
Workforce Planning with Parallel Algorithms

Enrique Alba, Gabriel Luque, and Francisco Luna

Department of Languages and Computational Sciences
University of Málaga
29071 Málaga, SPAIN

{eat,gabriel,flv}@lcc.uma.es

Abstract

Workforce planning is an important activity that en-
ables organizations to determine the workforce needed
for continued success. A workforce planning problem
is a very complex task that requires modern techniques
to be solved adequately. In this work, we describe the
development of two parallel metaheuristic methods, a
parallel genetic algorithm and a parallel scatter search,
which can find high-quality solutions to 20 different
problem instances. Our experiments show that paral-
lel versions do not only allow to reduce the execution
time but they also improve the solution quality.

1 Introduction

Decision making associated with workforce planning
results in difficult optimization problems because it in-
volves multiple levels of complexity. The workforce
planning problem that we tackle in this paper consists
of two sets of decisions: selection and assignment. The
first step selects an small set of employees from a large
number of available workers and the second decision
assigns this staff to the tasks that must be performed.
The objective is to minimize the costs associated to
the human resources needed to fulfill the work require-
ments. An effective workforce plan is an essential tool
to identify appropriate workload staffing levels and jus-
tify budget allocations so that organizations can meet
their objectives.

The complexity of this problem does not allow the
utilization of exact methods for instances of realistic
size. As a consequence, we propose two parallel meth-
ods, a parallel genetic algorithm and a parallel scat-
ter search. Two kinds of instances have been used to
test our approaches. In “structured” ones, there exists
tasks which can be completed without wasting time of

employees by definition. On the other hand, this con-
straint is not considered in “unstructured” ones any
more, doing these instances be more difficult to solve.
The development of these methods has the goal of pro-
viding a tool for finding high-quality solutions to struc-
tured and unstructured instances of the workforce plan-
ning problem (WPP).

The organization of this paper is as follows. In next
section, we show a mathematical description of the
WPP. In Section 3 and Section 4 we describe the par-
allel genetic algorithm and the parallel scatter search,
respectively. Then, in Section 5 we analyze the results
of these algorithms for the solution of the WPP, and
finally, we give some hints on future works and conclu-
sions in Section 6.

2 The Workforce Planning Problem

The following description of the problem is taken
from Glover et al. [3]. A set of jobs J = {1, . . . , m}
must be completed during the next planning period
(e.g., a week). Each job j requires dj hours during the
planning period. There is a set I = {1, . . . , n} of avail-
able workers. The availability of worker i during the
planning period is si hours. For reasons of efficiency,
a worker must perform a minimum number of hours
(hmin) of any job to which he/she is assigned and, at
the same time, no worker may be assigned to more than
jmax jobs during the planning period. Workers have
different skills, so Ai is the set of jobs that worker i is
qualified to perform. No more than t workers may be
assigned during the planning period. In other words, at
most t workers may be chosen from the set I of n work-
ers and the subset of selected workers must be capable
of completing all the jobs. The goal is to find a feasible
solution that optimizes a given objective function.

We use the cost cij of assigning worker i to job j
to formulate the optimization problem associated with

1-4244-0054-6/06/$20.00 ©2006 IEEE

this workforce planning situation as a mixed-integer
program. We refer to this model of the workforce plan-
ning problem as WPP:

xij =
{

1 if worker i is assigned to job j
0 otherwise

yi =
{

1 if worker i is selected
0 otherwise

zij = number of hours that worker i is assigned to
perform job j

Qj = set of workers qualified to perform job j

Minimize
∑
i∈I

∑
j∈Ai

cij · xij (1)

Subject to ∑
j∈Ai

zij ≤ si · yi ∀i ∈ I (2)

∑
i∈Qj

zij ≥ dj ∀j ∈ J (3)

∑
j∈Ai

xij ≤ jmax · yj ∀i ∈ I (4)

hmin · xij ≤ zij ≤ si · xij ∀i ∈ I, j ∈ Ai (5)∑
i∈I

yi ≤ t (6)

xij ∈ {0, 1} ∀i ∈ I, j ∈ Ai

yi ∈ {0, 1} ∀i ∈ I

zij ≥ 0 ∀i ∈ I, j ∈ Ai

In the model above, the objective function (1) min-
imizes the total assignment cost. Constraint set (2)
limits the number of hours for each selected worker. If
the worker is not chosen, then this constraint does not
allow any assignment of hours to him/her. Constraint
set (3) enforces the job requirements, as specified by
the number of hours needed to complete each job dur-
ing the planning period. Constraint set (4) limits the
number of jobs that a chosen worker is allowed to per-
form. Constraint set (5) enforces that once a worker
has been assigned to a given job, he/she must perform
such a job for a minimum number of hours. Also, con-
straint (5) does not allow the assignment of hours to
a worker that has not been chosen to perform a given
job. Finally, constraint set (6) limits the number of
workers chosen during the current planning period.

