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Abstract
Sockets Direct Protocol (SDP) is an industry standard pseudo sockets-
like implementation to allow existing sockets applications to directly
and transparently take advantage of the advanced features of current
generation networks such as InfiniBand. The SDP standard supports
two kinds of sockets semantics, viz., Synchronous sockets (e.g., used
by Linux, BSD, Windows) and Asynchronous sockets (e.g., used by
Windows, upcoming support in Linux). Due to the inherent benefits
of asynchronous sockets, the SDP standard allows several intelligent
approaches such as source-avail and sink-avail based zero-copy for
these sockets. Unfortunately, most of these approaches are not bene-
ficial for the synchronous sockets interface. Further, due to its porta-
bility, ease of use and support on a wider set of platforms, the syn-
chronous sockets interface is the one used by most sockets applica-
tions today. Thus, a mechanism by which the approaches proposed for
asynchronous sockets can be used for synchronous sockets is highly
desirable. In this paper, we propose one such mechanism, termed as
AZ-SDP (Asynchronous Zero-Copy SDP), where we memory-protect
application buffers and carry out communication asynchronously while
maintaining the synchronous sockets semantics. We present our de-
tailed design in this paper and evaluate the stack with an extensive set
of benchmarks. The experimental results demonstrate that our approach
can provide an improvement of close to 35% for medium-message uni-
directional throughput and up to a factor of 2 benefit for computation-
communication overlap tests and multi-connection benchmarks.

1 Introduction
Because traditional sockets over host-based TCP/IP have not
been able to cope with the exponentially increasing network
speeds, InfiniBand (IBA) [11] and other network technologies
have driven the need for a new standard known as the Sockets
Direct Protocol (SDP) [1]. SDP is a sockets-like implementa-
tion to meet two primary goals: (i) to directly and transparently
allow existing sockets applications to be deployed on to clusters
connected with modern networks such as IBA and (ii) to retain
most of the raw performance provided by the networks.

The SDP standard supports two kinds of sockets semantics,
viz., Synchronous sockets (e.g., used by Linux, BSD, Windows)
and Asynchronous sockets (e.g., used by Windows, upcoming
support in Linux). In the synchronous sockets interface, the ap-
plication has to block for every data transfer operation, i.e., if
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an application wants to send a 1 MB message, it has to wait
till either the data is transferred to the remote node or is copied
to a local communication buffer and scheduled for communica-
tion. In the asynchronous sockets interface, on the other hand,
the application can initiate a data transfer and check whether the
transfer is complete at a later time; thus providing a better over-
lap of the communication with the other on-going computation
in the application. Due to the inherent benefits of asynchronous
sockets, the SDP standard allows several intelligent approaches
such as source-avail and sink-avail based zero-copy for these
sockets. However, most of these approaches that work well for
the asynchronous sockets interface are not as beneficial for the
synchronous sockets interface. Added to this is the fact that the
synchronous sockets interface is the one used by most sockets
applications today due to its portability, ease of use and support
on a wider set of platforms. Thus, a mechanism by which the
approaches proposed for asynchronous sockets can be used for
synchronous sockets is highly desirable.

In this paper, we propose one such mechanism, termed as
AZ-SDP (Asynchronous Zero-Copy SDP) which allows the ap-
proaches proposed for asynchronous sockets to be used for syn-
chronous sockets while maintaining the synchronous sockets se-
mantics. The basic idea of this mechanism is to protect applica-
tion buffers from memory access during a data transfer event and
carry out communication asynchronously. Once the data trans-
fer is completed, the protection is removed and the application
is allowed to touch the buffer again. It is to be noted that this
entire scheme is completely transparent to the end application.
We present our detailed design in this paper and evaluate the
stack with an extensive set of micro-benchmarks. The experi-
mental results demonstrate that our approach can provide an im-
provement of close to 35% for medium-message uni-directional
throughput and up to a factor of 2 benefit for computation-
communication overlap tests and multi-connection benchmarks.

