
Self-Organized Task Allocation for Computing
Systems with Reconfigurable Components

Daniel Merkle, Martin Middendorf, Alexander Scheidler
Parallel Computing and Complex Systems Group

Department of Computer Science, University of Leipzig
Augustusplatz 10/11, D-04109 Leipzig, Germany

{merkle, middendorf, scheidler}@informatik.uni-leipzig.de

Abstract— A self-organized allocation scheme for service tasks
in computing systems is proposed in this paper. Usually com-
ponents of a computing system need some service from time
to time in order perform their work efficiently. In adaptive
computing systems the components and the necessary tasks
adapt to the needs of users or the environment. Since in such
cases the type of service tasks will often change it is attractive
to use reconfigurable hardware to perform the service tasks.
The studied system consists of normal worker components and
helper components which have reconfigurable hardware and can
perform different service tasks. The speed with which a service
tasks is executed by a helper depends on its actual configuration.
Different strategies for the helpers to decide about service task
acceptance and reconfiguration are proposed. These strategies are
inspired by stimulus-threshold models that are used to explain
task allocation in social insects.

I. INTRODUCTION

The computing systems that are addressed in this paper
follow the paradigm of autonomic computing (e.g., [12]) or
organic computing (e.g., [11]). Such computing systems con-
sist of many relatively independent components and they are
adaptive to the needs of the user or the environment. Certain
management tasks should preferably be done by the systems
themselves and they should have the so called self-x properties,
i.e., they should be self-configurable, self-optimizing, and self-
servicing. The integration of self-organization principles is an
important design topic for theses systems. Service tasks for
example might be executed by helper components that self-
organize the allocation of their service work.

The principles that are used by social insects to organize
the work within a colony are potentially interesting for the
design of organic computing systems because insect colony or-
ganisation usually works without complicated communication
mechanisms and without central control. Stimulus-threshold
models are one standard type of models that are used in the
literature to explain the self-organized labour division in social
insect colonies (see, e.g., [2], [4], [17]). In these models each
individual has for each task a personal threshold value which
determines the preference of this individual to work for that
task. In addition, for every task there exists a stimulus value
which determines how necessary it is that individuals work for
the task. The probability that an individual works for a task
depends on the relative size of its threshold value for the task
and the stimulus value of the task. The lower the threshold

value and the higher the stimulus value the more likely is it
that an individual works for the task.

In the first stimulus-threshold models that have been pro-
posed in the literature the fixed threshold values were used
([4]). These fixed threshold models have then been extended
so that the threshold of an individual for a task can change
dynamically. In the so called threshold reinforcement models
it is assumed that the threshold of an individual for a task
decreases when the individual works for the task and vice versa
it increases when the individual does not work for the task ([2],
[17]). Thus, individuals can specialize to certain tasks. The
influence of colony size on the degree of specialization of the
individuals has been studied in [10], [15]. So far stimulus-
threshold models have been applied in scheduling [5], [6],
[7], [8], [13], robotics [1], [14], for mail retrieval problems
[3], [16], and in multi agent systems [9].

In this paper we propose a self-organized scheme to assign
service tasks in computing systems. Two types of components
are distinguished here to model the computing systems - the
normal workers and the helpers which fulfill servicing tasks.
Each worker needs some servicing from time to time before
it can continue its normal work. If a worker needs servicing
it searches for a helper that offers a suitable servicing task.
There exist different types of servicing tasks. The helpers are
assumed to have reconfigurable hardware that can perform
the different service tasks. The speed with which a servicing
task can be performed by a helper depends on how much
of its reconfigurable resources are configured for this type
of servicing task. Each helper that gets a request for service
from a worker decides whether it accepts the request. If it
accepts the request it decides whether it reconfigures itself in
order to increase the amount of computing resources that are
configured for the requested type of service. If the request for
service it not accepted the worker searches for another helper.

