Advances in Applying Genetic Programming to Machine Learning,
Focussing on Classification Problems

Stephan M. Winkler!?, Michael Affenzeller!, and Stefan Wagner!

1 Upper Austrian University of Applied Sciences
College of Information Technology at Hagenberg

Department of Software Engineering

Hauptstrafie 117, 4232 Hagenberg, Austria
{stephan, michael, stefan}@heuristiclab.com

Abstract

A Genetic Programming based approach for solving
classification problems is presented in this paper. Clas-
sification is understood as the act of placing an object
into a set of categories, based on the object’s proper-
ties; classification algorithms are designed to learn a
function which maps a vector of object features into
one of several classes. This is done by analyzing a set
of input-output examples (“training samples”) of the
function. Here we present a method based on the the-
ory of Genetic Algorithms and Genetic Programming
that interprets classification problems as optimization
problems: Each presented instance of the classification
problem is interpreted as an instance of an optimiza-
tion problem, and a solution is found by a heuristic op-
timization algorithm. The major new aspects presented
in this paper are suitable genetic operators for this prob-
lem class (mainly the creation of new hypotheses by
merging already existing ones and their detailed evalu-
ation) we have designed and implemented. The experi-
mental part of the paper documents the results produced
using new hybrid variants of genetic algorithms as well
as investigated parameter settings.

1 Introduction

In general, data mining is understood as the practice
of automatically searching large stores of data for pat-
terns. Nowadays, incredibly large (and quickly grow-

The work described in this paper was done within the Trans-
lational Research Project 1.282 “GP-Based Techniques for the
Design of Virtual Sensors” sponsored by the Austrian Science
Fund (FWF).

1-4244-0054-6/06/$20.00 ©2006 IEEE

2Johannes Kepler University Linz
Institute for Design and Control
of Mechatronical Systems
Altenbergerstrafie 69, 4040 Linz, Austria
stephan.winkler@jku.at

ing) amounts of data are collected in commercial, ad-
ministrative, and scientific databases. Several sciences
(e.g., molecular biology, genetics, astrophysics, and
many others) produce extreme amounts of information
which are often collected automatically. This is why
it is impossible to analyze and exploit all these data
manually; what is needed are intelligent computer sys-
tems that can extract useful information (such as gen-
eral rules or interesting patterns) from large amounts of
observations. In short, “data mining is the non-trivial
process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data” [4].

Classification is understood as the act of placing
an object into a set of categories, based on the ob-
ject’s properties. Objects are classified according to an
(in most cases hierarchical) classification scheme also
called taxonomy. Amongst many other possible appli-
cations, examples of taxonomic classification are bio-
logical classification (the act of categorizing and group-
ing living species of organisms), medical classification
and security classification (where it is often necessary
to classify objects or persons for deciding whether a
problem might arise from the present situation or not).
A statistical classification algorithm is supposed to take
feature representations of objects and map them to a
special, predefined classification label. Such classifica-
tion algorithms are designed to learn (i.e. to approx-
imate the behavior of) a function which maps a vec-
tor of object features into one of several classes; this
is done by analyzing a set of input-output examples
(“training samples”) of the function. Since statistical
classification algorithms are supposed to “learn” such
functions, we are dealing with a specific subarea of Ma-
chine Learning and, more generally, Artificial Intelli-
gence.

There are several approaches which are nowadays
used for solving data mining and, more specifically,
classification problems. The most common ones are (as
for example described in [12]) decision tree learning,
instance-based learning, inductive logic programming
(such as Prolog, e.g.) and reinforcement learning.

Unlike these methods, the approach we have de-
signed is a genetic programming (GP) model includ-
ing appropriate crossover and mutation operators for
this problem. This GP approach, described in Sec-
tion 3, has also been implemented as a part of the al-
ready existing “HeuristicLab”, a framework for proto-
typing and analyzing optimization techniques (devel-
oped by Wagner and Affenzeller, described in [13]) for
which both generic concepts of evolutionary algorithms
and many functions to evaluate and analyze them are
available. The programming language chosen for this
project (and the HeuristicLab) is C# using the Mi-
crosoft .NET Framework 1.1. We have also tested our
approach intensively. Moreover, in addition to stan-
dard GP implementations, new generic concepts [1],
based on evolutionary algorithms and developed to in-
crease the quality of the produced solutions, were used
and compared to the classical GP approach. Examples
of the results of our test series and an overview of the
operators and parameters used are given in Section 4.