The difficulty of solving instances of the WPP with
an optimization method is related to the relationship
between hmin and dj . In particular, problem instances
for which dj is a multiple of hmin (referred to as “struc-
tured”) are easier to handle than those for which dj and
hmin are unrelated (referred to as “unstructured”).

3 Genetic Algorithm

A genetic algorithm (GA) [5] is an iterative tech-
nique that applies stochastic operators on a pool of
individuals (the population). Every individual in the
population is the encoded version of a tentative solu-
tion. Initially, this population is randomly generated.
An evaluation function associates a fitness value to
every individual indicating its suitability to the prob-
lem. The population size for GAs used in this work is
400 individuals. This value and the specific values of
the parameters in the following sections as well have
been obtained after preliminary experimentation.

Within the basic structure of the GA for solving the
WPP, we have added context information through a
special solution representation and crossover operators
with improving and repairing mechanisms.

3.1 Representation

Solutions are represented as an n × m matrix Z,
where zij represents the number of hours that worker i
is assigned to job j. In this representation, a worker i
is considered to be assigned to job j if zij > 0. There-
fore the following relationships are established from the
values in Z.

xij =
{

1 if zij > 0
0 otherwise

yi =
{

1 if
∑

j∈Ai
zij > 0

0 otherwise

3.2 Solution Evaluation

Solutions are evaluated according to the objective
function (1) plus a penalty term. The additional term
penalizes violations of constraints (2), (3), (4) and (6).
The penalty coefficients that are multiplied by the con-
straint violations are p2, p3, p4, and p6. Values for these
coefficients have been set up to 50, 50, 200, and 800,
respectively. Before the fitness value is calculated, new
trial solutions are subjected to a repairing/improving
operator that makes sure that constraint (5) is satisfied.
This operator also ensures that no worker is assigned
to a job that he/she is not qualified to perform.

3.3 Repairing/Improving Operator

The purpose of this operator is to repair trial solu-
tions in such a way that they either become feasible
with respect to the original problem or the infeasibility
of these solutions is reduced. The operator performs
the 4 steps outlined in Figure 1.

In the first step, this operator repairs solutions with
respect to the minimum number of hours that a worker
must work on any assigned job. The repair is done only
on those qualified workers that are not meeting the

1. Eliminate violations with respect to hmin

2. Eliminate violations with respect to
assignments of unqualified workers

3. Load feasible workers
4. Reduce infeasibility

Figure 1. Repairing/improving operator.

minimum time requirement. In mathematical terms, if
0 < zij < hmin for i ∈ I and j ∈ Ai, then zij = hmin.

The second step takes care of assignments of workers
to jobs for which they are not qualified to perform. A
value of zero is given to the corresponding entry in Z.
Using our notation, if zij > 0 for i ∈ I and j /∈ Ai,
then zij = 0.

The third step considers that a worker is feasible
if he/she satisfies constraints (2) and (4). This step
attempts to use up the capacity slack of feasible work-
ers. The slack time for worker i (i.e., si−

∑
j∈Ai

zij) is
equally divided among his/her current job assignments.
This allows for a higher utilization of the workers that
are currently assigned to jobs and thus facilitating the
satisfaction of constraint (6).

The last step starts with a partial order of the work-
ers in such a way that the most infeasible ones (with
respect to constraints (2) and (4)) tend to appear at
the top of the list. This is not a complete order because
the operator counts on certain amount of randomness
for this step. Once the partial order is established, a
process of reducing the infeasibility of workers is ap-
plied. The process of reducing the violation of con-
straints (2) and (4) is such that it guards against new
violations of constraints (3) and (5).

3.4 Crossover Operator

A special crossover operator has been designed for
the solution of WPP. The operator employs a parame-
ter ρc that may be interpreted as the probability that
two solutions exchange their current assignments for
worker i. The process is summarized in Figure 2.