2 Overview of SDP
The design of SDP is mainly based on two architectural goals:
(i) to directly and transparently allow existing sockets applica-
tions to be deployed on to clusters connected with high-speed
networks and (ii) to retain most of the raw performance pro-
vided by the network using features such as zero-copy RDMA
operations. Figure 1 illustrates the SDP architecture.

SDP’s Upper Layer Protocol (ULP) interface is a byte-stream
protocol that is layered on top of IBA’s message-oriented trans-
fer model. This mapping was designed so as to enable ULP
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data to be transfered by one of two methods: through interme-
diate private buffers (using a buffer copy) or directly between
ULP buffers (zero copy). A mix of IBA Send-Recv and RDMA
mechanisms are used to transfer ULP data. The SDP specifi-
cation also suggests two additional control messages known as
buffer availability notification messages, viz., source-avail and
sink-avail messages for performing zero-copy data transfer.

Sink-avail Message: If the data sink has already posted a
receive buffer and the data source has not sent the data message
yet, the data sink performs two steps: (i) registers the receive
user-buffer and (ii) sends a sink-avail message containing the
receive buffer handle to the source. The data source on a data
transmit call, uses this receive buffer handle to RDMA write
data into the remote buffer.

Source-avail Message: If the data source has already posted
a send buffer and no sink-avail message has arrived, it performs
two steps: (i) registers the transmit user-buffer and (ii) sends
a source-avail message containing the transmit buffer handle to
the data sink. The data sink on a data receive call, uses this trans-
mit buffer handle to RDMA read data from the remote buffer.

These control messages, however, are most beneficial only
for the asynchronous sockets interface due to its capability of
exposing multiple source or sink buffers simultaneously to the
remote node. Accordingly, most current implementations for
synchronous sockets do not implement these and use only the
buffer copy based scheme. Recently, Goldenberg et. al., have
suggested a zero-copy SDP scheme [10, 9] where they utilize a
restricted version of the source-avail based zero-copy communi-
cation model for synchronous sockets. Due to the semantics of
the synchronous sockets, however, the restrictions affect the per-
formance achieved by zero-copy communication significantly.
In this paper, we attempt to relieve the communication scheme
of such restrictions and carry out zero-copy communication in a
truly asynchronous manner, thus achieving high performance.

3 Related Work
The concept of high performance sockets (such as SDP) has ex-
isted for quite some time. Several researchers, including our-
selves, have performed significant amount of research on such
implementations over various networks. Shah, et. al., from Intel,
were the first to demonstrate such an implementation for VIA
over the GigaNet cLAN network [16]. This was soon followed
by other implementations over VIA [13, 6] as well as other net-
works such as Myrinet [15] and Gigabit Ethernet [5].

There has also been some amount of previous research for the
high performance sockets implementations over IBA, i.e., SDP.

Balaji et. al., were the first to show the benefits of SDP over IBA
in [4] using a buffer copy based implementation of SDP. As men-
tioned earlier, Goldenberg et. al., recently proposed a zero-copy
implementation of SDP using a restricted version of the source-
avail scheme [10, 9]. In particular, the scheme allows zero-copy
communication by restricting the number of outstanding data
communication requests on the network to just one. This, how-
ever, significantly affects the performance achieved by the zero-
copy communication. Our design, on the other hand, carries out
zero-copy communication while not being restricted to just one
communication request, thus allowing for a significant improve-
ment in the performance.

To optimize the TCP/IP and UDP/IP protocol stacks it-
self, many researchers have suggested several zero-copy
schemes [12, 18, 7, 8]. However, most of these approaches are
for asynchronous sockets and all of them require modifications
to the kernel and even the NIC firmware in some cases. In ad-
dition, these approaches still suffer from the heavy packet pro-
cessing overheads of TCP/IP and UDP/IP. On the other hand, our
work benefits the more widely used synchronous sockets inter-
face, it does not require any kernel or firmware modifications at
all and can achieve very low packet processing overhead (due to
the thin native protocol layers of the high-speed interconnects).

In summary, AZ-SDP is a novel and unique design for high
performance sockets over IBA.

