functions FFT, IFFT (Inverse Fast 
Fourier Transform), and Matrix-Mull are part of the 
hardware library. These hardware functions are uploaded 
to the FPGA as needed by the application. 

4. Approach 

The main idea of the proposed model is to consider the 
FPGA as a cache memory of configurations and retains 
them in the FPGA itself until they are required again.  It 
attempts to predict configurations, based on processing 
locality principles, that are going to be needed in the near 
future and configure them into the FPGA before they are 
actually requested. We propose new techniques that 
manage the reconfigurable resources at run-time in a 
general-purpose multitasked and data-dependent 



reconfiguration cases by exploiting processing locality to 
provide a virtual-memory-like resource management. 
These techniques address aspects such as blocking and 
run-time reconfiguration management.  

4.1. Blocking 

Virtual memory is the operating system abstraction that 
gives the programmer the illusion of an address space 
being larger than the physical address space. Virtual 
memory can be implemented using either paging or 
segmentation. In paging, the task logical address space is 
subdivided into fixed-size pages. In segmentation, the 
task logical address space is subdivided into logically 
related modules, called segments. Segments are of 
arbitrary size, each one addressed separately by its 
segment number.  

 The same concept can be leveraged to adaptive 
computing by using blocks. A block is defined as a set of 
tasks to be placed at the same time on the device. 
Blocking exploits spatial processing locality by arranging 
related HW functions into blocks. Spatial processing 
locality would arise from functions that are typically used 
together in a given application. For example, 
morphological operators such as opening and closing in 
image processing, and convolution and decimation in 
Discrete Wavelet Decomposition can be grouped together 
as one block.  

Data mining techniques, such as Association Rule 
Mining (ARM), are used to derive meaningful rules that 
can be useful for creating the blocks. These rules are used 
to determine the degree of correlation between the 
reconfigurable functions in order to group the highly 
related functions together into one block.  

 At run-time, when the application requests any HW 
function, the system configures the entire block. By 
configuring the entire block, the system pre-fetches other 
functions that exist in the same block. When the 
application requests another function from the same 
block, which is likely, the system starts executing it 
directly without the need to configure a new bitstream. 
This can be facilitated by dividing the FPGA area into N 
fixed-size contiguous partitions (pages), segmentation has 
not been covered in this study. A single block at any 
given point of time can be placed in any partition. 
However, blocks are constrained by the page size. 

4.1.1. Association Rule Mining (ARM) 

Association Rule Mining (ARM) is an advanced data 
mining technique that is useful in deriving meaningful 
rules from a given data set [7]. It is frequently used in 
areas such as databases and data warehouses. 

Given a number of transactions of item sets, association 
rule discovery finds the set of all subsets of items that 
frequently occur in many database records or transactions, 
and extracts the rules telling us how a subset of items 

correlates to the presence of another subset. One example 
is the discovery of items that sell together in a 
supermarket from mining the sales transactions at the 
point of sale. A management decision based on such 
findings could be to shelve these items close to one 
another. There are two important basic measures for 
association rules, support and confidence. Since the 
database is large and users are concerned about only those 
frequently purchased items, usually thresholds of support 
and confidence are pre-defined by users to drop those 
rules that are not as interesting or useful. 

A priori Algorithm 

The a priori algorithm is an efficient association rule 
mining algorithm, developed by Agrawal et al, for finding 
all association rules [7]. The principle of this algorithm is 
that any subset of a frequent item set must be frequent.  

Fig. 2 shows an example of a database with 4 
transactions, and it is required to find all rules with 
minimum support of 50%. 

Figure 2. A priori Algorithm — Example. 

Figure 3. Hash Function. 

Figure 4. Hash Table. 



4.1.2. Blocking Algorithm 

The proposed approach exploits spatial processing 
localities by grouping the highly correlated functions and 
loading them as a single block into the FPGA chip.  