Given two solutions Z1 and Z2, the crossover oper-
ator in Figure 2 selects, with probability ρc, a worker i.
In the experimentation section, this value is set up to
0.8. If the worker is selected, then the job assignments
of solution Z1 are exchanged with the assignments of
solution Z2. The rand() function in Figure 2 generates
a uniform random number between 0 and 1.

for (i = 1 to n) do
if rand() < ρc then

for (j = 1 to m) do
z1
ij ↔ z2

ij

endfor
endif

endfor

Figure 2. Crossover operator.

for (i = 1 to n) do
for (j ∈ Ai) do

k = random worker |k �= i and k ∈ Qj

if rand() < ρm then
zij ↔ zkj

endif
endfor

endfor

Figure 3. Mutation operator.

3.5 Mutation Operator

In addition to the crossover operator described
above, our GA implementation includes a mutation op-
erator. This mechanism operates on a single solution
by exchanging the job assignments of two workers. The
job exchange occurs with probability ρm, as shown in
Figure 3.

Given a solution Z, the mutation operator considers
all workers and jobs that the workers are qualified to
perform. A random worker k is chosen from the list of
qualified workers and the exchange of job assignments
is considered. For experiments, we set up ρm to 0.2. As
before, the rand() function returns a uniform random
number between 0 and 1.

3.6 Parallel Version

A parallel GA (PGA) [1] is a procedure that con-
sists of multiple copies of an implementation (typically
serial) of a genetic algorithm. The individual GAs in-
clude an additional communication phase that enables
them to exchange information. A PGA is character-
ized by the nature of the individual GAs and the type
of communication that is established among them. Our
particular implementation is a distributed GA (dGA),
which allows for an efficient exploitation of machine
clusters. Typically, dGAs consist of a small number of
independent GAs that periodically exchange informa-
tion. Each individual GA operates on a considerably
large population. Since we want to compare against the
sequential GA, PGAs use the same population size, but
now the whole population of the sequential GA is split
into as many subpopulations as processes involved in
the parallel computation.

To fully characterize a dGA, the migration policy
must be established, which is related to the connec-
tion topology of the set of individual GAs. The policy
dictates when migration occurs, the number and iden-
tity of the individuals that will be exchanged and also
determines the synchronization scheme. Our imple-
mentation uses a unidirectional ring topology, where
each GA receives information from the GA immedi-
ately preceding it and sends information to the GA
that is immediately after it. At each migration opera-
tion which is carried out every 15 generations, one sin-

gle solution is selected from the population (via binary
tournament) and sent to the corresponding neighbor.
The newly reached solution replaces the worst individ-
ual in the target population if it is better.

4 Scatter Search

Scatter Search (SS) [4] is a population-based meta-
heuristic that uses a reference set to combine its so-
lutions and construct others. The method generates
a reference set from a population of solutions. Then
a subset is selected from this reference set. The se-
lected solutions are combined to get starting solutions
to run an improvement procedure. The result of this
improvement can motivate the updating of the refer-
ence set. The procedures involved by the SS method
are the following:

• Initial population creation: The first step of this
technique is to generate an initial population. This
population must be a wide set of disperse solu-
tions. However, it must also include good solu-
tions. Several strategies can be applied to get a
population with these properties.

• Reference Set update and creation: The SS oper-
ates on a small set of solutions, the RefSet, con-
sisting of the “good” solutions found during the
search. The “good” solutions are not limited to
those with the best objective values. By “good”
solutions we mean solutions with the best objec-
tive values as well as disperse solutions (to escape
local optimality and diversify the search). In gen-
eral, the RefSet is composed of two subsets: one
subset for the best solutions (RefSet1) and another
for diverse solutions (RefSet2). This reference set
is created from the initial population and it is up-
dated when a new solution is generated. Also, this
set is partially reinitialized when the search has
stagnated. In our experiments, we use an small
RefSet composed of eight solutions (|RefSet1| = 5
and |RefSet2| = 3).

• Subset generation: This procedure operates in the
reference set to produce a subset of its solutions
as a basis for creating combined solutions. In this
work, we generate all 2-elements subsets (28 sub-
sets) and then we apply the solution combination
operator to them.

• Solution combination: It transforms a given subset
of solutions into one or more combined solution
vectors.

• Improvement method: This procedure transforms
a trial solution into an enhanced solution.

for (i = 1 to MaxIter) do
Z′ = generate neighbor from Z
if fitness(Z′) < fitness(Z) or

rand() < ρi then
Z = Z′

endif
endfor

Figure 4. Improvement operator.