In this initial study on the topic we start with a simple
scenario where the workers might need only two different
types of service. The influence of the communication costs
and the reconfiguration costs on the performance of the
system are studied analytically and experimentally. Different
scenarios with static or dynamically changing composition
of the servicing tasks are considered. We compare the self-
organized tasks allocation scheme with a fixed allocation
scheme where each helper task always accepts a request and

1-4244-0054-6/06/$20.00 ©2006 IEEE

Worker

Helper

Fig. 1. Organic computing system with 5 worker components and 3 helper
components, each helper has 8 slices each of which is configured for tasks
of type 1 or type 2

is reconfigured so that it can perform all service tasks equally
fast. It should be noted that we concentrate on scenarios where
the reconfiguration time is large compared to the execution
time of a service time. This is the most interesting case because
when the reconfiguration times are relatively short it is possible
to reconfigure the helper completely new for each task.

The paper is organized as follows. In the next Section II
we introduce our model for a computing system. Details on
the reconfiguration strategy and task distribution scheme are
presented in Section III. An analysis of a two helper system
is presented in IV. The experimental results are described in
Section V. Conclusions are given in Section VI.

II. MODEL OF THE COMPUTING SYSTEM

In this section we formally describe our computing system
model. A computing system consists of two types of com-
ponents or members, ordinary members called workers and
supporting members called helpers. Let m be the number
of workers and H1, . . . , Hn be the n helpers. Each helper
has reconfigurable hardware (e.g., a Field Programmable Gate
Array (FPGA)) on which it performs the service tasks. These
hardware consists of q slices which can be reconfigured
independently (see Figure 1 for an example). Each slice is
always configured so that it works for only one type of tasks
(it is assumed here that there exists two types of tasks).
Different slices can be configured for different types of tasks.
A reconfiguration (operation) has the effect that the type of
task that can be executed on a slice is changed. During a
reconfiguration a helper can reconfigure any number of ≤ q
slices. The time of a complete reconfiguration of a helper is
tr and the time to reconfigure k slices is (tr/q) · k.

At each time step a helper can work for at most one task.
The time it takes to finish a task depends on the number of
slices that are reconfigured for the corresponding task type. A
helper that has a proportion of ≥ 1/2 of its slices configured
for tasks of type i is called specialized for tasks of type i.
It is fully specialized for tasks of type i when all slices are
reconfigured for this type of tasks. Here we assume that the
time is te · q/k where te is the execution time of a task on a

fully specialized helper and k is the number of slices working
for the task.

At each time step a worker needs servicing with probability
p0 > 0 before it can continue its normal work. The need for
servicing can be of type 1 or type 2. A worker that needs
servicing of type i searches for a helper and request a service
task of type i. If the request is granted the service task is
executed by the helper and afterwards the worker can continue
its normal work. If the request is not granted the worker
searches for another helper. It is assumed that searching here
means that a random helper is contacted. The communication
with the helper takes time tc ≥ 0 (no matter whether the
request was successful or not).

A helper that gets a request for servicing always accepts
the request when it has at least q/2 of its slices configured for
the corresponding type of tasks. Otherwise, the probability
that it accepts the request depends on a personal threshold
value for this type of tasks, a stimulus value for the task,
and the degree of specialization for this type of tasks. The
stimulus value for a type of tasks is the number of tasks of
this type minus the number of tasks of the other type counting
all tasks that are actually requested by the workers. Let Tij ,
i ∈ {1, 2}, j ∈ [1 : n] denote the threshold of helper Hj for
task type i and Si the stimulus of task i ∈ {1, 2}. The degree
of specialization of a helper for a type of tasks is the relative
number of slices that are configured for tasks of this type.
Further let sij , i ∈ {1, 2}, j ∈ [1 : n] denote the degree of
specialization of helper Hj for task type i (when the context
is clear indices i or j are omitted). The probability that helper
Hj accepts a request for task i is defined as

p(sij ,Si,Tij) := min{1, f(sij) +
S2

i

S2
i + T 2

ij

} (1)

where the function f(sij) is defined in the next section.

