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Abstract

The increasing complexity of embedded digital HW/SW
systems, rising chip development and fabrication costs,
and a shortened time-to-market require system-level design
methods and the use of reconfigurable architectures. Our
design method concerns the modelling of a system and its
HW tasks at a high abstraction level. Using design patterns
and macros, our library-based approach provides a consis-
tent flow from an executable specification to its implemen-
tation. These templates ease the efficient application of
partially run-time reconfigurable architectures. A case
study depicts the high-level modelling of a HW task and its
implementation in detail.

1. Introduction and motivation

Run-Time Reconfiguration (RTR) of HW enables the
realization of System-on-Chip (SoC) solutions that provide
higher performance and lower power consumption as well.
Such requirements rise from innovative mobile applica-
tions for ubiquitous computing [5]. In recent years many
RTR architectures have been proposed [6]. Especially
coarse-grained architectures, capable of being reconfigured
at run-time partially, provide a suitable platform for self-
organizing, self-healing, and self-protecting systems [3].

A shortened time-to-market and the continuously rising
complexity of embedded systems requires adequate design
methods. Therefore, a high abstraction level and an execut-
able system specification [8] have to be applied. Further-
more, novel architectures demand a new design paradigm
and related SW-tools to enable Electronic System-Level
Design (ESD) [7]. For example, High-Level Synthesis
(HLS) transforms an algorithmic description into a target-
specific mapping, immediately.

Regarding an efficient application of RTR architectures,
optimization techniques have to reduce the overhead for
reconfiguring a chip at run-time. But available approaches
like the common sub-graph extraction [1] address the data
path only. Online scheduling of block-partitioned devices,

such as the Erlangen Slot Machine (ESM) [4], require cost
functions to determine the correlation of HW tasks [10].

To close the gap, we propose a model-based design
approach considering the Control and Data Flow Graph
(CDFG) of a HW task. Our model specifies the behavior of
a task using design patterns and macros provided by a
design library. The operation sequence is represented by a
binary graph which can be interpreted as a signature
(pattern). Thus, pattern matching becomes a smart
technique to determine the correlation of two tasks, and to
calculate the system’s reconfiguration costs.

This paper is structured as follows: Section 2 introduces
our RTR design method including a system-level model.
The design library and our RTR task model are the subject
of Section 3. In Section 4 we apply our method to a case
study and explain the implementation using an RTR target
architecture. Section 5 summarizes the paper and examines
some conclusions.

2. Design method and models

This section introduces our method for designing an
adaptive embedded system. The starting point is a system-
level model representing an executable specification. After
HW/SW partitioning, we translate the dedicated HW tasks
into our RTR task model. It applies macros and patterns of
design libraries to ensure precise target mapping and
design optimizations for an efficient use of RTR.

2.1. Design flow and system model

The system-level model of an embedded digital system
is the starting point of our design flow (see Figure 1). It
represents an executable system specification for emulating
the behavior of the entire system.

The system S is specified by a set T of tasks, a set R of
communication resources, and the task schedule ts. Each
task t ∈ T implements a dedicated part of the entire system.
Tasks interact via communication ports p ∈ P connected to
a system resource r ∈ R. All system components (such as
task design elements, storage resources, or communication
protocols) are provided by a system library.
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During HW/SW partitioning, each system task t ∈ T is
marked for implementation as a SW task or as a HW task.
Regarding to our RTR design method, this paper does not
consider the realization of SW tasks as well as aspects of
HW/SW co-design. We apply the system-level model as
test bench and for test pattern generation. In this case,
resources bordering HW tasks act as input or output for the
RTR design part.

The target library provides a set of design elements for
implementing a HW task on the RTR architecture. It is a
refinement of the system library, which considers specific
constraints and attributes of the target architecture. For an
efficient use of the new technology, several RTR design
optimizations are necessary. Details of modelling and
implementing a task are the subject of the next section.

A task ti represents the smallest unit for HW/SW as well
as RTR partitioning. To enhance the granularity, a task ti
needs to be split up into sub-tasks ti1..tin, if possible. This
requires a remodelling of the executable specification,
where ti1..tin replace ti in the system. Additional resources
for the communication of the sub-tasks become part of the
system, too. Especially the partitioning of HW tasks for
RTR requires a finer-grained system model.

2.2. Modelling and implementing of HW tasks

Commonly, a High-Level Language (HLL), such as
C++ or SystemC, is used to develop the system-level
model. Its high abstraction level for algorithm specification
eases modelling of the entire system. But in respect to a
HW implementation and to RTR design optimizations, a
Register-Transfer Level (RTL) model is required for target
mapping.

