
Abstract

Traditional code optimizers have produced significant per-

formance improvements over the past forty years. While

promising avenues of research still exist, traditional static

and profiling techniques have reached the point of diminish-

ing returns. The main problem is that these approaches have

only a limited view of the program and have difficulty taking

advantage of the actual run-time behavior of a program. We

are addressing this problem through the development of a

dynamic optimization system suited for aggressive optimiza-

tion—using the full power of the most beneficial optimiza-

tions. We have designed our optimizer to operate using a

software dynamic translation (SDT) execution system. Diffi-

cult challenges in this research include reducing SDT over-

head and determining what optimizations to apply and

where in the code to apply them. Another challenge is hav-

ing the necessary tools to ensure the reliability of software

that is dynamically optimized. In this paper, we describe our

efforts in reducing overhead in SDT and efficient techniques

for instrumenting the application code. We also describe our

approach to determine what and where an optimization

should be applied. We discuss other fundamental issues in

developing a dynamic optimizer and finally present a basic

debugger for SDT systems.

1. Introduction

Over the past several decades, the optimizing compiler

research community has developed sophisticated, powerful

algorithms for a variety of code improvements: register allo-

cation, code motion and partial redundancy elimination,

procedure inlining, loop optimizations, memory hierarchy

optimizations, and code scheduling to name a few [1].

While there are still promising avenues of research for par-

ticular optimizations, research on new or improved optimi-

zations is now at the point of diminishing returns.

Execution-time performance gains by a new or improved

optimization is unusually small—an improvement of a few

percent is typical. With the diminishing returns of current

optimization research, the challenge for compiler construc-

tion and optimization research is to develop new techniques

that yield performance improvements that were typical of

early optimization research. Fortunately, recent develop-

ments in optimization research indicate that significant per-

formance improvements are possible by taking a radically

new approach to the design and construction of compilers.

The key development is that optimizing a program while it

executes is both possible and can yield substantial perfor-

mance improvements. Adapting and applying optimizations

as the program executes has several advantages over only

applying optimizations statically. The behavior of a running

program can change over its lifetime, and thus different

optimizations are beneficial at different points during the

program’s execution. For example, program paths that are

frequently executed at certain points in a program’s execu-

tion may execute infrequently, if at all, at other points of the

program’s execution. As a concrete example, consider loop

unrolling. Knowing a loop’s trip count during the various

phases of a program’s execution can enable more effective

application of loop unrolling. During the program phase

where the loop trip count is high, the loop should be

unrolled as the benefit will be high. The cost in terms of

code space is justified. During the program phase where the

loop trip count is low or zero, the loop should not be

unrolled as the benefit is low and potentially negative if

unrolling causes some frequently executed code to be

evicted from the instruction cache.

Such behavior is difficult to recognize and capitalize on

using offline profile-guided optimization techniques that

collects aggregated data from the program’s execution using

a training set of representative data. The instantaneous

behavior of a program running on real data may be very dif-

ferent from the behavior inferred by processing a training

data set. In contrast, dynamic optimization can easily adjust

to changing program behavior by applying the most appro-

priate optimizations for a given phase of a program. Further-

more, having accurate information at run time not only

determines what optimizations to apply and when, but it

also enables more effective application of certain beneficial

optimizations. For example, knowing which branch of an if-

then-else statement is executed more frequently at different

points in a program execution can enable more effective

code placement.

Techniques and Tools for Dynamic Optimization

Jason D. Hiser†, Naveen Kumar‡, Min Zhao‡, Shukang Zhou†,

Bruce R. Childers‡, Jack W. Davidson†, Mary Lou Soffa†

‡Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260

†Department of Computer Science, University of Virginia, Charlottesville, VA 22904
{hiser,jwd,soffa,zhou}@cs.virginia.edu {childers,naveen,lilyzhao}@cs.pitt.edu

1-4244-0054-6/06/$20.00 ©2006 IEEE

While applying optimizations on executing code offers

many benefits, to achieve the improvements in perfor-

mance we desire requires rethinking how we build optimiz-

ers. Currently, most optimizers have a rigid structure that is

fixed when it is constructed. In currently available optimiz-

ers, for example, the suite of optimizations that can be

applied as well as the order that they are applied is fixed

when the optimizer is built. The ordering is chosen to

achieve the best performance over a spectrum of programs

(e.g., SPEC2000, MediaBench, etc.). While most optimiz-

ers support enabling and disabling optimizations via com-

mand line options for the entire application, few optimizers

offer any flexibility beyond this. Furthermore, even when

flexibility is available, it is up to the software developer to

determine which optimizations to apply.