III. RECONFIGURATION STRATEGY AND TASK

DISTRIBUTION

The reconfiguration strategy for the helpers that is investi-
gated in this paper is motivated by stimulus-threshold models
that include learning behaviour of insects. In the first strategy
a helper that performs a servicing task always performs a
reconfiguration operation so that the number of slices that can
execute the corresponding type of servicing tasks is increased
by one (unless all slices have already been configured for
the corresponding type of tasks). We call this the 1-slice
reconfiguration strategy.

A possible problem of the 1-slice strategy is that the
execution time of a servicing task is very long when only a few
slices can execute it. Therefore we also studied a variant of the
1-slice strategy which is different for the case that a request
for service is accepted when less than half of the slices are
configured for the corresponding type of tasks. In this case
the helper reconfigures itself so that half of the slices are
configured for the accepted type before the execution starts.
We call this the 1+half-slice reconfiguration strategy.

Another important aspect is the strategy that is used by
the helpers to decide whether a request for service should
be accepted or not. As described in the last section a helper
always accepts a request when it has at least half of the slices
configured for the corresponding type of tasks. Otherwise it
accepts with a probability that is determined by Formula 1.
In the following we define the function f that is used in this
formula.

For this we consider first the case of a single helper H and
a static situation where it is assumed that the helper can not
be reconfigured and the servicing requests arrive at constant
rates for both types of tasks. The motivation for the definition
of f is that H should reject so many tasks of the type is it
not specialized for that it has an optimal reconfiguration for
the resulting relative number of both task that it executes.

Therefore the first aim is to determine the optimal percent-
age of the slices of the helper that should be configured for
type 1 tasks (the rest of the slices is then configured for tasks
of type 2) for given fixed servicing probabilities for both type
of tasks. Let p > 0 be the probability that a servicing task
is of type 1. The run time of the tasks for a specialization
level s for tasks of type 1 is p/s + (1− p)/(1− s). It can be
shown that the optimal percentage g(p) of slices that should
be configured for task 1 is g(p) = (p −

√
p − p2)/(2p − 1).

To define function f we consider a situation where it is
assumed that the servicing requests of both types arrive at the
same rate and where the stimulus value is S = 0. A helper H
is considered which rejects tasks for which it is not specialized
according to Formula 1. W.l.o.g. assume that these tasks are
type 1. The function f is now determined so that the rate of
tasks of type 1 that are accepted by H are optimal for the given
configuration of H , i.e. f is defined such that for the relative
number of accepted tasks of type 1 holds g(1/(1+f(s)) = s.
It can be shown that f(s) = (s − 1)2/s2.

More generally we can consider a situation where both tasks
have different servicing probabilities. Assume that requests
of type 1 (type 2) arrive with relative rate p (respectively
1 − p), p ∈ [0, 1]. Then f(p, s) is determined analogously
as follows. Set g(p/(p + (1 − p)f(p, s)) = s. Then f(p, s) =
min{1, (p/(1 − p)) · (s − 1)2/s2}.

Clearly, our definition of f is heuristic and not necessarily
optimal for a computing system with several helpers.

IV. ANALYSIS OF A TWO HELPER COMPUTING SYSTEM

In this section we analyze the computing system with
two helpers analytically. For the analysis a static situation
is assumed where the request rates for servicing tasks do
not change and where helpers are not reconfigured. It is
assumed that exactly half of the requests for each type of
tasks are for each of the two helpers H1 and H2. Let p be
the proportion of requests for servicing of type 1. Thus the
arrival rate of requests for tasks of type 1 (type 2) to H1 is
1/2 · p (respectively 1/2 · (1 − p)). The execution time of
each servicing task on a fully specialized helper is assumed
to be 1. If a request for a task is rejected then it is always
send to the other helper (this slight deviation from the model