4 Design and Implementation Issues
As described in Section 2, to achieve zero-copy communica-
tion, buffer availability notification messages need to be imple-
mented. In this paper, we focus on a design that uses source-
avail messages to implement zero-copy communication. In this
section, we detail our mechanism to take advantage of asyn-
chronous communication for synchronous zero-copy sockets.

4.1 Application Transparent Asynchronism
The main idea of asynchronism is to avoid blocking the appli-
cation while waiting for the communication to be completed,
i.e, as soon as the data transmission is initiated, the control is
returned to the application. With the asynchronous sockets in-
terface, the application is provided with additional socket calls
through which it can initiate data transfer in one call and wait
for its completion in another. In the synchronous sockets in-
terface, however, there are no such separate calls; there is just
one call which initiates the data transfer and waits for its com-
pletion. Thus, the application cannot initiate multiple commu-
nications requests at the same time. Further, the semantics of
synchronous sockets assumes that when the control is returned
from the communication call, the buffer is free to be used (e.g.,
read from or write to). Thus, returning from a synchronous call
asynchronously means that the application can assume that the
data has been sent or received and try to write or read from the
buffer irrespective of the completion of the operation. Accord-
ingly, a scheme which asynchronously returns control from the
communication call after initiating the communication, might
result in data corruption for synchronous sockets.

To transparently provide asynchronous capabilities for syn-
chronous sockets, two goals need to be met: (i) the interface
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Figure 2: (a) Synchronous Zero-copy SDP (ZSDP) and (b) Asynchronous Zero-copy SDP (AZ-SDP)

should not change; the application can still use the same inter-
face as earlier, i.e., the synchronous sockets interface and (ii) the
application can assume the synchronous sockets semantics, i.e.,
once the control returns from the communication call, it can read
from or write to the communication buffer. In our approach, the
key idea in meeting these design goals is to memory-protect the
user buffer (thus disallow the application from accessing it) and
to carry out communication asynchronously from this buffer,
while tricking the application into believing that we are carry-
ing out data communication in a synchronous manner.

Figure 2 illustrates the designs of the synchronous zero-copy
SDP (ZSDP) scheme and our asynchronous zero-copy SDP
(AZ-SDP) scheme. As shown in Figure 2(a), in the ZSDP
scheme, on a data transmission event, a source-avail message
containing information about the source buffer is sent to the
receiver side. The receiver, on seeing this request, initiates a
GET on the source data to be fetched into the final destina-
tion buffer using an IBA RDMA read request. Once the GET
has completed, the receiver sends a GET COMPLETE message
to the sender indicating that the communication has completed.
The sender on receiving this GET COMPLETE message, returns
control to the application.

Figure 2(b) shows the design of the AZ-SDP scheme. This
scheme is similar to the ZSDP scheme, except that it memory-
protects the transmission application buffers and sends out sev-
eral outstanding source-avail messages to the receiver. The
receiver, on receiving these source-avail messages, memory-
protects the receive application buffers and initiates several GET
requests using multiple IBA RDMA read requests. On the com-
pletion of each of these GET requests, the receiver sends back
GET COMPLETE messages to the sender. Finally, on receiving
the GET COMPLETE requests, the sender unprotects the cor-
responding memory buffers. Thus, this approach allows for a
better pipelining in the data communication providing a poten-
tial for much higher performance as compared to ZSDP.

4.2 Buffer Protection Mechanisms
As described in Section 4.1, our asynchronous communication
mechanism uses memory-protect operations to disallow the ap-
plication from accessing the communication buffer. If the appli-
cation tries to access the buffer, a page fault is generated; our
scheme needs to appropriately handle this, such that the seman-

tics of synchronous sockets is maintained.