To explore the spectrum of static to dynamic optimizations,

we have begun to design, implement, and evaluate an inno-

vative optimization paradigm and algorithms that we pre-

dict can achieve significant improvements in run time

performance. Our approach is to create a flexible, adapt-

able optimization system where compile-time and run-time

plans are generated automatically by the optimizer using

information about the application, the target machine, and

cost/benefit of the suite of available optimizations. Our

dynamic optimizer is built on a SDT, called Strata. This

paper briefly discusses our efforts in developing an aggres-

sive dynamic optimizer. In particular, our contributions

discussed in this paper include:

• techniques to reduce the overhead of an SDT system,

• efficient techniques to insert/remove instrumentation,

• optimization techniques for instrumentation code,

• a framework that includes models for code, optimiza-

tions and resources useful for predicting the benefits of

optimizations without applying them,

• a debugger for an SDT system, and

• identification of special issues in developing dynamic

optimizers.

In Section 2, we discuss techniques for reducing the over-

head of SDTs and address the cost of instrumentation

needed for dynamic instrumentation. In Section 3, we

present our framework for predicting the benefit of an opti-

mization and discuss in developing a dynamic optimizer.

Section 4 presents our scheme for debugging programs

running under our dynamic optimizer. Finally, 5 summa-

rizes our current findings.

2. Low Overhead Dynamic Translation

In order for an advanced execution system to monitor and

transform an application efficiently, the system must intro-

duce minimal overhead for processor time, memory usage,

disk usage, etc. To this end, we developed and evaluated

overhead reduction techniques within the Strata software

dynamic translation system [2][3].

2.1 Strata Overview

Strata operates as a co-routine with the binary it is translat-

ing, as shown in Figure 1. As the figure shows, each time

Strata encounters a new PC, it first checks to see if the PC

has been translated into the fragment cache. The fragment

cache is a software instruction cache that stores portions of

code that have been translated from the native binary. The

fragment cache is made up of code fragments, which are

the basic unit of translation. If Strata finds that a requested

PC has not been previously translated, Strata allocates a

fragment and begins translation. Once a termination condi-

tion is met, Strata emits all trampolines that are necessary.

Trampolines are chunks of code emitted into the fragment

cache to transfer control back to Strata. Most control trans-

fer instructions (CTIs) are initially linked to trampolines

(unless its target previously exists in the fragment cache).

Once a CTI’s target instruction becomes available in the

fragment cache, the CTI is linked directly to the destina-

tion, avoiding future uses of the trampoline. This mecha-

nism is called Fragment Linking and avoids significant

overhead associated with returning to Strata after every

fragment [3].

Strata’s translation process can be overridden to implement

a new SDT use. The basic Strata system includes several

default behaviors that control the creation of code frag-

ments. These default decisions can be changed based on a

particular SDT use.

Overhead Reduction. We evaluated a number of designs

to determine which are indeed the best as the default. For

example, through extensive experimentation on a variety

of machines, we determined when Strata should stop trans-

lating instructions into the fragment cache, how Strata

should handle direct control transfer instructions, where to

place code to return control from the application to Strata,

how to align branch targets, and how aggressively to trans-

late previously unexecuted functions.

Figure 1: Strata high-level overview.

Context

Switch

Fetch

Decode

Translate

New

PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

SDT Virtual Machine

Yes

Context

Capture

Cached?

Yes

New

Fragment

Next PC

One of our most surprising findings involves the perfor-

mance of partial inlining. Partial inlining is a technique in

which call instructions are elided and the first portion of a

function is inlined into the calling function’s code. It was

previously believed that this technique helped performance

by eliminating unnecessary control transfer instructions. In

fact, we found that partial inlining significantly degraded

performance because of increased branch mispredictions.

We believe the increase in mispredictions is due to the

hardware return address stack being prohibited from effi-

cient use.