0

2

4

c
0

0.2
0.4

0.6
0.8

1p

1

1.5

2

2.5

3

Fig. 2. Two helper computing system: hyperplanes showing the total
execution and the additional communication costs (i.e., the communication
costs minus c — the reason that we do not add all communication costs is
to make the figure better readable) corresponding to cases i-iv of Section IV

described in Section II is assumed to make the analysis easier).
The aim is to find out how much of the arriving requests
should be accepted in order to minimize the total execution and
communication time. W.l.o.g. we can assume that each type of
request can be rejected by at most one of the helpers. Assume
that request for tasks of type i are always accepted by helper
Hi, i ∈ [1, 2]. Let si be the proportion of slices configured
for tasks of type i of helper Hi. Let fi : [0, 1] → [0, 1] be the
function that determines the fraction of accepted requests on
helper Hi for tasks of type j, j �= i, i, j ∈ {1, 2}, depending
on the specialization level si of Hi.

The total execution time e1 for all tasks that are executed
on helper H1 is

e1 :=
1
2
·
(

p + p(1 − f2(s2))
s1

+
(1 − p)f1(s1)

1 − s1

)

This time consist of the execution time (1/2)·(p/s1) for the
requests of type 1 that arrive directly at H1, the execution time
(1/2)·p(1−f2(s2))/s1 for the requests of type 1 that have been
rejected by H2, and the execution time (1−p)f1(s1)/(1−s1)
for the requests of type 2 that arrive directly at H1 and are
accepted.

Similarly the total execution time e2 for all tasks that are
executed on helper H2 is

e2 :=
1
2
·
(

pf2(s2)
1 − s2

+
(1 − p) + (1 − p)(1 − f1(s1))

s2

)

The communication costs ω are

ω := c +
1
2
· c · (p(1 − f2(s2)) + (1 − p)(1 − f1(s1))).

The communication cost consists of the costs for the first
communication for each request plus the costs for the second
communication that is necessary when a request was rejected.
The total execution and communication times C for all tasks
is C = e1 + e2 + ω.

In order to find an optimal (with respect to minimal total
execution and communication costs) degree of specialization

iii

ii

i

iV

0

1

2

3

4

c

0.2 0.4 0.6 0.8 1

p

Fig. 3. Two helper computing system: cutlines between pairs of hyperplanes
for total execution and communication costs for cases i-iv; numbers indicate
which of the cases i-iv is optimal in the corresponding region

for both helpers it can easily be seen that it is optimal for the
computing system when helper Hi either rejects all request for
tasks of type j, j �= i or it accepts all these tasks. Therefore
it holds fi(si) = 0 or fi(si) = 1 for i ∈ {1, 2} and all
si ∈ [0, 1]. The following four cases can occur:

i. f1 = 0, f2 = 0:
In that case each helper Hi rejects all requests for tasks
of type j, j �= i. To achieve a minimal total execution
and communication time it is best when both helpers are
maximally specialized, i.e., si = 1, i ∈ {1, 2}. Then
C := 1 + 3/2 · c.

ii. f1 = 1, f2 = 1:
Both helpers accept all requests and no additional com-
munication occurs. It is easy to see that for the optimal
specialization level s1 = 1−s2 holds. Further, for arrival
rates p and (1 − p) follows s1 = 1 − s2 = g(p) =
(p −

√
p − p2)/(2p − 1) as shown in Section III. Then

C := (2p − 1)2
√

p(1 − p)/(p − √
p(1 − p))(p − 1 +√

p(1 − p)) + c. Note, that C = 2 + c for p = 1/2 and
limp=1 C = 1 + c.

iii. f1 = 1, f2 = 0:
In this case H2 rejects all request for tasks of type 1.
Therefore it is optimal when it is fully specialized for task
2 (s2 = 1). For H1 this leads to arrival rates of 1/2 · p +
1/2·p for requests of type 1 and 1/2·(1−p) for requests of
type 2. Hence the relative rate for requests of type 1 (type
2) is 2 ·p/(p+1) (respectively (1−p)/(p+1)). Then the
optimal value for s1 is s1 = g(2p/(p + 1)). The formula
for the resulting total execution an communication costs
is omitted because it is lengthy (the cost values are shown
in Figure 2).

iv. f1 = 0 and f2 = 1:
Analogous to case iii.