The target library provides design elements that meet
the RTR design requirements (high abstraction level and
RTL realization) to model and implement a HW task tk:

 • A set M of design macros implements logic, arithmetic,
and communication functions. Each operation o ∈ Ok

of task tk is specified by a design macro m ∈ M.

 • A set Y defines all operand types. The operands, called
variables, are stored in the set Vk. Each variable v ∈ Vk

of task tk is defined by an operand type y ∈ Y.

 • A set I of interfaces specifies communication ports.
Task tk communicates using a set Pk of ports. Each port
p ∈ Pk is specified by an interface i ∈ I and bound to a
system resource r ∈ R.

 • A set D of design patterns provides templates for the
control flow. The task signature sk represents the flow
of all operations o ∈ Ok of task tk using the pattern.
Each design pattern d ∈ D concatenates two operations,
two patterns, or one operation and one pattern.

Figure 2 shows the application of our system-level
design method using an architecture-specific target library
for precise modelling of a HW task tk.

After generating the task signature via HLS or by hand,
an architecture template is used for target mapping and to
realize the HW implementation.

Figure 3 depicts the implementation of task tk starting
from the task signature and the operation flow:

 • The data path (respectively the operation sequence) is
partitioned according to the task signature. In this step,
the task signature sk is pruned by removing redundant
design patterns. The so called control signature sk’ is
used for the controller and data path generation.

 • The data path comprises of the operations Ok, the ports
Pk, and the variables Vk. The implementation of each
operation, port, and variable follows the template of the

Figure 1. Design flow and system model
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related macro, interface, and operand type specified in
the target library.

 • The control signature sk’ contains all design patterns
necessary to generate the control path. The template of
each pattern represents a piece of the entire controller.
Composing all templates generates the Finite State
Machine (FSM).

To validate the signature of task tk using the test bench
of the system-level model, an identical SW model can be
generated easily: The operation sequence is substituted by
the corresponding library elements of the system library.

Section 4 applies our design method for modelling and
implementing HW tasks on an example and describes the
data path and control path generation in detail.

2.3. Design optimization to reduce RTR overhead

The RTR implementation of HW tasks creates both
benefits and drawbacks:

On the one hand RTR increases the flexibility of chip
applications: Two or more designs share the same chip
area. An optimized implementation of a design (for
example achieving lower power consumption) can be
loaded depending on the system state at run-time.

On the other hand, RTR produces some overheads:
Additional memory is necessary to store the configuration
data. Furthermore, during RTR, the reconfigured part stays
idle until the new configuration is completely available.
The consequential delay decreases the performance, if the
application needs to pause until RTR has finished.

To use RTR efficiently, the RTR overhead must be
reduced. Our model provides cost functions that enable the
development of optimization strategies and algorithms.

A first set of cost functions determines the operation
time, the operation performance, and the required chip area
of a task. It is implemented by one or more configurations.
A second set of cost functions determines the size, the cor-
responding chip area, and the reconfiguration time of the
set of HW configurations. Thus, both performance and
implementation costs of a sub-system can be calculated.

In general, an optimization algorithm that compares all
possible variants of implementations and configuration sets
is not applicable. For this reason, the strategy must start on
a higher abstraction level.

Using our RTR design model, the similarity of two HW
tasks is represented by the similarity of the corresponding
task signatures. Because a signature is a string, pattern
matching techniques can be applied for calculating the
similarity. The common macro set fcm(t1,t2) of two HW
tasks (t1 and t2) represents function units that are used by
both tasks. Furthermore, the set of common signatures
fcs(t1,t2) represents operations that are related to each other.
This means, that the function units of the implementation
have local interconnections. Thus, a common signature is a
good candidate for partitioning the configuration.

Figure 4 shows the signature and the data flow of two
tasks. The common signatures represent reusable modules
that become part of a configuration used by both tasks.

After determining the similarity of two tasks, methods
like [1] can be applied for correlating the data paths.

3. Design patterns and design macros

In Section 3, we explain the task execution model and
its representation - the task signature. Following this, we
clarify the different abstraction levels of design patterns in
the design libraries. Finally, constraints for target mapping
and classifications are discussed.

3.1. Execution model and its representation

As explained in Section 2, our design method is based
on design libraries. They provide design patterns D, and
design macros M to specify the function of task tk.
Operations Ok represent the instantiated design macros,
and the task signature sk represents the operation flow
using design patterns.

Figure 3. HW task implementation
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The execution model behind the task signature is the
Binary Macro Tree (BMT). The model is based on a tree
consisting of branches and leaves. The leaves represent the
operations Ok of the corresponding task tk. The set B of
branches represents the applied design pattern. Each b ∈ B
specifies the relation between two sub nodes (leaves or
branches as well) of this branch according to the definition
of the corresponding design pattern d ∈ D.