Experimental Results. Figure 2 shows how the changes to

Strata improved performance on an UltraSparc IIi. On

average, we see that overhead was reduced from 13% to

4%, while on individual benchmarks we see reductions as

much as 119% to 25%. Results indicate that this perfor-

mance gain is similar on an AMD Athlon Opteron

machine, and even more pronounced on an Intel Pentium

IV Xeon with a deeper pipeline and smaller instruction

cache. The largest gains result from eliminating the use of

partial inlining and translating beyond conditional control

transfer instructions. Previous publications can full details

[17].

2.2 Dynamic Instrumentation

A key requirement for a dynamic optimization framework

is to monitor applications as they are running. The tech-

nique used by optimizer for program monitoring is called

dynamic instrumentation. Dynamic instrumentation

involves inserting additional code into the program to track

program properties and values. This section describes the

approach to dynamic instrumentation in our dynamic opti-

mization scheme and techniques to mitigate the associated

overheads.

Dynamic Instrumentation. Traditional dynamic instru-

mentation systems need to be tailored to specific applica-

tions and platforms. For the continuous compilation

framework, what is needed is a dynamic instrumentation

system that is flexible enough to be used for different mon-

itoring purposes and adaptable to different architectural

platforms. We developed FIST (Flexible Instrumentation

system for Software dynamic Translator) that supports the

diverse instrumentation needs and platform independence

needed by our dynamic optimizer.

FIST makes decisions about where and how to instrument

an application based on run-time behavior. FIST is based

on an event-response model that triggers information gath-

ering when a property about the running program is satis-

fied. In FIST, an event occurs when a program monitor

discovers that a run-time property has been satisfied. A

response is an action taken for that event. This reactive

model permits trade-offs between the cost and amount of

information gathered. An example of an event is the incre-

ment of a counter and a check to see if the associated count

exceeds a value. The response code can be a notification to

the run-time system and a subsequent action.

To provide the flexibility that our dynamic optimizer

needs, FIST uses three primitives for instrumentation:

inline-hit-always, hit-once, and hit-many. These primitives

are used to build more complex operations, and they differ

in the way in which instrumentation is inserted and left in

the application. Inline-hit-always is inserted directly into a

basic block and never removed. Hit-once is executed out-

side of the program control flow and is removed immedi-

ately after being hit. Similarly, hit-many is executed

outside of regular control flow and remains in the code

until explicitly removed. Hit-once and hit-many intercept

Figure 2: Performance on Strata with initial configuration and optimized configuration for UltraSparc IIi.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
7
.m

e
sa

1
7
8
.g

a
lg

e
l

1
7
9
.a

rt
1
8
3
.e

q
u
a
ke

1
8
7
.f

a
ce

re
c

1
8
8
.a

m
m

p
1
8
9
.l
u
c
a
s

1
9
1
.f

m
a
3
d

2
0
0
.s

ix
tr

a
ck

3
0
1
.a

p
si

1
6
4
.g

zi
p

1
7
5
.v

p
r

1
7
6
.g

cc
1
8
1
.m

cf
1
8
6
.c

ra
ft
y

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k
2
5
4
.g

a
p

2
5
5
.v

o
rt

e
x

2
5
6
.b

zi
p
2

3
0
0
.t

w
o

lf

a
v
e

in
t
a
ve

fp
a
v
e

R
u
n
tim

e
 (

n
o
rm

a
liz

e
d
)

Strata initial Strata optimized

control flow and change it to go out-of-line to another loca-

tion.

FIST is implemented in the Strata run-time system and is

currently available for SPARC platform [8]. FIST has been

used in the context of several instrumentation applications

including a cache simulator, a software security checker

and several program profilers. Our results show the perfor-

mance and memory costs of FIST are very reasonable.

Instrumentation Optimization. Despite the relatively low

overhead of FIST, a need and opportunity exist to further

reduce overheads of dynamic instrumentation. Indeed, our

dynamic optimizer strives to improve the performance of

programs and a low-overhead monitoring system fits the

framework well. While the cost of dynamic instrumenta-

tion can be reduced on a case-by-case basis [11], what is

needed are automatic techniques that systematically reduce

instrumentation overheads at an algorithmic level. These

techniques, which we call Instrumentation Optimizations,

are analogous to compiler optimizations.