As we will see in Section 5.1, if the application touches
the communication buffer very frequently (thus generating page
faults very frequently), it might impact the performance of AZ-
SDP. However, the actual number of page faults that the appli-
cation would generate depends closely on the kind of applica-
tion we are trying to support. For example, if a middleware that
supports non-blocking semantics is built on top of the sockets
interface, we expect the number of page faults to be quite low.
Considering MPI [14] to be one example of such a middleware,
whenever the end application calls a non-blocking communica-
tion call, MPI will have to implement this using the blocking se-
mantics of sockets. However, till the application actually checks
for completion, the data will remain untouched, thus reducing
the number of page faults that might occur. Another exam-
ple, is applications which perform data prefetching. As network
throughput is increasing at a much faster rate as compared to
the decrease in point-to-point latency, several applications to-
day attempt to intelligently prefetch data that they might use in
the future. This, essentially implies that though the prefetched
data is transferred, it might be used at a much later time, if at
all it is used. Again, in such scenarios, we expect the number
of page faults occuring to be quite less. In this section, we de-
scribe generic approaches for handling the page faults. The per-
formance, though, would depend on the actual number of page
faults that the application would generate (which is further dis-
cussed in Section 5.1).

On the receiver side, we use a simple approach for ensuring
the synchronous sockets semantics. Specifically, if the applica-
tion calls a recv() call, the buffer to which the data is arriving
is protected and the control is returned to the application. Now,
if the receiver tries to read from this buffer before the data has
actually arrived, our scheme blocks the application in the page
fault until the data arrives. From the application’s perspective,
this operation is completely transparent except that the memory
access would seem to take a longer time. On the sender side,
however, we can consider two different approaches to handle
this and guarantee the synchronous communication semantics:
(i) block-on-write and (ii) copy-on-write. We discuss these al-
ternatives in Sections 4.2.1 and Sections 4.2.2, respectively.
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4.2.1 Block on Write
This approach is similar to the approach used on the receiver
side, i.e., if the application tries to access the communication
buffer before the communication completes, we force the appli-
cation to block (Figure 3(a)). The advantage of this approach
is that we always achieve zero-copy communication (saving on
CPU cycles by avoiding memory copies). The disadvantage of
this approach is that it is not skew tolerant, i.e., if the receiver
process is delayed because of some computation and cannot post
a receive for the communication, the sender has to block waiting
for the receiver to arrive.

4.2.2 Copy on Write
The idea of this approach is to perform a copy-on-write oper-
ation from the communication buffer to a temporary internal
buffer when a page fault is generated. However, before control
is returned to the user, the AZ-SDP layer needs to ensure that the
receiver has not already started the GET operation; otherwise, it
could result in data corruption.

This scheme performs the following steps to maintain the syn-
chronous sockets semantics (illustrated in Figure 3(b)):

1. The AZ-SDP layer maintains a lock at the receiver side for
each source-avail message.

2. Once the receiver calls a recv() and sees this source-avail
message, it sets the lock and initiates the GET operation for
the data using the IBA RDMA read operation.

3. On the sender side, if a page fault occurs (due to the ap-
plication trying to touch the buffer), the AZ-SDP layer
attempts to obtain the lock on the receiver side using an
IBA compare-and-swap atomic operation. Depending on
whether the sender gets a page fault first or the receiver
calls the recv() operation first, one of them will get the lock.

4. If the sender gets the lock, it means that the receiver has
not called a recv() for the data yet. In this case, the
sender copies the data into a copy-on-write buffer, sends
an updated-source-avail message pointing to the copy-on-
write buffer and returns the lock. During this time, if the
receiver attempts to get the lock and fails, it just blocks
waiting for the updated-source-avail message.

5. If the sender does not get the lock, it means that the receiver
has already called the recv() call and is in the process of
transferring data. In this case, the sender just blocks wait-
ing for the receiver to complete the data transfer and send
it a GET COMPLETE message.

The advantage of this approach is that it is more skew toler-
ant as compared to the block-on-write approach, i.e., if the re-
ceiver is delayed because of some computation and does not call
a recv() soon, the sender does not have to block. The disadvan-
tages of this approach, on the other hand, are: (i) it requires an
additional copy operation, so it consumes more CPU cycles as
compared to the ZSDP scheme and (ii) it has an additional lock
management phase which adds more overhead in the communi-
cation. Thus, this approach may result in higher overhead than
even the copy-based scheme (BSDP) when there is no skew.