Figure 5 depicts that a HW task tk is - formally correct -
specified by a 4-tuple (Bk,Ok,Vk,Pk).

The task signature is a preorder (or prefix) traversal of
the BMT as shown in Figure 6. Thus, a string (pattern) is
sufficient to define the operation flow.

3.2. Design patterns and their abstraction

Design patterns describe how to interprete a BMT. Only
macros represented by operations (the BMT leaves) can be
executed. The order of processing operations (the operation

flow) is specified by design pattern (the branches).
Regarding to our design method, design patterns are

available in different abstraction levels. The system library
provides a HLL specification that is used for an abstract
specification of the algorithm realized by a task, whereas
the target library provides templates - the counterparts for
implementation (see Figure 7).

Different abstraction levels of the same design pattern
enable the generation of a target-precise task model as well
as a system-level task with an identical behavior model
using the same task signature. For design validation, the
original executable task specification in the system model
is replaced by the generated one. Thus, design consistency
can be proved by validating the modified system model
using the original test bench.

3.3. Target mapping: node types and macro classes

The target library provides templates of design patterns
and design macros for a target architecture. But different
architectures support different levels of abstraction, and
require different schemes for synchronizing both the data
and the control path. A programmable logic device (e.g., a
Xilinx Virtex FPGA [11]) implements designs on a low
level of abstraction using logic function generators, clock-
triggered flip-flops, and a routing matrix as oposite to a
coarse-grained computing architecture (e.g., PACT XPP
[2]) provides self-synchronizing arithmetic/logic function

Figure 4. RTR design optimization

Figure 5. Binary Macro Tree (BMT)
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units, an adaptive inter-communication network, and an
intelligent RTR controller hierarchy. Many other RTR
architectures have been developed in recent years [6].

To enable the reuse of HW tasks using different
architectures and to unify the interpretation of a task’s
signature, we defined node types and macro classes.

A node type specifies the behavior of the controller’s
FSM regarding an operation execution (see Figure 8):

 • A regular node represents an operation. Thus, each
state in a template executes the related operation. After
its execution, the next state of the FSM is entered.

 • A post-triggered node requires a trigger to leave, which
means that the controller’s FSM stays in current state
until the trigger is fired. Afterwards, the next operation
is executed.

 • A pre-triggered node requires a trigger to enter, which
means that the controller enters a wait state right before
this FSM state. When the trigger is fired, the controller
enters this state and executes the operation.

A node can be regular, post-triggered, pre-triggered, or
post- and pre-triggered.

The operation sequence is represented by a node graph.
Macro classes characterize the node type regarding to the
operation executed by this node. We distinguish between
three macro classes:

 • Communication macros handle interfaces, which
means the corresponding operation receives local data
from or sends local data to a port. Depending on the
kind of interface, communication macros can cause
wait cycles when required data for processing is not
available or computed data can not be transmitted.

 • Data manipulation macros apply arithmetic operations
or complex functions on local data. These macros are
characterized by a fixed processing time and require a
regular node.

 • Boolean logic macros represent the interface between
control and data path. They provide status information
of data manipulations or communication functions.
Usually, the macros require a regular node.

4. Case study - an application of our method

This section describes the application of our method
using an example: the Collatz conjecture. Starting from an
algorithm description, we model the task using the HLL
source, create the signature, and implement the task on our
architecture template.

4.1. Example: Collatz conjecture

The Collatz conjecture is one of the long-standing open
problems of mathematics. Apparently first posed by Lothar
Collatz in the 1930s, it has since withstood every attempt at
proof. The problem is related to a wide range of topics in
mathematics, including number theory, computability
theory, and the analysis of dynamic systems [9].

The statement of the Collatz conjecture involves the
mapping M: Ν → Ν where:

⎧ n/2 if n is even
M(n)  =⎨

⎩ 3n+1 if n is odd

Let ai denote the result of i iterations of M on n:

⎧ n for i=0
ai  = ⎨

⎩ M(ai-1) for i>0

The Collatz conjecture states that for all n there is some
i such that ai=1:

∀n∈Ν>0: ∃i∈Ν: ai=1

Figure 9 shows an example, where we start with n=11:

4.2. Deducing a task signature from a HLL source

For modelling a HW implementation of the related task
function, we use the HLL source (ANSI-C) of a small
command line program that computes a sequence for the
Collatz conjecture (see Figure 10). After typing in an
integer n, the program prints out all iterations ai starting
with a0 until ai=1.