To illustrate our instrumentation optimizations, consider

Figure 3 that shows three instrumentation points. An

instrumentation point is a specific point in the program

which is instrumented to invoke an instrumentation pay-

load at run-time. Each instrumentation point has a probe

(shown as an oval) that is code that intercepts program exe-

cution to invoke the payload (shown as a box). There are

three primary sources of overheads in a dynamic instru-

mentation system: (1) number of probes, (2) cost of the

probes, and (3) cost of the instrumentation payload. We

describe three instrumentation optimizations that tackle

each of these three sources of overheads.

The first optimization, called Dynamic Probe Coalescing

(DPC), analyzes instrumentation points in a code region

along with the intervening program code to determine if

the information collected at one instrumentation point can

be collected at another instrumentation point. If so, the two

instrumentation points are coalesced together, thereby

reducing the total number of probes executed. Note that

DPC reduces the dynamic number of instrumentation

points, but does not reduce the amount of information col-

lected by the instrumentation system.

The second optimization, called Partial Context Switch

(PCS), strives to reduce the cost of an individual probe by

reducing the context-switch overhead between program

and instrumentation payload. PCS analyzes each instru-

mentation probe and the associated program code to deter-

mine the minimal number of registers that need to be saved

and restored for context-switch.

The third optimization, called Partial Payload Inlining

(PPI), targets the cost of an instrumentation payload by

inlining the payload inside the instrumentation probe. This

optimization eliminates the overhead associated with a

function call and exposes further opportunities for PCS

optimization.

We implemented the instrumentation optimizations in

Strata-SPARC and evaluated the efficacy of the instrumen-

tation techniques in the context of several program profil-

ers. Table 1 shows the speedups obtained by applying the

three optimizations for different program monitoring appli-

cations. The first column in Table 1 shows the name of the

monitoring application; the second column gives a brief

description of the application; column 3 contains the aver-

age run-time for SPEC2000 benchmarks for each monitor-

ing application when no optimizations have been applied;

and column 4 shows the same when all optimizations have

been applied. The results show that the optimizations are

highly effective and reduce the overheads by an average of

2.15 times. The difference in optimization effectiveness

across different benchmarks and profilers are due to the

fact that optimizations are more effective when there are

more opportunities. Detailed results and explanations can

be found in [9].

3. Model-based Optimizations

To systematically address the challenge of applying

dynamic optimizations, we need to have a better under-

standing of the properties of optimizations. Our approach

is to develop a general framework for studying optimiza-

tion properties, in particular, profitability. Based on

whether an optimization is profitable, decisions can be

made about when to apply the optimization. Because of theFigure 3: Instrumentation Point

Application

B inary

Instrum entation

Payload

Instrum entation probe

Profilers Description Base Opt. Speedup

BB count Execution count of each basic
block 487s 218s 2.15x

Path
profile

Gather blocks executed along
a path 448s 218s 1.96x

Address
profile Collect load/store addresses 589s 219s 2.54x

Value
profile

Collect values used by loads
and stores 585s 211s 2.63x

Branch
history

Record taken and not-taken
branch history 511s 212s 2.26x

Call-chain Record order of function calls
and returns 712s 585s 1.26x

Table 1: Instrumentation optimization speedups.

high cost associated with applying optimizations and

experimentally evaluating profitability, we use an analyti-

cal approach to develop a model-based framework to pre-

dict the profitability of optimizations.

Our framework, given in Figure 4, has three types of ana-

lytic models (code, optimization and resource models) and

a profitability engine that processes the models and com-

putes the profit. The models are plug-and-play compo-

nents. When new models for the code, optimizations or

machine resources are needed, they can be developed and

easily added into the framework.

Figure 4: Predicting Optimization Profitability.

A code model expresses those characteristics of the code

segment that are changed by an optimization and impact a

machine resource. In our framework, there is a code model

for each machine resource. For example, there is a register

code model to express live range information because live

ranges can be changed by an optimization and impact the

registers. An optimization model expresses the semantics

(i.e., effect) of an optimization, from which the impact of

the optimization on each resource can be determined. A

resource model describes the resource configuration and

benefit/cost information in using the resource. The

resource models are developed based on a particular plat-

form. As part of the framework, there is a profitability

engine that uses the models to predict the profit of applying

an optimization.

