
Run-Time Reconfiguration of Communication in SIMD Architectures

Hamed Fatemi1, Bart Mesman1, Henk Corporaal1, Twan Basten1, and Pieter Jonker2

1Eindhoven University of Technology 2Delft University of Technology
{h.fatemi, b.mesman, h.corporaal, a.a.basten}@tue.nl p.p.jonker@tnw.tudelft.nl

Abstract

SIMD processors are increasingly used in embedded
systems for multi-media applications because of their
area- and energy-efficiency. Communication between
the processing elements (PEs) in an SIMD proces-
sor has remained a cause of inefficiency however; the
SIMD concept prescribes that all PEs communicate in
the same clock cycle. Existing SIMD architectures solve
this problem either by multi-hop communication (caus-
ing cycle overhead), or by a fully connected communi-
cation network (causing area overhead).

To solve the communication bottleneck, we propose
a reconfigurable SIMD architecture (RC-SIMD) with a
set of delay-lines in the instruction bus, distributing
the accesses to the communication network over time.
We can (re-)configure the size and number of delay-
lines, a specific configuration representing a trade-off
between the number of clock cycles and the length of
a clock period. Reconfiguration time is typically much
less than 1% of the execution time of an algorithm,
and the extra configuration hardware is less than 2%.
Experiments show that our reconfigurable architecture
achieves (on average) more than 10% performance im-
provement over a non-reconfigurable architecture.

1 Introduction

Video, graphics, and gaming applications increas-
ingly pose some of the most challenging demands on
the computational capabilities of consumer-oriented
devices. For reasons of excessive power consumption
and cost, general-purpose processors do not offer vi-
able solutions matching these requirements. Solutions
should therefore be sought in MIMD (Multiple Instruc-
tion Multiple Data) (e.g., the cell-based architecture
for PlayStation3 [6]) or SIMD (Single Instruction Mul-
tiple Data) architectures. SIMD architectures are espe-
cially efficient for the mentioned applications because
their repetitive structure matches the data-parallel ex-
ecution pattern inherent in pixel-type processing.

One of the most debatable aspects of an SIMD archi-
tecture however, is its communication infrastructure.
To illustrate the problem, consider two extremes of an
SIMD communication architecture. In the first archi-

tecture (locally connected SIMD: LC-SIMD), 320 se-
quential PEs can communicate with their direct neigh-
bors only. Mapping a 13-tap horizontal filter to this
architecture, each PE n requires pixel values from PE
n − 6 to PE n + 6. In that case, almost 50% of
time and resources is spent on shifting values to neigh-
boring PEs, which is an intolerable overhead. The
other extreme (fully connected SIMD: FC-SIMD) has
a much richer communication architecture, supporting
single-cycle communication within a neighborhood of 6
PEs. It requires at least a network with 6 (segmented)
busses, since all 6 PEs in a neighborhood access the bus
network at the same time. Because it is dimensioned
for high peak bandwidth, this yields low bus-utilization
and a rigid bus structure that eludes the possibility
to adapt to application characteristics (e.g., maximum
neighborhood communication).

In [5] we introduced a new SIMD architecture (RC-
SIMD) with a delay line in the instruction bus. The de-
lay line distributes bus accesses of consecutive PEs over
successive clock cycles, drastically reducing peak bus
bandwidth requirements. We showed that this archi-
tecture requires only 10% more area than a (cheap) LC-
SIMD, whereas the performance (in number of cycles)
is almost equal to that of an (expensive) FC-SIMD.
We solved the corresponding scheduling problem via
a precise resource conflict model. We also mentioned
that our architecture can in principle be adapted to
a specific communication neighborhood size. In this
paper we focus on these (re-)configuration aspects of
RC-SIMD, and determine the cost and gain of this flex-
ibility by comparing area and performance to that of
an RC-SIMD with a fixed neighborhood size.

Our paper is organized as follows. The RC-SIMD
architecture is explained in Section 2. In Section 3,
we explain the reconfigurability aspects of RC-SIMD.
The programming of the reconfigurable part is stud-
ied in Section 4. We present experimental results and
a comparison with non-reconfigurable architectures in
Section 5, and end with conclusions.

2 Architecture

The communication dilemma in SIMD processors
is well-recognized. It stems from the time-consuming

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. Reconfigurable Communication SIMD (RC-SIMD) architecture.

shift overhead in locally connected and the costly net-
work in fully connected communication architectures.
As illustrated in [4], the problem is intensified by the
fact that all PEs used in an SIMD fashion need to
access the communication infrastructure at the same
time. This bottleneck can thus be overcome by ensur-
ing that an SIMD instruction reaches the various PEs
at different points in time. One way to realize this idea
is with the architecture depicted in Figure 1.