2 Evolutionary Computation: Genetic
Algorithms and Genetic Program-
ming

Evolutionary Computing is the collective name for
heuristic problem-solving techniques based on the prin-
ciples of biological evolution, which are natural selec-
tion and genetic inheritance. One of the greatest ad-
vantages of these techniques is that they can be applied
to a variety of problems, ranging from leading-edge
scientific research to practical applications in industry
and commerce; by now, evolutionary algorithms are
in use in various disciplines like optimization, artifi-
cial intelligence, machine learning, simulation of eco-
nomic processes, computer games or even sociology.
The forms of evolutionary computation relevant for the
work described in this paper are genetic algorithms
(GA) and genetic programming. The fundamental
principles of GAs were first presented by Holland [8]. A
GA works with a set of candidate solutions (also known
as individuals) called population. During the execution
of the algorithm each individual has to be evaluated,
which means that a value indicating the “fitness” or
“goodness” is returned by a fitness function. New in-
dividuals are created on the one hand by combining
the genetic make-up of two solution candidates (this

procedure is called “crossover” or “recombination”),
producing a new ”child” out of two “parents”, and on
the other hand by mutating some individuals, which
means that randomly chosen parts of genetic informa-
tion are changed (normally a minor ratio of the algo-
rithm’s population is mutated in each generation).
Beside crossover and mutation, the third decisive as-
pect of genetic algorithms is selection. In analogy to
biology this is a mechanism also called “survival of the
fittest”. As already mentioned, each individual is as-
sociated with a fitness value. The individual’s proba-
bility to propagate its genetic information to the next
generation is proportional to its fitness; the better a
solution candidate’s fitness value, the higher the prob-
ability that its genetic information will be included
in the next generation’s population. This procedure
of crossover, mutation and selection is repeated many
times (over many generations) until some termination
criterion is fulfilled.

Test
Programs

Population
of
Programs

Select Parents

in Proportion to
their Fitness

g

S

Create new Programs

®
(22
®
Figure 1. The GP cycle [11].

Genetic Programming was first explored in depth in
1992 by John R. Koza, a computer scientist at Stan-
ford University, CA, USA. In his famous book “Ge-
netic Programming: On the Programming of Comput-
ers by Means of Natural Selection” [10] he pointed out
that virtually all problems in artificial intelligence, ma-
chine learning, adaptive systems, and automated learn-
ing can be recast as a search for a computer program,
and that genetic programming provides a way to suc-
cessfully conduct the search for a computer program
in the space of computer programs. Similar to GAs,
GP works by imitating aspects of natural evolution

to generate a solution that maximizes (or minimizes)
some fitness function [10]. A population of solution
candidates evolves through many generations towards
a solution using certain evolutionary operators and a
“survival-of-the-fittest” selection scheme. The main
difference is that, whereas GAs are intended to find
an array of characters or integers representing the so-
lution of a given problem, the goal of a GP process
is to produce a computer program (or, as in our case,
a formula) solving the optimization problem at hand.
Typically the population of a GP algorithm contains
a few hundred individuals and evolves through the ac-
tion of operators known as crossover, mutation and se-
lection. Fig. 1 visualizes how the GP cycle works: As
in every evolutionary process, new individuals (in GP’s
case, new programs) are created. They are tested, and
the fitter ones in the population succeed in creating
children of their own. Unfit ones die and are removed
from the population [11].

Parent2

Figure 2. Examples of genetic operations on
tree structures: The crossover of parent1 and
parent2 yields child1, child2 and child3 are
possible mutants of child1.

3 A GP-based classification method

3.1 Representation and Manipulation of
Solution Candidates

Preliminary work for the approach presented in this
paper was done for the project “Specification, De-
sign, and Implementation of a Genetic Programming
Approach for Identifying Nonlinear Models of Mecha-
tronic Systems” which is a part of a bigger strategi-
cal project at the Johannes Kepler University Linz,
Austria. The goal of this project was to find mod-
els for mechatronic systems. It was successfully shown
(for instance in [16], and in further detail in [15]) that
methods of GP are suitable for determining an appro-
priate mathematical representation of a physical sys-
tem. We have used the methods implemented for this
project for developing a GP-based approach for a sta-
tistical classification algorithm. This algorithm works
on a set of training examples with known properties
[X1...X,]- One of these properties (X;) has to repre-
sent the membership information with respect to the
underlying taxonomy. On the basis of the training ex-
amples, the algorithm tries to evolve (or, as one could
also say, to “learn”) a solution, i.e. a formula, that
represents the function which maps a vector of object
features into one of the given classes. In other words,
each presented instance of the classification problem is
interpreted as an instance of an optimization problem;
a solution is found by a heuristic optimization algo-
rithm.

The goal of the implemented GP classification pro-
cess is to produce an algebraic expression from a
database containing the measured results of the ex-
periments to be analyzed. Thus, in the GP approach
we have designed and implemented for this project, the
GP algorithm works with solution candidates that are
tree structure representations of symbolic expressions.
These tree representations consist of nodes and are of
variable length. The nodes can either be nontermi-
nal or terminal ones. A nonterminal node signifies a
function performing some action on one or more prop-
erty values within the structure to produce the values
of the target property (which of course should be the
property which indicates which class the objects be-
long to). A terminal node represents an input variable
(i.e., a pointer to one of the objects’ properties) or a
constant. The nonterminal nodes have to be selected
from a library of possible functions, a pool of potential
nonlinear model structural components; the selection
of the library functions is an important part of any GP
modeling process because this library should be able to
represent a wide range of systems. The trees are built