We have developed the framework instances for predicting

the profitability of scalar optimizations and loop optimiza-

tions. The machine resources that we consider include

cache, registers and computation. In the next section, we

will present these framework instances for loop optimiza-

tions and the experimental results to demonstrate the effec-

tiveness of our framework. See [7] for information about

the framework instances for predicting the profitability of

scalar optimizations.

3.1 Prediction for Loop Optimizations

Data caches are designed to exploit locality, and naturally

they work best for programs that have high locality. Some

loop optimizations are designed to improve cache perfor-

mance by transforming the code to have better locality.

However, other optimizations are not designed specifically

for this purpose and may negatively impact cache perfor-

mance and the overall performance.

We have developed a framework instance for predicting

the profitability of loop optimizations. Since loop behavior

tends to dominate cache performance, we are focusing on

the profitability on cache performance.

Framework for Loop Optimizations. The cache code

model represents code characteristics that affect the cache.

It captures several aspects of a loop nest: (1) the loop

header with its lower and upper bounds and iteration step;

(2) all array references and their type (includes read and

writes and their affine expression); and (3) an array refer-

ence sequence that consists of all array references in a loop

body in the order that they appear in the intermediate code.

A loop optimization model represents a loop optimization

by a sequence of functions that affect the various aspects of

the cache code model. For example, in loop reversal, the

direction in which a loop traverses its iteration range is

reversed. Our optimization models have an impact function

that describes the loop header is changed to the new tra-

versal order. We have developed optimization models for

loop interchange, loop tiling, loop reversal, loop fusion,

loop distribution and loop unrolling.

The cache resource model expresses the data cache con-

figuration in the particular platform, including the cache

size, cache block size, associativity and cache miss penalty.

The profitability engine takes the cache code model, loop

optimization models and the cache resource model to pre-

dict the number of cache misses increased or decreased

after applying an optimization.

More details and examples of framework for predicting the

profitability of loop optimizations are in [6].

Experimental Results. To investigate the effectiveness

and usefulness of our framework toward predicting the

profitability of loop optimizations on cache performance,

we implemented our models and tested them with several

benchmark loops, including alv, irkernel, lgsi, smsi, srsi,

tfsi, tomcat3, biquad, gdevcdj, lms and pegwit.

Using these benchmarks, we validated the prediction accu-

racy of our framework. We also showed the performance

improvement of our model-based optimizations over

always applying loop optimizations. Finally, we showed

that our framework can also be used to select the most ben-

eficial optimizations. The complete experimental results

are presented in [6].

Table 2 gives the prediction accuracy of our framework for

each benchmark and loop optimization considered. The

prediction accuracies in the table are averages across a

Live Ranges

Profitability Engine

Optimization Models Code Models

Access Sequence

Operation List

Resource Models

Register

Cache

Computation

Loop Tiling

PRE

… …

range of trip counts for each benchmark. The trip count

was varied from 50 to 200 for each benchmark to simulate

different ratios of working set size to cache size and to

determine whether our model can accurately reflect differ-

ent loop configurations. The prediction accuracy of our

framework in determining the profitability of loop optimi-

zations is 96% on average. The prediction accuracy for

loop reversal on lgsi is 82%. This lower prediction accu-

racy is because for most trip counts, the cache miss reduc-

tion of loop reversal is so small (the reduction is just one or

two misses) that our model can not predict the benefit.

Instead, our model does not apply loop reversal in these

cases when the miss reduction is so small. Not applying

reversal in this case does no harm since the relative

improvement of applying reversal is minimal and can be

ignored.

4. Dynamic Optimization

Although dynamic optimization has shown promising

potential, its effectiveness and efficiency have not been

fully understood, which is especially true for native-to-

native optimizers. For example, Dynamo does not achieve

improvement on some programs [13], and DynamoRio

results in a slowdown (12% on average) over SPEC 2000

integer benchmarks [14]. Further exploration is needed to

extend the applicability of dynamic optimization. The goal

of this project is to develop a dynamic optimization scheme

that is effective and efficient.