4.3 Handling Buffer Sharing
Several applications perform buffer sharing using approaches
such as memory-mapping two different buffers (e.g., mmap()
operation). Let us consider a scenario where buffer B1 and
buffer B2 are memory-mapped to each other. In this case, it is
possible that the application can perform a send() operation from
B1 and try to access B2. In our approach, we memory-protect
B1 and disallow all accesses to it. However, if the application
writes to B2, this newly written data is reflected in B1 as well
(due to the memory-mapping); this can potentially take place
before the data is actually transmitted from B1 and can cause
data corruption.

In order to handle this, we override the mmap() call from
libc to call our own mmap() call. The new mmap() call, inter-
nally maintains a mapping of all memory-mapped buffers. Now,
if any communication is initiated from one buffer, all buffers
memory-mapped to this buffer are protected. Similarly, if a
page fault occurs, memory access is blocked (or copy-on-write
performed) till all communication for this and its associated
memory-mapped buffers has completed.

4.4 Handling Unaligned Buffers
The mprotect() operation used to memory-protect buffers in
Linux, performs memory-protects in a granularity of a physi-
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cal page size, i.e., if a buffer is protected, all physical pages on
which it resides are protected. However, when the application
is performing communication from a buffer, it is not necessary
that this buffer is aligned so that it starts on a physical page.
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Figure 4: Physical Page Sharing Between Two Buffers

Let us consider the case depicted in Figure 4. In this case, the
application buffer shares the same physical page with a control
buffer used by the protocol layer, e.g, VAPI. Here, if we protect
the application buffer disallowing any access to it, the protocol’s
internal control buffer is also protected. Now, suppose the proto-
col layer needs to access this control buffer to carry out the data
transmission; this would result in a deadlock.

In this section, we present two approaches for handling this:
(i) Malloc Hook and (ii) Hybrid approach with BSDP.

4.4.1 Malloc Hook
In this approach, we provide a hook for the malloc() and free()
calls, i.e., we override the malloc() and free() calls to be redi-
rected to our own memory allocation and freeing functions.
Now, in the new memory allocation function, if an allocation
for N bytes is requested, we allocate N + PAGE SIZE bytes and
return a pointer to a portion of this large buffer such that the start
address is aligned to a physical page boundary.
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Figure 5: Overhead of the Malloc Hook

While this approach is simple, it has several disadvantages.
First, if the application calls several small buffer allocations,
for each call atleast a PAGE SIZE amount of buffer is allocated.
This might result in a lot of wastage. Second, as shown in Fig-
ure 5, the amount of time taken to perform a memory allocation
operation increases significantly from a small buffer allocation
to a PAGE SIZE amount of buffer allocation. Thus, if we use a
malloc hook, even a 40 byte memory allocation would take the
amount of time equivalent to that of a complete physical page
size, i.e., instead of 0.1µs, a 40 byte memory allocation would
take about 4.8µs.

To understand the impact of the additional memory allocation
time, we show the break up of the message transmission initia-
tion phase in Table 1. As shown in the table, there are several

Table 1: Transmission Initiation Overhead
Operation w/ Malloc (µs) w/ Malloc Hook (µs)

Registration Check 1.4 1.4
Memory-Protect 1.4 1.4
Memory Copy 0.3 0.3

Malloc 0.1 4.8
Descriptor Post 1.6 1.6

Other 1.1 1.1

steps involved in initiating a data transfer. Of these, the mem-
ory allocation overhead is of primary interest to us. For small
message communication (e.g., source- and sink-avail messages),
VAPI allocates a small buffer (40 bytes), copies the data into the
buffer together with the descriptor describing the buffer itself
and its protection attributes. This allows the network adapter to
fetch both the descriptor as well as the actual buffer in a sin-
gle DMA operation. Here, we calculate the memory allocation
portion for the small buffer (40 bytes) as the fourth overhead.
As we can see in the table, by adding our malloc hook, all the
overheads remain the same, except for the memory allocation
overhead which increases to 4.8µs, i.e., its portion in the entire
transmission initiation overhead increases to about 45% from
1.5% making it the dominant overhead in the data transmission
initiation part.