Figure 8. Node types and macro classes
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At this point, the designer has to model the behavior of
the given algorithm using the design pattern and design
macros provided by the design libraries. We developed a
Macro Sequence Language (MSL) to represent the BMT in
textual form. Macros are instantiated like function calls in
a HLL (such as C/C++). Consequentially, each function
call represents an operation. The operations are executed in
sequence according to the sL’R pattern. To apply a
different design pattern (branch in a BMT), a pair of braces
prefixed by the pattern’s name is used. The first brace
represents the left BMT tree, the second brace the right
BMT tree (see Figure 11).

While modelling, the designer has to pay attention to
several restrictions being conform to our model:

 • To input or output data requires the application of
dedicated communication macros (such as $FI to read
from a FIFO or $FO to write to a FIFO) on defined I/O
ports (such as f_in or f_out).

 • Variables modified by different operations have to be
unified using the SET macro (such as in case of a).

 • Design patterns use only boolean operands. Thus,
boolean logic macros have to be applied for performing
data analysis operations, such as NE (not equal to).

Using the MSL source, the task signature as well as the
BMT can be easily generated (see Figure 12):

Beside design optimizations regarding RTR, the task
signature is used to generate the controller and to partition
the data path accordingly. To wire the data path, the MSL
source (comprising all variable mappings) is required.

4.3. RTL implementation of HW task

The implementation of a HW task consists of three
steps: deducing the control signature, partitioning and
wiring the data path, and generating the control path and
optimizing the controller.

The control signature sk’ of task tk is deduced from the
task signature sk by removing redundant patterns. These
are all pattern that do not affect the control flow (such as
sL’R or pL’R) excepting those which comprise non-
redundant pattern. Figure 13 depicts the task signature and
the deduced control signature of the example.

main( void )
{

readf( "%d\n", a );
printf( "%d\n", a );
while ( a != 1 )
{

if ( (a % 2) == 0 )
{

a = a / 2;
} else {

a = (3 * a) + 1;
}
printf( "%d\n", a );

}
}

Figure 10. HLL source (ANSI-C)

r( run ) // Program body (main)
{
}{

$FI( in, f_in ); // Input port
SET( a, in );
l( b0 ) // WHILE statement
{

p()
{

$FO( f_out, a ); // Output port
}{

NE( b0, a, 1 ); // a!=1
}

}{
OD( b1, a ); // (a%2)==0
c( b1 ) // IF statement
{

DIV( x, a, 2 ); // a=a/2
SET( a, x );

}{
MUL( y, a, 3 ); // a=3*a+1
ADD( z, y, 1 );
SET( a, z );

}
}

}
Figure 11. Macro sequence / MSL source

Figure 12. Task signature and BMT

Figure 13. Deduction of the control signature
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The control signature is the basis for partitioning the
data path as well as generating the control path. The leaves
of sk’ represent the control states of task tk.

Partitioning the data path assigns each operation to a
dedicated control state. Two operations belong to the same
partition, if they are in the same BMT sub-tree according to
the control state. All operations assigned to the same con-
trol state operate concurrently. To execute operations, the
control path provides an execution signal (e1,e2,..,e5) for
each control state (1,2,..,5). The signal ei is used to enable
an operation as well as to switch the data flow if SET is
applied to modify a variable. After partitioning, the opera-
tions are wired using the operation-to-variable mapping of
the MSL source (see Figure 14).

The generation of the control path starts with the appli-
cation of FSM templates on the control signature. After
that, each applied template represents a part of the entire
control flow (see Figure 15).

The control path is produced by joining all templates.
To join two templates, a leaf node representing a pattern is
substituted by the related template (where the pattern is on
the top of the template). After substituting, the controller’s
FSM consists of control states and system states (such as
Idle or Init), see Figure 16 (left) only.

Figure 16 (right) shows the optimized controller for our
example. To optimize the controller, the control states are
joined in a similar manner as applied to the templates. In
this case, all control states passed between a pre- or post-
triggered node form a state of the optimized controller.

5. Summary and conclusions

We introduced a method to design applications for RTR
architectures on a high level of abstraction. Our approach
includes a system model which enables the specification of
an executable system-level model.

To use RTR architectures efficiently, we apply the BMT:
an abstract execution model for HW tasks. It is based on
design patterns and macros provided by a design library.
For this, exploitation of a system library is used for
modelling, and a target library is used for an optimized
target mapping and implementation.

The case study verifies that the application of an
abstract task signature (comprising design patterns and
macros) eases the implementation of a abstract high-level
task model using a precise architecture template provided
by the target library.

For future work, we plan to use the task signature for
optimizing RTR designs regarding reconfiguration costs
(such as configuration size, reconfiguration time, and chip
area). Furthermore, we intend to realize applications of
embedded or multimedia devices, such as Forward Error
Correction (FEC) or Digital Signal Processing (DSP).
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