4.1 Dynamic Optimization

We implemented a framework for dynamic optimization

with a set of optimizations implemented in Strata. Similar

to Dynamo, the optimizer monitors program execution,

detects a frequently executed path, forms it into a super-

block trace, optimizes it, and uses the optimized trace for

future executions. Currently, the optimizer performs a few

scalar optimizations, namely, constant propagation, copy

propagation, constant folding, and algebraic simplification.

It removes dead code, partially dead code, and some redun-

dant code. Moreover, when a trace inlines the entire body

of a routine, it can remove the call and return since they are

no longer needed. Due to the simplicity of the control flow

of a superblock trace, these optimizations are performed

rapidly in a forward pass and a backward pass.

We find that native-to-native optimization needs special

care to determine an optimization opportunity, compared to

traditional source-to-native compilation. Native-to-native

optimization accepts a native code segment as input. A

seemingly poor native instruction sequence may be pro-

duced by a poorly performing compiler; it may also be gen-

erated out of necessity (e.g., hardware constraints, such as

the range of an immediate number). The former case is a

true optimization opportunity because the code can be

improved, while the latter is a false optimization opportu-

nity because the code poorness is necessary. A dynamic

native-to-native optimizer should detect false optimization

opportunities and avoid wasting resources on optimizing

them. Source-to-native compilation, on the contrary, typi-

cally performs optimization on an intermediate representa-

tion before code generation. Therefore, traditional

compilers seldom need to handle false optimization oppor-

tunities.

4.2 Trace Quality

Trace quality dramatically affects the result of dynamic

optimization. Many opportunities for dynamic optimiza-

tion result when a trace is formed into a joint-free super-

block, where a variable in the original program may

become a constant number, and a partial redundancy may

become full redundant. Longer traces contain more optimi-

zation opportunities.

Traces should also follow execution flow. The benefits of

optimization are realized only when optimized code exe-

cutes. If execution goes off a trace in the middle too often,

the time to optimize the code that is not executed is

improvident. In addition, infrequently executed code in

traces may degrade cache performance.

Many dynamic optimization systems employ the Next-

Executing Tail (NET) technique to select traces [15]. Our

experiments indicate that 40.2% of NET traces consist of a

single basic block, and Hiniker et al. showed the average

size of a NET trace is 14.8 instructions [16]. In addition,

our experiments show that 49.9% of execution does not

follows NET traces from the trace head to the tail, going

off traces in the middle. We believe there is much opportu-

nity to improve the trace quality over the NET technique

and we are investigating new trace selection algorithms.

4.3 Static Planning for Dynamic Optimization

A dynamic optimization system has tighter resource con-

straints than static compilers. For instance, the code win-

Benchmark Interchange Tiling Reversal

alv 100% 100% 97.4%

irkernel 98.7% 100% 93.4%

lgsi 100% 100% 82%

smsi 100% 100% 86.8%

srsi 100% 100% 86.8%

fsi 100% 97.4% 100%

tomcat3 98.7% 92.1% 93.4%

biquad_N 89.5% 88.2% 100%

gdevcdj 100% 100% 97.4%

lms 97.4% 100% 94.7%

pegwit 100% 100% 81.6%

Table 2: Loop Optimization Prediction Acccuracy.

dow a dynamic optimizer sees is smaller. Nevertheless,

some sophisticated transformations naturally need context

information of the code that is being optimized. We pro-

pose static planning to address this challenge. A static plan

contains program information that is required for transfor-

mation but is expensive or impossible to compute at run-

time (e.g., data flow). As our experience indicates that a

dynamic optimizer spends much time checking the applica-

bility of a transformation, static planning can improve the

efficiency by computing the required information before-

hand. To increase the effectiveness of dynamic optimiza-

tion, a static plan also suggests transformations for a

dynamic optimizer to apply at run-time, including what

optimizations to perform, configuration of the optimiza-

tions, and the order to apply them. A model-based optimi-

zation method has been developed to study the properties

of optimizations (previously discussed in Section 3). This

analytical model-based approach is well suited for the

static planning scheme—generating dynamic optimization

plans with a high confidence of profitability.

We are currently investigating the benefits, feasibility, and

formats of static planning for dynamic optimization.