The architecture has two segmented unidirectional
communication busses (bottom of Figure 1), one for
left-hand and one for right-hand traffic. Using the mul-
tiplexors, each PE can choose to pass the value already
on the bus, or to put itself a value on the bus. This
allows for simultaneous communication, for example
from PE1 to PE3 and from PE3 to PE5, over differ-
ent segments of the same bus. The real novelty of this
architecture is the delay line in the instruction distribu-
tion (top of Figure 1). Assuming that the multiplexors
receive their inputs from the delay registers, successive
PEs receive the same instructions (like any SIMD), but
in successive clock cycles. This architecture therefore
has the same advantages as other SIMD architectures
(i.e., small code size), but the communication bottle-
neck identified above is no longer present. This is il-
lustrated in Figure 2, where an algorithm is scheduled
on an SIMD architecture without and with a delay line
in the instruction distribution. In these schedules, op-
eration LD+2 on PE0 (clock cycle 4) means loading a
value from PE2 (PE0+2). The attentive reader may
notice that the schedule in Figure 2 (b) is actually also
invalid (PE0 and PE2 use multiplexor S2 at the same
time in cycle 6). In [5], this problem is solved by defin-
ing a proper resource conflict model for an instruction
scheduler. Figure 2 (c) shows a valid schedule for this
example when using an extended version of the FACTS

scheduler [3] for this architecture.

3 A Reconfigurable Architecture

Reconfigurability The architecture with a fixed de-
lay line has several drawbacks. The most severe one is
the extreme run-in phenomenon. In an architecture
with, e.g., 320 PEs, it takes 320 cycles for the first in-
struction to reach PE319, which is clearly undesirable.
Another issue is the size of the conflict model, which
may cause severe run-time problems for the compiler.

A relatively simple idea shown in Figure 1 can solve
all these problems. Using the multiplexor for selecting
the instruction and the flip-flop to store the control-
signal of the multiplexor, each PE can be configured
to either take the instruction delayed by the previous
PE or the un-delayed instruction from the instruction
bus. Suppose that the maximum neighborhood com-
munication in an algorithm is k. We then configure the
multiplexors I0, I1, ... such that PEn receives instruc-
tions with n mod k clock cycles delay.

Flexible clock frequency The clock frequency is
upper bounded by the longest delay through the seg-
ments and multiplexors (the maximum neighborhood
communication). The architecture itself does not pose
any limits on that; in theory it allows 1 clock-cycle com-
munication between PE0 and PE319, albeit with a very
low clock frequency. The maximum clock frequency is
determined by the maximum neighborhood communi-
cation as allowed by the compiler (or vice versa). The
compiler is therefore parameterizable with respect to
the maximum neighborhood communication.

To determine the clock frequency in RC-SIMD, we
motivate this assumption that PEs can do the compu-
tation and communication in one clock cycle. It means
that each PE can receive data from the other PEs, use

(a) (b) (c)
Figure 2. Schedule of a 4-tap filter on the SIMD architecture of Figure 1 without (a) and with (b) delay
line in the instruction distribution. (c) A valid schedule without any conflicts.

this value as an input for the ALU, and compute and
write the result in a register in one clock cycle. The
clock cycle time is determined by the maximum length
of the critical path which is the time of the computa-
tion plus communication over the PEs:

Tclockcycle = Tcomputation + Tcommunication &
Tcomputation = Tread−reg + TALU + Twrite−reg

(1)

Tcomputation is constant but Tcommunication depends on
the architecture configuration. Changing the maxi-
mum neighborhood communication distance k, allows
to tune the clock frequency for different applications
(Tcommunication = k∗Tmux2×1). In CMOS 0.18 micron,
the delay of a multiplexor and computation are about
0.11 ns and 2.5 ns, resp. [7, 1]. Section 5 shows that by
changing k, it is possible to tune the architecture for
different algorithms to improve performance.

4 Programming

Configuration All PEs are controlled by a control
processor that reads the program from program mem-
ory and distributes instructions to all PEs. Before dis-
tributing instructions to PEs the control processor has
to configure the multiplexors (I0, I1,...) based on the
k which is determined by the compiler and also set
the clock frequency to achieve the best performance
for each kernel. For programming the PEs, we add
two instructions to the instruction set: a) RESET: By
receiving this instruction, each PE configures its mul-
tiplexor (I0, I1,...) to receive instructions from the un-
delayed instruction bus. Therefore, all PEs can receive
the new configuration at the same time. b) SET: The
control processor sends the value of k via this instruc-
tion. Each PE compares the value of k to its PE-ID
(the number of the PE: 0 for PE0, 1 for PE1,...; hence
each PE needs one hard-wired register to store its PE-
ID). If the PE-ID mod k equals zero (multiple of k),

the PE configures its multiplexor to receive its instruc-
tions from the un-delayed bus; otherwise, it receives
them from the delayed bus.

RC-SIMD supports reconfiguration at run-time,
e.g., in between different kernels in one application. Be-
fore sending the instructions for a new kernel to PEs,
the control processor sends the RESET instruction to
reset the multiplexors and then sends the SET instruc-
tion to configure multiplexors. The number of cycles
needed to program the multiplexors is:

Ncyclesprog = NcyclesRESET + NcyclesSET (2)

In most kernels, we observed that, the maximum neigh-
borhood communication is less than 25, so the number
of cycles spent on receiving the RESET instruction by
all the PEs is less than 25 (due to the delay registers in
the instruction bus). Furthermore, the SET instruction
(PE-ID mod k) needs about 10 cycles. Therefore, the
total cycle overhead for programming the multiplexors
is usually less than 35 cycles which is far less than 1%
of the typical execution time of kernels.