4.4.2 Hybrid Approach with Buffered SDP (BSDP)

In this approach, we use a hybrid mechanism between AZ-SDP
and BSDP. Specifically, if the buffer is not page-aligned, we
transmit the page-aligned portions of the buffer using AZ-SDP
and the remaining portions of the buffer using BSDP. The begin-
ning and end portions of the communication buffer are thus sent
through BSDP while the intermediate portion over AZ-SDP.

This approach does not have any of the disadvantages men-
tioned for the previous malloc-hook based scheme. The only
disadvantage is that a single message communication might
need to be carried out in multiple communication operations
(at most three). This might add some overhead when the com-
munication buffers are not page-aligned. In our preliminary re-
sults, we noticed that this approach gives about 5% to 10% bet-
ter throughput as compared to the malloc-hook based scheme.
Hence, we went ahead with this approach in this paper.

5 Experimental Evaluation
In this section, we evaluate the AZ-SDP implementation and
compare it with the other two implementations of SDP, i.e.,
BSDP and ZSDP. We perform two sets of evaluations. In the
first set (section 5.1), we use single connection benchmarks such
as ping-pong latency, uni-directional throughput, computation-
communication overlap capabilities and effect of page faults. In
the second set (section 5.2), we use multi-connection bench-
marks such as hot-spot latency, multi-stream throughput and
multi-client throughput tests. For AZ-SDP, our results are based
on the block-on-write technique for page faults.

The experimental test-bed used in this paper consists of four
nodes with dual 3.6 GHz Intel Xeon EM64T processors. Each
node has a 2 MB L2 cache and 512 MB of 333 MHz DDR
SDRAM. The nodes are equipped with Mellanox MT25208 In-
finiHost III DDR PCI-Express adapters (capable of a link-rate of
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Figure 6: Micro-Benchmarks: (a) Ping-Pong Latency and (b) Unidirectional Throughput

20 Gbps) and are connected to a Mellanox MTS-2400, 24-port
fully non-blocking DDR switch.

5.1 Single Connection Micro-Benchmarks
In this section, we evaluate the three stacks with a suite of single
connection micro-benchmarks.
Ping-Pong Latency: Figure 6(a) shows the point-to-point la-
tency achieved by the three stacks. In this test, the sender node
first sends a message to the receiver; the receiver receives this
message and sends back another message to the sender. Such
exchange is carried out for several iterations, the total time cal-
culated and averaged over the number of iterations. This gives
the time for a complete message exchange. The ping-pong la-
tency demonstrated in the figure is half of this amount (one-way
communication).

As shown in the figure, both zero-copy schemes (ZSDP and
AZ-SDP) achieve a superior ping-pong latency as compared to
BSDP. However, there is no significant difference in the per-
formance of ZSDP and AZ-SDP. This is due to the way the
ping-pong latency test is designed. In this test, only one mes-
sage is sent at a time and the node has to wait for a reply from
its peer before it can send the next message, i.e., the test itself
is completely synchronous and cannot utilize the capability of
AZ-SDP with respect to allowing multiple outstanding requests
on the network at any given time, resulting in no performance
difference between the two schemes.
Uni-directional Throughput: Figure 6(b) shows the uni-
directional throughput achieved by the three stacks. In this test,
the sender node keeps streaming data and the receiver keeps re-
ceiving it. Once the data transfer completes, the time is mea-
sured and the data rate is calculated as the number of bytes sent
out per unit time. We used the ttcp benchmark [17] version 1.4.7
for this experiment.

As shown in the figure, for small messages BSDP performs
the best. The reason for this is two fold: (i) Both ZSDP and
AZ-SDP rely on control message exchange for every message
to be transferred. This causes an additional overhead for each
data transfer which is significant for small messages and (ii) Our
BSDP implementation uses an optimization technique known as
reverse packetization to improve the throughput for small mes-
sages. More details about this can be found in [2].

For medium and large messages, on the other hand, AZ-SDP
and ZSDP outperform BSDP because of the zero-copy commu-
nication. Also, for medium messages, AZ-SDP performs the
best with about 35% improvement compared to ZSDP.