5. Debugging

Debugging is the process of eliminating bugs by pausing

and stepping through execution and inspecting and modify-

ing values. Debugging plays an important role in software

development. Dynamic translation in our framework intro-

duces novel challenges to debugging programs. In particu-

lar, since program code is generated at run-time, the static

debug information associated with the program becomes

inconsistent with the dynamically changing program.

Transformation of translated code, such as overhead reduc-

tion techniques and dynamic optimizations, change the

number of instances and order of statements, further com-

plicating the debugability of the program. Finally, dynamic

instrumentation performed as part of program monitoring

inserts additional code into the program that has no relation

to the executing application, but still executes with the

application. Such instrumented code must be hidden from a

debug user who is unaware of modifications to the program

at run-time.

Our goal is to provide capabilities to users that allow trans-

parent debugging of dynamically translated programs.

Debugging is transparent in that a debugger user is kept

completely unaware of dynamic code modifications per-

formed our system. Another goal is to keep the debugging

techniques independent of the target platform. This way,

the same debugging framework suffices for different plat-

forms supported by our dynamic optimizer. Finally, one of

our goals is to provide the same debugging facilities and

commands to users as existing debuggers do.

To achieve our goals, we propose a debug architecture as

shown in Figure 5. The debug architecture has three com-

ponents: (1) a SDT system, which is the run-time system of

our dynamic optimizer (2) a native debugger that is being

extended to support dynamically translated programs, such

as gdb, and; (3) a debug engine. The debug engine is a crit-

ical component that generates debug information at run-

time. This information is then used to hide dynamic code

generation and code modification from the native debugger

(and debug user).

The debug engine consists of three components: a mapping

generator, a mapper, and a breakpoint manager, and two

repositories, the mapping repository and the breakpoint

repository. The components and repositories are shown in

Figure 5. The mapping generator computes debug informa-

tion, consisting of dynamic debug mappings that relate

source program locations to translated program locations

and the vice-versa. It uses information provided by the

SDT system for generating and updating mappings. The

mappings, tuples relating untranslated program locations

with translated locations, are stored in the mapping reposi-

tory. The mapper uses the debug information from the gen-

erator to map untranslated and translated code. The output

of the mappings can be used by either the native debugger

or the SDT system.

The breakpoint manager keeps track of all active break-

points (and watchpoints) for the executing program in the

breakpoint repository. The native debugger communicates

information about the breakpoints to the breakpoint man-

ager. The breakpoint manager is responsible for inserting

breakpoints in translated code. When breakpoints are hit in

the translated code, the breakpoint manager is notified.

Figure 5: Debug Architecture

Native Debugger

Dynamic Translator

Mapping

Repository Mapper
Breakpoint

Manager

DEBUG

ENGINE

Breakpoint

Repository

Mapping

Generator

Fragment Cache

mapAddress

writeValue

inser/delete breakpoint

exceptionCallback

translation

operations
read/write exception

To understand the flow of information through the debug

engine, consider a typical debug session when a user tries

to insert a breakpoint at a source location. The native

debugger computes the corresponding untranslated pro-

gram location and invokes the breakpoint manager. The

breakpoint manager consults the mapper to determine the

corresponding translated locations and inserts breakpoints

at each of these locations. The breakpoint manager also

saves the breakpoint information in the breakpoint reposi-

tory. When a breakpoint is hit in a translated location, an

appropriate untranslated binary location is reported to the

native debugger. Debug commands such as single-step-

ping, inspection of stack frames, inspection and modifica-

tion of data values are also supported through the debug

engine. Currently, the debug engine does not provide

debugging techniques for dynamic optimizations.

We implemented the debug architecture in a debugger

called Tdb, using the Strata as the SDT system and gdb as

the native debugger. We verified the correctness of Tdb by

comparing results obtained by Tdb while debugging trans-

lated programs and comparing them to untranslated pro-

grams being debugged using Gdb [12]. Detailed

performance results for Tdb are described in [10].

6. Conclusion

To realize next-generation performance requires next-gen-

eration optimization technology. Because of the serious

limitations of current optimization techniques, our research

is focusing on dynamic optimizations. Our system will use

both static and dynamic information by forming plans at

compile time for online optimization. The runtime system,

based on a software dynamic translator, continuously mon-

itors the running application and applies optimizations

according to both the compilation-time-generated plans

and traditional dynamic optimization techniques.