Figure 2 shows the total execution and communication costs
for all four cases. It can be seen from Figure 3 that there exists

 0.01
 0.1

 1
 10

tc / te
1e-04

1e-05
1e-06

1e-07 service probability

 0

 0.4

 0.8

 1.2

 1.6

 2

Fig. 4. Relative throughput of the self-organized computing system compared
to a s = 0.5-f = 1-system

for each of the cases i-iv a region of values for parameters c
and p where the case is optimal. For large communication costs
and values of p that are neither very small nor very large it is
optimal when all requests are accepted. If the communication
costs are small and the values of p are not too extreme then
it is optimal when each helper rejects one type of requests.
For large (small) values of p it is optimal when H1 rejects
(respectively accepts) all requests of type 2 and H2 accepts
(respectively rejects) all requests of type 1.

It should be noted that for practical purposes it could be
important to consider the relative amount of work that is done
by both helpers. In order to make the amount of work done
by both helpers similar it can be necessary to use f functions
that are not only always zero or one.

V. EXPERIMENTS

If not stated otherwise we use in all our experiments 2 types
of tasks and the execution time of a task is te = 100 for a
helper task that is fully specialized. The communication cost
were set to tc = 10. The number of workers was set to m =
100 and the number of helpers is n = 10. The helpers have
10 reconfigurable slices and the time to reconfigure the helper
completely is tr = 1000(tr/te = 10). The thresholds of all
helpers is T = 100. All results are averaged over 20 runs.

In this section we denote by s = x − f = y-system with
x ∈ [0, 1], y ∈ [0, 1] a simple system where the degree of
specialization is fixed to x for each helper and the value of
the f function for x is equal to y. Note, that the system with
fixed parameter s performs no reconfiguration operations and
therefore has no reconfiguration costs.

A. Static Environment

The communication costs tc are an important parameter
for the behaviour of the system. Their influence for the case
that both types of requests have identical probabilities is
investigated in the following.

 0.01
 0.1

 1
 10

tc / te
1e-04

1e-05
1e-06

1e-07 service probability

 0

 0.4

 0.8

 1.2

 1.6

 2

Fig. 5. Relative sojourn times of the self-organized computing system
compared to a s = 0.5-f = 1-system

Figure 4 compares the throughput (i.e., the number of
servicing tasks that have been finished in a certain time)
of the system with self-organized task allocation with a
s = 0.5-f = 1-system. Shown is the relative perfor-
mance difference of both systems for service probabilities in
{0.001, 0.0005, 0.0002, . . . , 0.000001} and relative commu-
nication costs tc/te ∈ {0.01, 0.02, . . . , 20}. For high service
probabilities and small values of tc/te (< 1), the throughput
of the self-organized computing system is almost twice as
high as for the s = 0.5-f = 1-system. Only for high
service probabilities and very high relative communication
costs (tc/te � 2) the throughput of the s = 0.5-f = 1-
system is better. The reason is that in the self-organized
system requests are rejected with some probabilities, which
implies additional communication costs. For small service
probabilities and relative communication costs of tc/te � 10
the performance of both systems is similar.

Figure 5 compares the sojourn times (i.e., for each tasks
the time from its first request to the end of its execution time
is measured) of the servicing requests in the self-organized
system and the s = 0.5-f = 1-system. The performance of
both systems differ significantly for most parameter combina-
tions. For small values of tc/te (< 1) the sojourn times of
the self-organized computing system are smaller for all tested
probabilities of service. Only for high service probabilities and
very high relative communication costs (tc/te � 2) the sojourn
of the s = 0.5-f = 1-system are better.

In the following we demonstrate an oscillation effect that is
typically for many self-organized systems. This effect occurs
in a simple system with only one helper that has one slice. The
probability that a worker needs service is 0.0001 per time for
each type of service. The reconfiguration costs are tr = 1000
and the threshold parameter was set to T = 1000.