Computation-Communication Overlap: As mentioned ear-
lier, IBA provides hardware offloaded network and transport lay-
ers to allow high performance communication. This also im-
plies that the host CPU now has to do lesser amount of work
for carrying out the communication, i.e., once the data trans-
fer is initiated, the host is free to carry out its own computation
while the actual communication is carried out by the network
adapter. However, the amount of such overlap between the com-
putation and communication that each of the schemes can ex-
ploit varies. In this experiment, we measure the capability of
each scheme with respect to overlapping application computa-
tion with the network communication. Specifically, we modify
the ttcp benchmark to add additional computation between ev-
ery data transmission. We vary the amount of this computation
and report the throughput delivered.

Figure 7 shows the overlap capability for the different
schemes with the amount of computation added represented on
the x-axis and the throughput measured, on the y-axis. Fig-
ure 7(a) shows the overlap capability for a message size of
64Kbytes and Figure 7(b) shows that for a message size of
1Mbyte. As shown in the figures, AZ-SDP achieves much
higher computation-communication overlap as compared to the
other schemes, as illustrated by its capability to retain high per-
formance even for a large amount of intermediate computation.
For example, for a message size of 64Kbytes, AZ-SDP achieves
an improvement of up to a factor of 2. Also, for a message size
of 1Mbyte, we see absolutely no drop in the performance of AZ-
SDP even with a computation amount of 200µs while the other
schemes see a huge degradation in the performance.

The reason for this better performance of AZ-SDP is its ca-
pability to utilize the hardware offloaded protocol stack more
efficiently, i.e., once the data buffer is protected and the trans-
mission initiated, AZ-SDP returns control to the application al-
lowing it to perform its computation while the network hardware
takes care of the data transmission. ZSDP on the other hand
waits for the actual data to be transmitted before returning con-
trol to the application, i.e., it takes absolutely no advantage of
the network adapter’s capability to carry out data transmission
independently.
Impact of Page Faults: As described earlier, the AZ-SDP
scheme protects memory locations and carries out communica-
tion from or to these memory locations asynchronously. If the
application tries to touch the data buffer before the communi-
cation completes, a page fault is generated. The AZ-SDP im-
plementation traps this event, blocks to make sure that the data
communication completes and returns the control to the appli-
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Figure 7: Computation and Communication Overlap Micro-Benchmark: (a) 64Kbyte message and (b) 1Mbyte message
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Figure 8: Impact of Page Faults: (a) 64Kbyte message and (b) 1Mbyte message

cation (allowing it to touch the buffer). Thus, in the case where
the application very frequently touches the data buffer imme-
diately after communication event, the AZ-SDP scheme has to
handle several page faults adding some amount of overhead to
this scheme. To characterize this overhead, we have modified
the ttcp benchmark to touch data occasionally. We define a vari-
able known as the Window Size (W) for this. The sender side first
calls W data transmission calls and then writes a pattern into the
transmission buffer. Similarly, the receiver calls W data recep-
tion calls and then reads the pattern from the reception buffer.
This obviously does not impact the BSDP and ZSDP schemes
since they do not perform any kind of protection of the applica-
tion buffers. However, for the AZ-SDP scheme, each time the
sender tries to write to the buffer or the receiver tries to read from
the buffer, a page fault is generated, adding additional overhead.

Figure 8 shows the impact of page faults on the three schemes
for message sizes 64Kbytes and 1Mbyte respectively. As shown
in the figure, for small window sizes, the performance of AZ-
SDP is poor. Though this degradation is lesser for larger mes-
sage sizes (Figure 8(b)), there is still some amount of drop.
There are two reasons for this: (i) When a page fault is gen-
erated, no additional data transmission or reception requests
are initiated; thus, during this time, the behavior of ZSDP and
AZ-SDP would be similar and (ii) Each page fault adds about
6µs overhead. Thus, though AZ-SDP falls back to the ZSDP
scheme, it still has to deal with the page faults for previous pro-
tected buffers causing worse performance than ZSDP1.