Extensive progress has been made in developing this sys-

tem. First, we studied the causes of Strata’s overhead and

found methods to dramatically reduce overhead, to as little

as 4% extra execution time on average. Progress has been

made in ways to efficiently monitor the running program

via the FIST instrumentation system and INSOP system for

optimizing code to monitor the application. INSOP can

reduce the cost of monitoring a program by as much as

215%. To widely deploy dynamic optimizers, users and

compiler writers must be able to debug applications. Con-

sequently, we developed and implemented a method for

debugging programs running within our runtime system.

Further progress has been made on predicting the perfor-

mance impact of applying optimizations using hardware

models. Results indicate that the prediction quality is

exceptional, over 85% accuracy in most cases. Lastly, sig-

nificant progress has been made in applying dynamic opti-

mization.

7. References

[1] Bacon, D. F., Graham, S. L., and Sharp, O. J. 1994. Com-
piler transformations for high-performance computing.
ACM Comput. Surv. 26, 4 (Dec. 1994), 345-420.

[2] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. David-
son, and M. L. Soffa. Retargetable and reconfigurable soft-
ware dynamic translation. In CGO ’03: Proceedings of the
international symposium on Code generation and optimiza-
tion, pages 36–47, Washington, DC, USA, 2003. IEEE
Computer Society.

[3] Kevin Scott and Jack Davidson. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on Binary
Translation, September 2001.

[4] K. McKinley, S. Carr and C. Tseng. Improving Data Local-
ity with Loop Transformations. ACM Transactions on Pro-
gramming Languages and Systems, Vol. 18, No.4, July
1996.

[5] Michael D. Smith and Glenn Holloway. An Introduction to
Machine SUIF and Its Portable Libraries for Analysis and
Optimization. URL: http://www.eecs.harvard.edu/hube/
software/nci/overview.html

[6] M. Zhao, B. Childers and M.L. Soffa. Predicting the Impact
of Optimizations for Embedded Systems. ACM Conference
on Languages, Compilers, and Tools for Embedded Sys-
tems, June 2003.

[7] M. Zhao, B. Childers and M.L. Soffa. A Model-based
Framework: an Approach for Profit-driven Optimization.
International Symposium on Code Generation and Optimi-
zation, March 2005.

[8] N. Kumar, J. Misurda, B. R. Childers and M. L. Soffa,
“Instrumentation in software dynamic translators for self-
managed systems”, ACM Workshop on Self-Managing
Systems, 2004.

[9] N. Kumar, B. R. Childers and M. L. Soffa, “Low overhead
program monitoring and profiling”, ACM Workshop on
Program Analysis for Software Tools and Engineering,
2005.

[10] N. Kumar, B. R. Childers and M. L. Soffa, “Tdb: A source-
level debugger for dynamically translated programs”, ACM
Conf. on Automated and Analysis-Driven Debugging,
2005.

[11] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation”, ACM Conference on Programming Lan-
guage Design and Implementation, 2005.

[12] R. M. Stallman and R. H. Pesch, “Using GDB: A guide to
the GNU source-level debugger”, GDB v4.0, Free Software
Foundation, Cambridge, MA, 1991.

[13] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trans-
parent dynamic optimization system. Conf. on Program-
ming Language Design and Implementation (PLDI '00).
June 2000.

[14] D. Bruening, T. Garnett, and S. Amarasinghe. An Infra-
structure for Adaptive Dynamic Optimization. Intl. Symp.
on Code Generation and Optimization (CGO '03). March
2003.

[15] E. Duesterwald and V. Bala. Software Profiling for Hot
Path Prediction: Less is More. Proc. of 12th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems. November 2000.

[16] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving
Region Selection in Dynamic Optimization Systems. Intl.
Symp. on Microarchitecture (MICRO-38). November 2005.

[17] Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W.
Davidson, Bruce R. Childers. Evaluating Fragment Con-
struction Policies for SDT Systems. Submitted for publica-
tion to Second International Conference on Virtual
Execution Environments, June 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