Figure 6 shows the number k1 (k2) of actual requests for
tasks of type 1 (respectively type 2) over time. It can be seen,
that the values of k1 and k2 are oscillating. The reason for
this is that the helper specializes for one type of tasks — say

 0

 20

 40

 60

 80

 100

 120

 200 300 400 500 600 700

re

qu
es

ts

t/te

1
2

sum
sum*

Fig. 6. Number of actual request in a one helper system compared to a one
helper s = 0.5-f = 1.0-system; i: number of request of type i, sum (sum∗):
total actual number of requests (for the s = 0.5-f = 1.0-system)

 0

 20

 40

 60

 80

 100

 120

 200 250 300 350 400 450 500

re

qu
es

ts

t/te

1
2

sum

Fig. 7. Number of actual request in a ten helper system; i: number of request
of type i, sum: total actual number of requests; probability of service is 0.001
per time step and type of service, te = 100, tr/te = 30

type 1 — and then rejects requests for the other type (with a
probability defined by the f function). When the number of
(waiting) requests for type 2 increases, the stimulus increases
also. This leads to a increased probability that the helper
executes tasks of type 2. The reconfiguration operations that
are done in this case have the effect that the helper becomes
specialized for tasks of type 2. Compared to a simple s = 0.5-
f = 1.0-system with one helper the figure shows that the
actual number k1 + k2 of requests that are waiting is smaller.

The oscillating behavior occurs also in a system with more
than one helper. In the case of high reconfiguration costs the
system reacts slowly. This can be seen in Figure 7 for a system
with n = 10 helpers and where the reconfiguration time is 30
times larger than te.

B. Environment with Changing Service Probabilities

To investigate the behavior of the self-organized
task allocation scheme in more dynamic situations
we used changing servicing probabilities. In the
experiments described in the following the service
probabilities 0.0004 and 0.0016 were exchanged every
a/te = {10, 20, 50, 100, 200, 500, 1000, 2000, 5000} time

 12000 16000 20000 24000 28000

 10

 100

 1000 100

 1000

 10000

 25000
 20000
 15000

throughput

a/te T

throughput

(a) 1 slice
 12000 16000 20000 24000 28000

 10

 100

 1000 100

 1000

 10000

 25000

 20000

 15000

throughput

a/te T

throughput

(b) 10 slices
 0 5000 10000 15000 20000 25000 30000

 10

 100

 1000 100

 1000

 10000

 25000
 20000
 15000

throughput

a/te T

throughput

(c) 100 slices

Fig. 8. Self-organized computing system: throughput for different thresholds T and different degrees of dynamics a; te = 100, tr = 1000 and tc = 10

steps. Obviously the threshold parameter T has a strong
influence on the adaptiveness of the computing systems. For
a high value for T it is unlikely that the helpers reconfigure
themselves (comp. Equation 1). In the experiments threshold
values T ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 10000}
were used. For each combination of a/te and T the
throughput within 3000 ∗ te time steps was measured. Note,
that a/te = 2000 is a situation where the servicing probability
is changed only once over the considered time interval. The
reconfiguration time was set to tr = 1000 and communication
time tc = 10 was used in the experiments. All experiments
have also been done with tc = 100. But the results are
not presented because they are very similar to those for the
smaller communication times.

The experimental results for the self-organized service
system are depicted in Figure 8 for reconfiguration time
tr/te = 10, tc/te = 0.1 and different number of slices q ∈
{1, 10, 100}. The throughput of the self-organized system has
to be compared to the average throughput of 14109 achieved
with the s = 0.5-f = 1.0-system.

For very large values of T the self-organized service system
is not very adaptive. In all tested cases the best performance
is achieved for the extreme values of a/te = 10 or a/te =
2000. The reason is that using a/te = 2000 does not require
adaptiveness. When a/te = 10 is used the arrival rates change
so often, that the situation becomes similar to a situation where
the probabilities for both type of service are identical and fixed.
Such a situation also does not require adaptiveness and hence
a high value of T leads to a good performance.