To solve the WPP with SS, we have used the same
representation, fitness evaluation, repairing operator,
and crossover operator that we used with GA imple-
mentation (Sections 3.1, 3.2, 3.3, and 3.4, respectively).
These operators have been utilized because they per-
form an exhaustive and structured search but with new
ideas extending SS. The rest of implementation issues
is described in the next subsections.

4.1 Initial Population

In our case, the initial population is composed of 15
random solutions which are enhanced by the improve-
ment method that we describe in the next subsection.
As in the GA, we want to remark here that the entire
parameterization of SS has been tuned properly after
preliminary experimentation.

4.2 Improvement Method

A special improvement operator has been designed
for the solution of the WPP. The operator employs a
parameter ρi that may be interpreted as the probability
that a worse solution replaces a better solution in the
improvement method. The process is summarized in
Figure 4.

Given a solution Z, the improvement operator gen-
erates a neighbor (we use the mutation operator de-
scribed in Section 3.5). If this new solution Z ′ is better
than the original solution Z, we accept that solution
and the process is repeated for MaxIter iterations.
This method also accepts a worse solution by mean
of a probability defined by ρi. As before, the rand()
function returns a uniform random number between 0
and 1, and fitness() returns the objective fitness value
achieved by a solution. Our SS algorithm used in the
experimentation section performs 50 iterations of this
process and the probability of accepting a worse solu-
tion (ρi) is 0.1.

4.3 Parallel Version

Several parallel implementations of the basic scheme
of SS have been proposed in the literature [2]. We are
interested in obtaining a parallel method that allows
not only to reduce the execution time but also improve

the solution quality. Hence, we rule out the master-
slave model.

We have used a distributed model, i.e., we have sev-
eral sequential SS running in parallel that periodically
exchange information (one single solution from Ref-
Set). The connection topology is the same as in the
PGA. Binary tournament is used for choosing the mi-
grant, what allows high quality solutions from RefSet1
more likely to be selected. In the target SS algorithm,
the current method for updating the RefSet is applied
in order to insert the migrant solution.

We reduce the number of subsets generated by each
independent SS so that the computational effort is the
same as the sequential version. In concrete, the number
of subsets generated is the number of subsets of the
serial version divided by the number of islands. In this
case, we choose the subset randomly, but we do not
allow the same subset to be selected two or more times.

5 Computational Experiments

In this section we first present the problem instances
used. Then, we analyze the behavior of the algorithms
with respect to, on the one hand, their ability to find
accurate solutions and, on the other hand, the time
needed to reach these solutions.

The algorithms in this work have been implemented
in C++ and executed on a cluster of Pentium 4 at
2.8 GHz with 512 MB of memory which run SuSE
Linux 8.1 (kernel 2.4.19-4GB). The interconnection
network is a Fast-Ethernet at 100 Mbps.

5.1 Problem Instances

In order to test the merit of the proposed proce-
dure, we generated artificial problem instances. Given
the values of n, m, and t the problem instances were
generated with the following characteristics:

si = U(50, 70)
jmax = U(3, 5)
hmin = U(10, 15)
Category(worker i) = U(0, 2)
P (i ∈ Qj) = 0.25 · (1 + Category(worker i))
dj = max

(
hmin, U

(
s̄·t
2·m , 1.5·s̄·t

m

))
where s̄ =

∑
i
si

n and
∑

j
dj

s̄·t ≤ α
cij = |Ai| + dj + U(10, 20)

The generator establishes a relationship between the
flexibility of a worker and his/her corresponding cost.
That is, workers that are able to perform more jobs
are more expensive. We solve twenty structured and
unstructured problems which have been called s1 to
s10 and u1 to u10, respectively. The ten unstructured

problems were generated with the following parameter
values: n = 20, m = 20, t = 10 and α = 0.97.

Note that the problem generator uses α as the limit
for the expected relative load of each worker. The set
of ten structured problems was constructed using the
same parameter values but hmin was set to 4 and the dj

values were adjusted as follows: dj = dj − mod(dj , 4),
where mod(x, y) calculates the remainder of x/y. All
twenty instances were generated in such a way that a
single value for the total number of available hours (si)
is drawn and assigned to all workers.

5.2 Results: Workforce Planning Perfor-
mance

The resulting workforce plannings computed by
both GA and SS approaches are analyzed in this sec-
tion. Values in the tables are average results over 30
independent runs. Since we deal with stochastic al-
gorithms, we have carried out an statistical analysis
of the results which consists of the following steps.
First a Kolmogorov-Smirnov test is performed in or-
der to check whether the variables are normal or not.
If so, an ANOVA I test is done, otherwise we perform
a Kruskal-Wallis test. In fact, all the tests in this work
are Kruskal-Wallis tests (with 95% of confidence) since
the Kolmogorov-Smirnov normality test did not suc-
cess any more.