The algorithm considers each application as one 
transaction, and the executed hardware functions in that 
application as the items. A profiler is used to store the 
transactions and their items in a table called transaction 
table. The a priori algorithm is executed off-line on the 
transaction table with a specified support and confidence. 
It generates a small table that has the necessary 
information (all rules between hardware functions) for the 
block generation.  
 The blocks generator module generates a set of blocks 
and a hash table to be used at run-time. In other words, 
when the system needs to execute a function that does not 
already exist on the FPGA chip; it uses the hash table to 
select the suitable block and then upload it to the FPGA. 
 We define our hash matrix as a three-dimensional 
array. Each dimension has a length n. A hash function 
maps a key to the entry in the hash table that holds the 
data item referenced to by the key as shown in Fig. 3. 
 The hash function takes the index of the most 
recently three hardware functions as input and returns the 
block that has highly related functions to these three 
functions. Fig. 4 shows a 3D hash table example. 
 For each entry of the hash table, the blocks generator 
algorithm reads the three corresponding functions (one 
function for each index of the hash table), generates a new 
empty block, and inserts the first function into this block. 
Then, it adds the new block to the blocks table, and points 
the corresponding hash table entry to this block. After 
that, it searches for rules that contain either three, first and 
second, or only the first of these functions, preserving this 
search sequence, and adds other functions that appear in 
the retrieved rules to the new block. The algorithm stops 
adding functions to the block when the block size limit 
has reached. If the new block is a subset of an already 
created block or an already created block is a subset of the 
new block, the algorithm deletes the smaller block and 
updates the entries in the hash table to point to the larger 
block. 
 To illustrate the mechanics of the algorithm, we 
consider an Image Processing hardware library that has 
10 functions as shown in Table 1, and four applications 
written in a sequential high level language with calls to 
some HW functions from the library. The first application 
performs Image convolution. The 2nd application 
performs image registration using exhaustive search 
technique while the 3rd one performs wavelet-based 
image registration. The 4th one performs hyperspectral 
dimension reduction algorithms. 
 Table 2 shows the transaction table generated by 
profiling these applications. Table 3 shows the generated 
rules after applying ARM algorithms to the transaction 

table. Each row shows the related functions and the 
support of this relation. Fig. 5 shows the contents of both 
the blocks table and the hash table during the blocks 
creation process. Initially both tables are empty. After 
loop starts, it reads the first three functions which 
correspond to the fft function. The algorithm creates a 
new block (blk1), inserts fft into this block, and points the 
entry (0,0,0) of the hash table to blk1.  Then, it searches 
the rules table for rules that has fft. Rules 3, 4, and 12 
have fft. The algorithm adds other functions in these rules 
to blk1 if the block can accommodate them. The mat_mul 
and ifft functions are added to blk1 as shown in Fig. 5(a). 
In the 2nd loop iteration; the algorithm reads ifft, and fft. 
The algorithm creates a new block (blk2), inserts ifft into 
this block, and points the entry (1,0,0) of the hash table to 
blk2.  Then, it searches the rules table for rules that has 
both ifft, and fft. Rules 4, and 12 have both ifft, and fft. 
The algorithm adds other functions in these rules to blk2 
if the block can accommodate them. The function 
mat_mul is added to blk2 as shown in Fig. 5(b). The 
algorithm detects that blk2 is a subset of blk1. As a result, 
the algorithm deletes blk2 (the smaller one) and updates 
the entry (1,0,0) of the hash table to point to blk1 as 
shown in Fig. 5(c). In the 3rd loop iteration; the algorithm 
reads mat_mul, and fft. The algorithm creates a new block 
(blk2), inserts mat_mul into this block, and points the 
entry (2,0,0) of the hash table to blk2. Then, it searches 
the rules table for rules that has both mat_mul, and fft. 
Rules 3, and 12 has both mat_mul, and fft. The algorithm 
adds other functions in these rules to blk2 if the block can 
accommodate them. The function ifft is added to blk2 as 
shown in Fig. 5(d). Because blk2 is also a subset of blk1, 
the algorithm deletes blk2 and updates the entry (2,0,0) of 
the hash table to point to blk1 as shown in Fig. 5(e). In the 
4th loop iteration, the algorithm reads DWT, and fft. The 
algorithm creates a new block (blk2), inserts DWT into 
this block, and points the entry (3,0,0) of the hash table to 
blk2.  Then, it searches the rules table for rules that has 
both DWT, and fft. At this point, no rules having both  

Table 1. Image Processing Hardware Library 
Index Functions Description 

0 fft Discrete Fast Fourier Transform 

1 Ifft Inverse Discrete Fast Fourier 
Transform 

2 mat_mul Matrix Multiplication 

3 DWT Discrete Wavelet Transform  

4 img_rot Image Rotation 

5 iDWT Inverse Discrete Wavelet Transform  

6 Sobel Sobel edge detection Filter 

7 median Median Filter 

8 hist Histogram 

9 corr Correlation 



Table 2. Transaction Table 
Application 

Convolution fft fft mat_mul ifft   

Ex_srch_img_reg Img_rot corr     

Wavelet_img_reg DWT DWT Img_rot corr Img_rot corr

Dim-Reduction DWT IDWT corr hist   

Table 3. Generated Rules 
No Items Supp. No Items Supp.