The worst throughput is achieved in situations with many
slices and small value for T . In such situations it is likely that
a helper excepts a request, even when it has a small degree
of specialization for the corresponding type of tasks. This can
lead to very large execution times of the tasks (recall that using
only 1 out of k slices for a task increases the execution time
by factor k compared to an execution with full specialization).

Figure 9 compares the results of the standard self-organized
system (using the 1-slice reconfiguration strategy) with one
where the 1+half-slice reconfiguration strategy is used. Since
both strategies are the same for 1 slice results are shown
only for systems with 10 and 100 slices. The motivation to

 10

 100

 1000a/te 100

 1000

 10000

T

-12000

-8000

-4000

 0

 4000

(a) 10 slices

 10

 100

 1000a/te 100

 1000

 10000

T

-16000
-12000

-8000
-4000

 0
 4000

(b) 100 slices

Fig. 9. Self-organized service system: throughput difference between the
standard system (using the 1-slice reconfiguration strategy) and a system
using the 1+half-slice reconfiguration strategy for different thresholds T and
different degrees of dynamics a; te = 100, tr = 1000 and tc = 10

introduce the 1+half-slice reconfiguration strategy was to make
the system faster adaptive a changes of the relative servicing
probabilities for different types of tasks. It can be seen in
the figure that the 1+half-slice reconfiguration strategy obtains
for 10 slices a higher throughput higher threshold values (and
not too small values of a, recall that a/te ≤ 30 leads to a
situation that is similar the a situation with constant service
probabilities). For 100 slices (where a higher adaptivity is
even more necessary) the 1+half-slice reconfiguration strategy

 10

 100

 1000a/te 100

 1000

 10000

T

-4000

-2000

 0

 2000

 4000

(a) 1 slices

 10

 100

 1000a/te 100

 1000

 10000

T

-4000
-2000

 0
 2000
 4000
 6000

(b) 10 slices

 10

 100

 1000a/te 100

 1000

 10000

T

-2000
 0

 2000
 4000
 6000
 8000

(c) 100 slices

Fig. 10. Self-organized service system: throughput difference between the standard system (with the same threshold value T for each helper) and a system
using diverse-threshold method for different thresholds T and different degrees of dynamics a; te = 100, tr = 1000 and tc = 10

is better than the standard reconfiguration strategy. Only for
situation where the threshold values are very high (T >
5000) and very small values of a/te ≤ 30 the standard
reconfiguration strategy is better.

A possible problem in a dynamic situation when all helper
use the same threshold value is that they might start all at the
same time to change their specialization. Instead it might be
better when the helper change their specialization one after
the other as long as it is necessary for the new situation. To
test this we used a variant of the self-organized computing
system where each helper has a different threshold value.
We call this the diverse-threshold method. For the diverse-
threshold method we used fixed thresholds of (j · T)/(n + 1)
for helper Hj . Figure 10 compares the results of the standard
self-organized system to the variant with the diverse-threshold
method. The results show that the system using the diverse-
threshold method obtains a better throughput only for 1 or 10
slices and compared to a standard system with high threshold
values. For 100 slices the the standard system works better.

VI. CONCLUSIONS

We have proposed a self-organized scheme of the alloca-
tion of service tasks for an adaptive computing system. In
our model the computing system consists of normal worker
components and helper components where the workers need
some service from time to time in order continue with their
normal work. The service is done by the helpers which have
reconfigurable hardware to perform the different service tasks.
The speed of service for a certain task depends on the amount
of resources configured for this task by the helper. We have
studied different strategies that can be used by the helpers
to decide whether they should accept a service task and
whether they should reconfigure themselves. These strategies
are inspired by stimulus-threshold systems that have used
in the literature to explain task allocation in social insects.
For a simple two helper system we have presented analytical
results. For systems with a larger number of helpers we have
presented experimental results. They show for example that
these systems can adapt to dynamic situations with changing
probabilities for service.