We want to note that the parallel versions of GA
and SS have been executed not only in parallel, but
also on a single processor. The first reason that moti-
vates these experiments is to check that the parallel
search model is independent of the computing plat-
form. As expected, the corresponding tests included
in the KW2 columns of Tables 1 and 2 indicate that no
statistical difference exists between them (“−” sym-
bols). As a consequence, in order to compare sequen-
tial vs. parallel versions of each algorithm, we have
considered only the results of the parallel executions
of PGA and PSS and therefore the statistical test just
involves three datasets (column KW3). In the second
place, running parallel models in a single CPU will al-
low us to perform the execution time analysis of the
algorithms properly (see Section 5.3 for the details).
The result of the best algorithm for each instance is
marked in boldface.

5.2.1 GA Results
The first conclusion that can be drawn from Table 1 is
that any PGA configuration is able to solve the con-
sidered WPP better than the sequential GA and sta-
tistical confidence exists for this claim (see “+” sym-
bols in column KW3). The unstructured problem u8
stands for the exception but it can be ruled out since

Table 1. GA results for structured and un-
structured problems.

Prob. Seq. GA
PGA-4 PGA-8

KW31 p. 4 p. KW2 1 p. 8 p. KW2
s1 963 880 879 − 873 873 − +
s2 994 943 940 − 920 922 − +
s3 1156 1013 1015 − 1018 1016 − +
s4 1201 1036 1029 − 1008 1003 − +
s5 1098 1010 1012 − 998 1001 − +
s6 1193 1068 1062 − 1042 1045 − +
s7 1086 954 961 − 960 953 − +
s8 1287 1095 1087 − 1068 1069 − +
s9 1107 951 956 − 984 979 − +
s10 1086 932 927 − 924 926 − +
u1 1631 1386 1372 − 1302 1310 − +
u2 1264 1132 1128 − 1153 1146 − +
u3 1539 1187 1193 − 1254 1261 − +
u4 1603 1341 1346 − 1298 1286 − +
u5 1356 1241 1252 − 1254 1246 − +
u6 1205 1207 1197 − 1123 1116 − +
u7 1301 1176 1179 − 1127 1121 − +
u8 1106 1154 1151 − 1123 1128 − −
u9 1173 950 938 − 933 935 − +
u10 1214 1160 1172 − 1167 1163 − +

the Kruskal-Wallis test did not success (“−” symbol
in column KW3), thus indicating that the algorithms
are not statistically different from each other. Spe-
cially accurate solutions have been computed by PGAs
in unstructured instances u1, u3, and u9, where the
reductions in the planning costs are greater than 20%.

If we now compare PGAs between them, Table 1
shows that PGA-8 found the best solutions for 13 out of
20 WPP instances, while PGA-4 was only able to find
the best plannings in 6 out of 20. This holds specially
for the structured problems where PGA-8 gets the best
workforce plannings in 8 out of 10 instances. However,
it is also noticeable that differences between solutions
from PGA-4 and PGA-8 are very small, thus showing
that both algorithms have a similar ability for solving
the WPP.

5.2.2 SS Results
We can perfectly start analyzing the results of SS (Ta-
ble 2) in the same way as GA results, i.e., parallel
SS configurations always get the best solutions for all
the WPP instances and also with statistical confidence
(“+” symbols in column KW3). There are some par-
ticular instances in which PSS was able to reduce the
planning costs significantly with respect to the sequen-
tial SS, e.g. s8, from 1293 down to 1048 (reduction
of 18%) or u4, from 1653 down to 1305 (reduction of
21%). Averaging over structured and unstructured in-
stances, the best PSS configuration reduces WPP costs
of sequential SS in 8.35% and 14.98%, respectively.

Turning to compare PSS-4 and PSS-8 between them,
Table 2 shows that no conclusion can be draw concern-
ing the structured problems since both algorithms get
the best solutions for 5 out of 10 instances. However,

Table 2. SS results for structured and un-
structured problems.