5.2 Multi-Connection Micro-Benchmarks
In this section, we present the evaluation of the stacks with sev-
eral benchmarks which carry out communication over multiple

1We tackle this problem by allowing AZ-SDP to completely fall back to
ZSDP if the application has generated more page faults than a certain thresh-
old. However, to avoid diluting the results, we set this threshold to a very high
number so that it is never triggered in the experiments.

connections simultaneously.

Hot-Spot Latency

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

Message Size (bytes)

La
te

nc
y 

(u
s)

BSDP

ZSDP

AZ-SDP

Figure 9: Hot-Spot Latency Test

Hot-Spot Latency Test: Figure 9 shows the impact of multi-
ple connections in message transaction kind of environments.
In this experiment, a number of client nodes perform point-to-
point latency test with the same server, forming a hot-spot on
the server. We perform this experiment with one node acting as
a server node and three other dual-processor nodes hosting a to-
tal of 6 client processes and report the average of the latencies
observed by each client process. As shown in the figure, AZ-
SDP significantly outperforms the other two schemes especially
for large messages. The key to the performance difference in
this experiment lies in the usage of multiple connections for the
test. Since the server has to deal with several connections at the
same time, it can initiate a request to the first client and han-
dle the other connections while the first data transfer is taking
place. Thus, though each connection is synchronous, the over-
all experiment provides some asynchronism with respect to the
number of clients the server has to deal with. Further, we expect
this benefit to grow with the number of clients allowing a better
scalability for the AZ-SDP scheme.
Multi-Stream Throughput Test: The multi-stream throughput
test is similar to the uni-directional throughput test, except that
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Figure 10: Multi-Connection Micro-Benchmarks: (a) Multi-Stream Throughput test and (b) Multi-Client Throughput test

multiple threads on the same pair of physical nodes carry out
uni-directional communication separately. We measure the ag-
gregate throughput of all the threads together and report it in
Figure 10(a). The message size used for the test is 64Kbytes; the
x-axis gives the number of threads used and the y-axis gives the
throughput achieved. As shown in the figure, when the number
of streams is one, the test behaves similar to the uni-directional
throughput test with AZ-SDP outperforming the other schemes.
However, when we have more streams performing communica-
tion as well, the performance of ZSDP is also similar to what
AZ-SDP can achieve. To understand this behavior, we briefly
reiterate on the way the ZSDP scheme works. In the ZSDP
scheme, when a process tries to send the data out to a remote
process, it sends the buffer availability notification message and
waits till the remote process completes the data communication
and informs it about the completion. Now, in a multi-threaded
environment, while the first process is waiting, the remaining
processes can go ahead and send out messages. Thus, though
each thread is blocking for progress in ZSDP, the network is
not left unutilized due to several threads accessing it simultane-
ously. This results in ZSDP achieving a similar performance as
AZ-SDP in this environment.
Multi-client Throughput Test: In the multi-client throughput
test, similar to the hot-spot test, we use one server and 6 clients
(spread over three dual-processor physical nodes). In this setup,
we perform the streaming throughput test between each of the
clients and the same server. As shown in Figure 10(b), AZ-SDP
performs significantly better than both ZSDP and BSDP in this
test. Like the hot-spot test, the improvement in the performance
of AZ-SDP is attributed to its ability to perform communication
over the different connections simultaneously while ZSDP and
BSDP perform communication one connection at a time.

6 Conclusions and Future Work
In this paper we proposed a mechanism, termed as AZ-SDP
(Asynchronous Zero-Copy SDP), which allows the approaches
proposed for asynchronous sockets to be used for synchronous
sockets, while maintaining the synchronous sockets semantics.
We presented our detailed design in this paper and evaluated the
stack with an extensive set of micro-benchmarks. The experi-
mental results demonstrate that our approach can provide an im-
provement of close to 35% for medium-message uni-directional
throughput and up to a factor of 2 benefit for computation-
communication overlap tests and multi-connection benchmarks.

As future work, we plan to evaluate the AZ-SDP scheme with
several applications from various domains. Also, we plan to ex-

tend our previous work on an extended sockets API [3] to AZ-
SDP. This would not only provide a good performance for ex-
isting applications, but also allow for minor modifications in the
applications to utilize the advanced features provided by modern
networks such as one-sided communication.
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