Future work is to investigate more elaborated strategies
where the helpers collect information about their environment
and make reconfiguration decisions during the runtime of a
tasks. Also systems where the helpers are partially reconfig-
urable and where they can execute several tasks at the same
time will be studied.

ACKNOWLEDGEMENT

This work was supported by the German Research Foun-
dation (DFG) through the project “Organisation and Control
of Self-Organising Systems in Technical Compounds” within
SPP 1183.

REFERENCES

[1] W. Agassounon, A. Martinoli: Efficiency and Robustness of Threshold-
Based Distributed Allocation Algorithms in Multi-Agent Systems. In
Proc. of the First Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems AAMAS-02, ACM Press, 1090-1097, 2002.

[2] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg: Fixed response thresh-
olds and the regulation of division of labor in insect societies. Bulletin
of Mathematical Biology, 60:753–807, 1998.

[3] E. Bonabeau, A. Sobkowski, G. Theraulaz, J.-L. Deneubourg: Adaptive
Task Allocation Inspired by a Model of Division of Labor in Social In-
sects. In D Lundh et al. (Eds,), Biocomputing and Emergent Computation,
World Scientific, 36–45, 1997.

[4] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg: Quantitative study of
the fixed threshold model for the regulation of division of labour in insect
societies. Proc. Roy. Soc. London B 263, 1565-1569. 1996.

[5] V. A. Cicirello, S. F. Smith: Wasp-like Agents for Distributed Factory
Coordination. Autonomous Agents and Multi-Agent Systems 8(3): 237-
266, 2004.

[6] V. A. Cicirello, S. F. Smith: Distributed Coordination of Resources via
Wasp-Like Agents. Proc. First NASA GSFC/JPL Workshop on Radical
Agent Concepts (WRAC), 71-80, 2003.

[7] V. A. Cicirello, S. F. Smith: Wasp nests for self-configurable factories.
Proc. Fifth Int. Conf. on Autonomous Agents , 473-480, 2001.

[8] V. A. Cicirello, S. F. Smith: Insect Societies and Manufacturing IJCAI-01
Workshop on Artificial Intelligence and Manufacturing, 2001.

[9] P.R. Ferreira, D. de Oliveira, and A.L.C. Bazzan: A Swarmbased Ap-
proach to Adapt the Structural Dimension of Agents’ Organization.
Journal of the Brazilian Computer Society, 11(1): 63-73, 2005.

[10] J. Gautrais, G. Theraulaz, J.-L. Deneubourg, and C. Anderson: Emergent
polyethism as a consequence of increased colony size in insect societies.
Journal of Theoretical Biology, 215: 363-373, 2002.

[11] GI: Organic Computing / VDE, ITG, GI - Positionspapier. 2003, online:
http://www.betriebssysteme.org/Betriebssysteme/FutureTrends/oc-
positionspapier.pdf

[12] J.O. Kephart, D.M. Chess: The Vision of Autonomic Computing. IEEE
Computer, 36(1): 41-50, 2003.

[13] O. Kittithreerapronchai, C. Anderson: Do ants paint trucks better than
chickens? Market versus response thresholds for distributed dynamic
scheduling. Proc. IEEE Congress on Evolutionary Computation, 2003.

[14] M.J.B. Krieger, J.-B. Billeter: The call of duty: Selforganised task
allocation in a population of up to twelve mobile robots. Robotics
Autonom. Sys. 30: 65-84, 2000.

[15] D. Merkle, M. Middendorf: Dynamic Polyethism and Competition for
Tasks in Threshold Reinforcement Models of Social Insects. Adaptive
Behavior, 12: 251-262, 2004.

[16] R. Price, P. Tino: Evaluation of Adaptive Nature Inspired Task Allocation
Against Alternate Decentralised Multiagent Strategies. Proc. Parallel
Problem Solving from Nature - PPSN VIII, 982-990, LNCS 3242,
Springer, 2004.

[17] G. Theraulaz, E. Bonabeau, and J. Deneubourg: Response threshold
reinforcement and division of labour in insect societies, Proc. Roy. Soc.
London B 265, 327-332, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