Prob. Seq. SS
PSS-4 PSS-8

KW31 p. 4 p. KW2 1 p. 8 p. KW2
s1 939 896 901 − 861 862 − +
s2 952 904 905 − 916 913 − +
s3 1095 1021 1019 − 1005 1001 − +
s4 1043 1002 991 − 997 994 − +
s5 1099 999 1007 − 1009 1015 − +
s6 1076 1031 1034 − 1023 1022 − +
s7 987 956 942 − 941 933 − +
s8 1293 1113 1120 − 1058 1062 − +
s9 1086 948 950 − 952 950 − +
s10 945 886 891 − 915 909 − +
u1 1586 1363 1357 − 1286 1280 − +
u2 1276 1156 1158 − 1083 1078 − +
u3 1502 1279 1283 − 1262 1267 − +
u4 1653 1363 1356 − 1307 1305 − +
u5 1287 1176 1192 − 1175 1169 − +
u6 1193 1168 1162 − 1141 1136 − −
u7 1328 1152 1151 − 1084 1076 − +
u8 1141 1047 1039 − 1031 1033 − +
u9 1055 906 908 − 886 883 − +
u10 1178 1003 998 − 952 958 − +

PSS-8 always reaches the best workforce planning in
the case of the unstructured problems.

5.2.3 GA vs. SS
In this section we want to compare both GA and SS ap-
proaches for solving WPP. Since there are many differ-
ent problem instances and analyzing them thoroughly
would hinder us from drawing clear conclusions, we
have summarized in Table 3 the information of Ta-
bles 1 and 2 as follows: we have normalized the re-
sulting planning cost for each problem instance with
respect to the worst (maximum) cost obtained by any
proposed algorithm, so we can easily compare without
scaling problems. Then, values in Table 3 are average
values overall the structured and unstructured WPP
instances.

A clear conclusion that can be reached is that all
SS configurations outperform the corresponding GA
ones, that is, considering all structured and unstruc-
tured WPP instances, SS gets better solutions than
the GA. It is worth mentioning differences between se-
quential approaches in structured problems (normal-
ized average is reduced from 0.9994 down to 0.9410)
and eight island based parallel algorithm in unstruc-
tured problems, where PSS-8 normalized costs are 4.4%

Table 3. Average results for structured and
unstructured problems.

Problems s1 - s10 u1 - u10
Algorithm GA SS GA SS

Sequential 0.9994 0.9410 0.9896 0.9744

4 Islands
1 p. 0.8858 0.8743 0.8885 0.8605
4 p. 0.8847 0.8747 0.8879 0.8598

8 Islands
1 p. 0.8783 0.8677 0.8735 0.8308
8 p. 0.8776 0.8663 0.8718 0.8292

Table 4. Execution time (in seconds) for structured and unstructured problems.
4 Islands 8 Islands

KW6Sequential 1 CPU 4 CPUs 1 CPU 8 CPUs
Problem GA SS KW2 PGA-4 PSS-4 KW2 PGA-4 PSS-4 KW2 PGA-8 PSS-8 KW2 PGA-8 PSS-8 KW2
s1 61 72 + 62 74 + 17 19 + 66 77 + 9 10 + +
s2 32 49 + 32 53 + 9 14 + 37 58 + 6 8 + +
s3 111 114 − 113 118 + 29 31 + 115 127 + 15 17 + +
s4 87 86 − 93 84 + 24 23 − 95 87 + 13 13 − +
s5 40 43 − 41 45 + 13 12 − 46 47 − 9 7 + +
s6 110 121 + 109 122 + 34 33 − 114 128 + 18 18 − +
s7 49 52 + 53 47 + 16 14 + 57 55 − 9 8 + +
s8 42 46 − 45 48 − 13 13 − 48 50 − 7 7 − +
s9 67 70 + 73 71 − 21 19 + 76 74 − 13 10 + +
s10 102 105 + 105 101 + 28 28 − 109 106 + 16 15 − +
u1 95 102 + 98 108 + 29 29 − 102 111 + 16 16 − +
u2 87 94 + 89 95 + 28 26 + 92 99 + 15 14 − +
u3 51 58 + 55 55 − 17 17 − 59 59 − 10 11 + +
u4 79 83 + 79 86 + 26 24 + 86 92 + 15 15 − +
u5 57 62 + 62 62 − 21 18 + 63 68 + 12 10 + +
u6 75 111 + 72 115 + 20 30 + 70 119 + 13 16 + +
u7 79 80 − 81 81 − 24 24 − 89 83 + 15 14 − +
u8 89 123 + 88 118 + 23 35 + 92 123 + 14 20 + +
u9 72 75 − 78 77 − 22 22 − 85 80 + 13 12 − +
u10 95 99 + 96 96 − 25 28 − 99 101 + 13 17 + +

lower than PGA-8 ones. These results allow us to con-
clude that SS is a more promising approach for solving
this workforce planning problem. Although it can be
explained because of the search model of SS by itself,
we want to thoroughly discuss this fact. We state that
the improvement operator of SS could be responsible
for such enhancements since adjusting the number of
iterations that it performs was the most sensitive pa-
rameter in the preliminary experimentation.