1 img_rot, corr  50 11 DWT , img_rot  25 

2 DWT , corr  50 12 Ifft, fft, mat_mul  25 

3 fft , mat_mul  25 13 DWT , iDWT, hist  25 

4 fft , ifft  25 14 iDWT , hist, DWT  25 

5 ifft , mat_mul  25 15 hist , iDWT, corr  25 

6 iDWT , hist  25 16 DWT , iDWT, corr  25 

7 DWT , iDWT  25 17 corr , hist, DWT  25 

8 iDWT , corr  25 18 corr , img_rot, DWT 25 

9 DWT , hist  25 19 img_rot , DWT, corr  25 

10 hist , corr  25 20 corr , iDWT, hist, DWT  25 

(a)1
st
 Loop Iteration 

(b) 2
nd

 Loop Iteration 

(c) Modified 2
nd

 Loop Iteration 

(d) 3
rd

 Loop Iteration 

(e) Modified 3
rd

 Loop Iteration 

(f) 4
th

 Loop Iteration 

Figure 5. Blocks Table and Hash Table Contents 

During Algorithms Execution.

DWT and fft exist. The algorithm leaves blk2 as is and 
proceeds with the next iteration. The algorithm continues 
iterating till it completes filling the hash table. All 
grouped functions (blocks) in the hash table are then 
compiled into final usable binary bitstream files. 

4.2. Run-Time Reconfiguration Management 
The Run-Time Reconfiguration Management module 

(RTRM) is responsible for receiving the incoming tasks 
(HW function calls) and making the reconfiguration and 
scheduling decisions. Fig. 6 shows a simplified flow chart 
of RTRM algorithm. Upon receiving a request for a HW 
function from an application, the system checks whether 
this function already exists on the chip. When the 
function does exist and is not executing a task the system 
starts executing this particular function. If the function in 
not present on the FPGA or it is currently executing a 
task, the system faces a function fault. In this case, the 
system uses the requested function and the two previous 
executed functions from the same application as indexes 
to the hash table and retrieves the suitable block. This 
block has the group of functions that most likely appear 
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Figure 6. Run-Time Reconfiguration Manager 

Algorithm. 

with this sequence of functions. After that, the system has 
to choose a block (victim page) to remove from FPGA to 
make room for the block that has to be brought in. While 
it would be possible, using page replacement algorithms, 
to pick a random page to evict at each page fault, the 
overall system performance is much enhanced if a page 
that is not heavily used is chosen. If a heavily used page is 
removed, it will probably have to be brought back in 
quickly, resulting in extra overhead (re-configuration 
time). The RTRM as suggested by most of the page 
replacement algorithms try to predict which page will be 
referenced aftermost in future. The knowledge of past 
and/or the present behavior of the program is used to 
choose the victim page. After choosing the victim page, 
those algorithms dictate that the system configures this 
page with the new block and starts executing the function.
 If all of the current uploaded blocks are currently 
executing other tasks, the system adds the requested 
function to the task queue and waits for any task to finish 
its execution. 

5. Experimental Results 

 The experimental verification of the proposed 
approaches has been performed by first implementing an  

Figure 7. Cray XD1 System Architecture.

Figure 8. Virtual FPGA Model. 

image processing library. This hardware library has been 
realized for Xilinx Virtex device. Each function in the 
library operates at an execution rate of 100 MHz. Table 1 
lists some of the implemented library functions. 
Simulation and emulation, using the Cray XD1 
reconfigurable high-performance computer, were used to 
verify our algorithms. 
The Cray XD1 machine [10, 11] is a multi-chassis 
system. Each chassis contains up to six nodes (blades). 
Each blade consists of two 64-bit AMD Opterons 
processors at 2.2 GHz, one Rapid Array Processor (RAP) 
that handles the communication, an optional second RAP, 
and an optional Application Accelerator Processor (AAP). 
The AAP consists of a single Xilinx Virtex-II Pro 
XC2VP50-7 FPGA with a local memory of 16MB QDR-
II SRAM. The application acceleration subsystem acts as 
a coprocessor to the AMD Opteron processors, handling 
the computationally intensive and highly repetitive 
algorithms that can be significantly accelerated through 
parallel execution. Fig. 7 shows Cray XD1 system 
architecture.  