Timing The compiler determines for each loop ker-
nel an appropriate neighborhoods size k. Using equa-
tion 1, it computes the corresponding clock frequency.
With regard to clock generation, we assume that an
RC-SIMD processor is applied in a system-on-chip with
multiple components. In these systems a master clock
is generated (using a PLL) with a very high clock
frequency. Individual clock signals for the different
components are derived from the master clock using
clock division. Especially power-aware systems have
the means to scale down the clock by adjusting the di-
vider. This adjustment is typically performed in 1 or 2
clock cycles. We assume that we have the same means
at our disposal, and for that reason do not describe
clock generation or adjustment in more detail.

Max. Communication

E
x
e
c

u
ti

o
n

 T
im

e
 (

n
s

)

Sobel

Conv 5x5

Conv 7x7

Haar filter

Gabor filter

Figure 3. Performance for different k values.

Table 1. Performance improvement.

5 Experiments

As performance benchmarks, we chose several fre-
quently used communication kernels from the image
processing domain (Haar filter, sobel, convolution, Ga-
bor filter) [2]. Each kernel was implemented on RC-
SIMD architectures with different maximum neighbor
communication k, 0 < k ≤ 16. Our compiler [5] inserts
fetch and put instructions to segment communication
when it exceeds k. Figure 3 shows the results. The best
performance for a kernel is when k equals the maximum
neighbor communication in the kernel. By changing
the value of k, it is possible to reconfigure RC-SIMD
to get a better performance for different kernels. Table
1 shows that, by using RC-SIMD and tuning the clock
frequency, it is possible to achieve a performance gain
(on average) of more than 10% in comparison with a
fixed clock frequency non-reconfigurable architecture.
The reference configuration has k = 6, which is the
average of the best points for all kernels.

The reconfigurable part of RC-SIMD includes the

Figure 4. Area overhead.

multiplexors I0, I1,... and the one-bit flip-flops to store
the multiplexor configuration during the execution of
each kernel. Figure 4 shows the area overhead of the re-
configurable architecture in comparison with the non-
reconfigurable architecture with the number of PEs
ranging from 1 to 256. It shows that the overhead
of the reconfigurable architecture is less than 2%.
6 Conclusions

We examined the (re-)configuration aspects of RC-
SIMD, a new SIMD architecture proposed to solve
the communication bottleneck in current SIMD ar-
chitectures, caused either by timing overhead in lo-
cally connected architectures or area overhead in more
richly connected architectures. RC-SIMD solves the
bottleneck with a set of delay lines in the instruc-
tion bus, distributing bus accesses over time. We can
(re-)configure the amount of unit-delay (per PE) via a
simple mechanism that adds less than 2% area. Since
different configurations correspond to both different
schedules and different clock frequencies, each config-
uration represents a trade-off between cycle time and
number of cycles. We have demonstrated the process
of (re-)configuration, the required hardware, and the
extension to the instruction-set of the PEs. Experi-
ments show (on average) more than 10% performance
improvement over a non-reconfigurable architecture.
References

[1] A. Abbo and R. Kleihorst. Smart Cameras: Architec-
tural Challenges. In Proceedings of ACIVS, pages 6–13,
Gent, Belgium, September 2002.

[2] W. Caarls, P. Jonker, and H. Corporaal. Benchmarks
for SmartCam Development. In Proceedings of ACIVS,
pages 81–86, Gent, Belgium, September 2003.

[3] K. v. Eijk, B. Mesman, A. A. Carlos Pinto, and Q. Zhao.
Constraint Analysis for Code Generation: Basic Tech-
niques and Applications in Facts. ACM Transactions
on Design Automation of Electronic Systems, 5(4):774–
793, October 2000.

[4] H. Fatemi, H. Corporaal, T. Basten, R. Kleihorst,
and P. Jonker. Designing Area and Performance Con-
strained SIMD/VLIW Image Processing Architectures.
In Proceedings of ACIVS, pages 689–696, Antwerp, Bel-
gium, September 2005.

[5] H. Fatemi, B. Mesman, H. Corporaal, T. Basten, and
R. Kleihorst. RC-SIMD: Reconfigurable Communica-
tion SIMD Architecture for Image Processing Applica-
tions. Journal of Embedded Computing, To appear in
2006.

[6] H. Hofstee. Power Efficient Processor Architecture and
The Cell Processor. In Proceedings of 11th International
Conference on HPCA, pages 258–262, San Francisco,
CA, February 2005.

[7] T. Szymanski, H. Wu, and A. Gourgy. Power com-
plexity of multiplexer-based optoelectronic crossbar
switches. VLSI Systems, IEEE Transactions, 13:604–
617, May 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