5.3 Results: Computational Times
In order to have a fair and meaningful values of these

metrics when dealing with such stochastic algorithms,
we need to consider exactly the same algorithm and
then only change the number of processors, because
comparing against the sequential versions would lead
to misleading results [1]. This way, we have also ex-
ecuted parallel versions of both GA and SS also in a
single CPU as shown in Table 4, where we include the
average execution times of all the algorithms over 30
independent runs. The same statistical tests have been
performed as in the previous section.

If we analyze the execution times of those algorithms
being run on a single CPU, it can be seen that sequen-
tial optimizers are faster than the monoprocessor exe-
cution of any of their parallel parallel version. In order
to provide this claim with confidence, we include in
column KW6 the result of the statistical test using all
the results computed with one single CPU. The “+”
symbols in this column indicate that all the execution
times are different with statistical significance. This
holds for 17 out of 20 instances and 15 out of 20 ones
in GA and SS, respectively. The overload of running
the several processes of the parallel versions on a single
CPU is the main reason for this fact. However, sequen-
tial algorithms for instances s6 and u8 in GAs and s4,

Table 5. Parallel efficiency and serial fraction
for structured and unstructured problems.

PGA-4 PSS-4 PGA-8 PSS-8
Problem η sf η sf η sf η sf
s1 0.91 0.032 0.97 0.009 0.91 0.012 0.96 0.005
s2 0.88 0.041 0.94 0.018 0.77 0.042 0.90 0.014
s3 0.97 0.008 0.95 0.016 0.95 0.006 0.93 0.010
s4 0.96 0.010 0.91 0.031 0.91 0.013 0.83 0.027
s5 0.78 0.089 0.93 0.022 0.63 0.080 0.83 0.027
s6 0.80 0.082 0.92 0.027 0.79 0.037 0.88 0.017
s7 0.82 0.069 0.83 0.063 0.79 0.037 0.85 0.023
s8 0.86 0.051 0.92 0.027 0.85 0.023 0.89 0.017
s9 0.86 0.050 0.93 0.023 0.73 0.052 0.92 0.011
s10 0.93 0.022 0.90 0.036 0.85 0.024 0.88 0.018
u1 0.84 0.061 0.93 0.024 0.79 0.036 0.86 0.021
u2 0.79 0.086 0.91 0.031 0.76 0.043 0.88 0.018
u3 0.80 0.078 0.80 0.078 0.73 0.050 0.67 0.070
u4 0.75 0.105 0.89 0.038 0.71 0.056 0.76 0.043
u5 0.73 0.118 0.86 0.053 0.65 0.074 0.85 0.025
u6 0.90 0.037 0.95 0.014 0.67 0.069 0.92 0.010
u7 0.84 0.061 0.84 0.061 0.74 0.049 0.74 0.049
u8 0.95 0.015 0.84 0.062 0.82 0.031 0.76 0.042
u9 0.88 0.042 0.87 0.047 0.81 0.031 0.83 0.028
u10 0.96 0.013 0.85 0.055 0.95 0.007 0.74 0.049

s7, s10, u3, and u8 in SS obtain longer execution times
than the parallel versions with 4 islands. The instance
u6 in GAs is the extreme case: PGA-8 gets the lowest
execution time among the sequential GA and PGA-4,
all running on one processor. The point here is that a
trade-off exists between the overload due to the num-
ber of processes and the ability of the algorithms to
easily reach the optimal solution. While the former is-
sue tries to increase the computational times, the latter
is way of reduce them. Results in both tables point out
that the computing overload is a more important factor
because sequential algorithms usually perform faster.

Analyzing the absolute execution times, one can see
the GAs generally get lower execution times than SS
algorithms when the computing platform is composed
of just one CPU. However, these differences vanish and
even get reversed when we move to actually parallel
computing platforms (see columns “4 CPUs” and “8

CPUs” in Table 4). In general, execution times are very
similar and differences are not statistical significant in
many cases (see “-” symbols in columns KW−2).