 As mentioned earlier, our proposed system assumes 
the FPGAs permit partial reconfiguration. Although 
recent generations of FPGAs support partial 
reconfiguration, current RCs vendors allow only full 
FPGA reconfiguration and don’t use the partial 
reconfiguration feature. In order to overcome this 
problem, we have implemented an emulation model on 
Cray-XD1 machine. Cray-XD1 has six compute nodes, 
and each node has an FPGA. We considered the six 
FPGAs as one FPGA device, and each FPGA can hold 
only one block as shown in Fig. 8. This allows us to 



emulate partial reconfiguration, where we can reconfigure 
one FPGA (block) while other FPGAs (blocks) are 
executing other tasks. We have removed all MPI 
communication overheads from the measured 
performance. We have performed our experiments using 
different number of pages each time, and we have 
measured the performance for all cases. 

 A random job generator was implemented to fire jobs 
to the RTRM and job arrival was Poisson distributed. It 
randomly selects an image processing application from 
the applications list. Each application requires on the 
average a few hardware functions as we saw earlier. The 
average execution time for each hardware function is 7 
ms. We have measured the average Speedup against 
classical hardware implementation ,function-by-function 
basis without caching,. Throughput, mean response time, 
turn-around time, and average hit rate have been reported. 
LRU has been used as replacement technique for page 
replacement.  
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Figure 10. Throughput. 
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Figure 11. Mean Response Time. 

Fig. 9 shows the speedup when using our technique. We 
have achieved a maximum speedup of 33x against the 
classical hardware implementation, function-by-function 
basis without caching, and a speedup of 2x against the full 
reconfiguration scenario. Figs. 10, 11, 12 show the 
throughput, the mean response time and the average turn-
around time of the application verses the number of pages 
on the FPGA. The throughput, mean response time, and  
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the average turn-around time of the same experiment 
using the function-by-function technique are 4 
applications /sec,  28.5 sec, and 28.7 sec respectively. 
This shows that performance has been dramatically 
improved by using our paging technique. 
 Fig. 13 shows the average hit rate verses the number of 
pages. In our case hit rate can be defined as the ratio of 
finding the requested function on the FPGA to the total 
number of requests. This shows that a maximum of 98% 
of the configuration latency overhead has been 
eliminated. Hit rate is strongly depends on the grouping 
algorithm. If the grouping algorithm managed to group 
the highly correlated functions in the same group, this 
will improve the hit rate.  

The results show the best performance can be achieved 
when the FPGA is divided into three pages. When the 
number of pages is small, we have larger page sizes that 
can accommodate more functions. In this case, the system 
takes advantage of only the spatial locality characteristic. 
On the other hand when the number of pages is large, the 
page sizes are very small, and cannot accommodate a 
reasonable number of functions In this case, the system 
takes advantage of only the temporal locality 
characteristic. The case in between can be observed when 
the number of pages are chosen such that they allow for 
the accommodation of decent number of functions. In this 
case, the system can take advantage of both temporal and 
spatial locality. This number depends on the FPGA size, 
hardware functions size, average task execution time, and 
tasks arrival rate. In our case, the average task size is 15% 
of the FPGA chip area, and the average task execution 
time is 7 ms, and the average applications submission 
delay is 15 ms. 

In order to study the effect of the task size and 
submission delay on the performance, we have repeated 
the experiments with different task sizes and different 
submission delays. Fig. 14 shows the speed up vs. the 
average applications submission delay and Fig. 15 shows 
the speed up vs. the task size ratio (Avg. task size/ chip 
size). This shows that the performance improves when the 
task size is getting smaller, where pages can 
accommodate more tasks and more parallelism can be 
exploited. 

6. Conclusions 

 Although Reconfigurable Computers (RCs) can 
leverage the synergism between conventional processors 
and FPGAs by combining the flexibility of traditional 
microprocessors with the parallelism of hardware and 
reconfigurability of FPGAs, there exist multiple 
challenges that must be resolved to develop efficient and 
viable solutions of reconfigurable computing applications. 
Resource limitation, high reconfiguration latency, and the 

lack of efficient run-time reconfiguration management are 
examples of these challenges.  

 This paper has developed techniques for exploiting 
spatial and temporal processing locality for RCs through 
paging configurations and augmented them with other 
concepts such as data mining using association rule 
mining (ARM). We have demonstrated the applicability 
and the effectiveness of the proposed concepts by 
applying them to representative image processing 
applications. Simulations, as well as emulation using the 
Cray XD1 reconfigurable high-performance computer 
were used for the experimental study.   

The results show a significant improvement in 
performance using the proposed paging technique. This 
improvement can be assessed by computing the speedup. 
This speedup shows that the proposed paging technique is 
3-44x faster than the function-by-function scenario and 1-
3x faster than the full reconfiguration scenario depending 
on the working conditions. 
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