Two metrics have been used in order to enrich our
understanding of the effects of parallelism on the par-
allel algorithms of this work: the parallel efficiency (η)
and the serial fraction (sf) [6]. If we consider that
N is the number of processors and sN is the speedup
(sN = t̄1 CPU/t̄N CPUs), the two metrics can be de-
fined as:

η =
sN

N
=

t̄1 CP U

t̄N CP Us

N
(7)

sf =
1

sN
− 1

N

1 − 1
N

. (8)

Table 5 includes the resulting values of the metrics.
Values of the parallel efficiency show that all the par-
allel versions of GA and SS are able to profit quite
well from the parallel computing platform. Averaging
over all the problems, PGA-4 gets an η value of 0.87,
while PSS-4 obtains 0.90. If we consider now the par-
allelization based on 8 islands, PGA-8 reaches a par-
allel efficiency of 0.79 whereas PSS-8 achieves a value
of 0.85 (also averaging over all the problems). From
these average values we can conclude that PSSs better
profit from the parallel platform than PGAs although
the latter ones are faster in terms of absolute running
times.

If we compare the parallel efficiency of the algo-
rithms when the number of processors increases, it can
be seen in Table 5 that there is a reduction in the values
of this metric and average values presented previously
also support this claim. Here, the serial fraction met-
ric plays an important role. If the values of this metric
remain almost constant when using a different num-
ber of processors in a parallel algorithm, it allows us
to conclude that the loss of efficiency is because of the
limited parallelism of the model itself. A clear example
of this fact is the instance s5 with PGAS: the parallel
efficiency is reduced by 15% (from 0.78 in PGA-4 down
to 0.63 in PGA-8) and the serial fraction is almost the
same (0.089 in PGA-4 against 0.080 in PGA-8).

6 Conclusions

We have formulated and solved a workforce planning
problem. To achieve this goal we have used two par-
allel metaheuristics: a parallel GA and a parallel SS.
The development of our parallel versions of a genetic
algorithm and a parallel scatter search aims at tackling
problems of realist size.

The conclusions of this work can be summarized at-
tending to different criteria. Firstly, as it was expected,
the parallel versions of the methods have reached an
important reduction of the execution time with respect

to the serial ones. In fact, our parallel implementations
have obtained a very good speedup (nearly linear). In
several instances, we have noticed a moderate loss of
efficiency when increase the number of processor from
four to eight. But this loss of efficiency is mainly due to
the limited parallelism of the program, since the vari-
ation in the serial fraction was negligible.

Secondly, we have observed that the parallelism did
not only allow to reduce the execution time but it also
allowed to improve the quality of the solutions. Even
when the parallel algorithms were executed in a single
processor, they outperformed the serial one, proving
clearly that the serial and the parallel methods are dif-
ferent algorithms with different behaviors.

Finally, we have noticed that SS results outper-
formed GA ones for both kind of instances, structured
and unstructured ones. The search scheme followed by
SS seems to be more appropriate to the WPP than GA
one. We think the improvement operator used by SS
is beneficial to this problem, and maybe the hybridiza-
tion of GA with a local search mechanism provokes
an improvement in the quality of the solutions. Ad-
ditional work is required to improve upon the quality
of the solutions generated by these methods in the or-
der of ten times larger than those tackled here (i.e.,
n ≈ m ≈ 200).

Acknowledgments

The authors are partially supported by the Ministry
of Science and Technology and FEDER under contract
TIN2005-08818-C04-01 (the OPLINK project).

References

[1] E. Alba and M. Tomassini. Parallelism and evolutionary
algorithms. IEEE Transactions on Evolutionary Com-
putation, 6(5):443–462, 2002.

[2] F. Garćıa-López, B. Melián-Batista, J. Moreno-Pérez,
and J. Moreno-Vega. Parallelization of the Scatter
Search. Parallel Computing, 29:575–589, 2003.

[3] F. Glover, G. Kochenberger, M. Laguna, and
T. Wubbena. Selection and Assignment of a Skilled
Workforce to Meet Job Requirements in a Fixed Plan-
ning Period. In MAEB’04, pages 636–641, 2004.

[4] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of
scatter search and path relinking. Control and Cyber-
netics, 39(3):653–684, 2000.

[5] J. Holland. Adaptation in Natural and Artificial Sys-
tems. The MIT Press, Cambridge, Massachusetts, sec-
ond edition edition, 1992.

[6] A. Karp and H. Flatt. Measuring Parallel Processor
Performance. Communications of the ACM, 33:539–
543, 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