by combining nodes according to grammar rules defin-
ing the number of inputs for each node type. When the
evolutionary algorithm is executed, each individual of
the population represents one tree structure; usually
the structures are limited by a predefined maximum
tree size. Since the tree structures have to be usable
by the evolutionary algorithm, mutation and crossover
operators for the tree structures have to be designed.
Both crossover and mutation processes are applied to
randomly chosen branches (in this context a branch is
the part of a structure lying below a given point in the
tree). Crossing two trees means randomly choosing a
branch in each parent tree and replacing the branch of
the tree, that will serve as the root of the new child
(randomly chosen, too), by the branch of the other
tree. Mutation in the context of genetic algorithms
means modifying a solution candidate randomly and
so creating a new individual. In the case of identify-
ing structures, mutation works by choosing a node and
changing it: a function symbol could become another
function symbol or be deleted, the value of a constant
node or the index of a variable could be modified. This
procedure is less likely to improve a specific structure
(as extensive test series have shown [15]), but it can
help the optimization algorithm to reintroduce genetic
diversity in order to restimulate genetic search. An
overview of the operators and parameter settings that
were used most successfully in the context of structure
identification and classification is given in Section 4.

Original Class
Values

[* 1 | Iy 1 e Loz Estimated
Ry R A T (I SO & el Class
| - L) ! Values

Figure 3. Evaluation of an exemplary classi-
fication model including the resulting class
value ranges of the given classes.

3.2 Classification Hypotheses Evaluation

Within the approach we present here one also has
to deal with the problem that a mathematical formula,
which is the output of the classification algorithm, can-
not assign a certain class to a given test object. What
is done instead is that a value is calculated and, on the
basis of this number, one can determine how an object
is classified. Furthermore, one then has to determine

optimal thresholds between the original class values so
that as many objects as possible are classified into the
correct class (cf. statistical approaches such as logistic
regression). Since the GP algorithm maximizes or min-
imizes some objective fitness function (better model
structures evolve as the GP algorithm minimizes the
fitness function), every solution candidate has to be
evaluated. In the context of classification this function
should be an appropriate measure of the level of agree-
ment between the calculated class values of the mea-
sured objects or experiments and their original ones
(i.e., the underlying classification hypothesis and the
real world). In detail, the following aspects have to be
considered when evaluating a solution candidate:

e Calculating the sum of squared errors J between
N original class values o; and calculated class val-
ues ¢; is a good measurement of the quality of the
formula at hand:

N
J = Z (Oi - Ci)2
=0

e A good model for the classification schema which

is to be identified should classify the test sample
objects so that the classes can be separated from
each other as well as possible. In other words,
each test object’s calculated class value should be
nearer to the object’s original class than to any
other class value. This can be measured for a class
¢ as follows:
Let A be the set of objects that originally belong to
the given class ¢ and B the set of all other objects.
All members of A are compared to all members of
B which means that all pairs in A x B = C have
to be considered. If an element of B has a greater
distance to ¢ than an object in A, then this has
to be considered as a correct pair; we collect all
these correct pairs in D. If classes are perfectly
separated from each other, then D = (C. Thus,
the separability S; of a class ¢; is calculated as

_ |Di
ICi|”

In fact, this value also corresponds to the area un-

der the so-called Receiver Operating Characteris-

tic (ROC) curve. ROC curves have long been used
in signal detection theory and are able to visualize
the quality of a classification hypothesis; good ex-
planations of ROC curves and how the area under

them have to be interpreted are for instance given
in [6] and [3].

Si

e The third interesting property of a classification
model is how clearly the classes can be separated

from each other. This can be measured by calcu-
lating the range R; of the estimated class values
for all members of a given class ¢;. Of course, the
smaller the ranges of the calculated class values of
the classes’ objects are, the more precise the model
seems to be and the better the corresponding GP
solution candidate has to be evaluated. In Figure
3 a classification example showing original and es-
timated class values as well as the resulting class
value ranges of the given classes 0, 1, 2 and 3.

At the moment we are trying to find out, how J,
S and R have to be weighted (i.e. multiplied with
their respective weighting factors j, s and r) in order
to maximize the quality of the results produced by the
GP algorithm. At the moment these parameters have
to be given by the user; recent test studies have shown
that it seems to be a good idea to weight the sum of
the squared errors J about twice as much as S and R
together.

4 Test Results and Discussion of the
Operators Used

Empirical studies with various problem instances are
possibly the most effective way to analyze the poten-
tial of heuristic optimization searches like evolution-
ary algorithms. Amongst other benchmark problem in-
stances, the GP-based multiclass classification method
was tested with the Thyroid data set, a benchmark
data set which is part of the UCI Machine Learning
Repository.

4.1 Results Obtained for the “Thyroid”
Benchmark Data Set

This data set represents medical measurements
which were recorded while investigating patients po-
tentially suffering from hypotiroidism. A detailed de-
scription of the problem can be found on the KEEL
homepage. In short, the task is to determine whether a
patient is hypothyroid or not. Three classes are formed:
normal (not hypothyroid), hyperfunction and subnor-
mal functioning; a good classifier has to be significantly
better than 92% simply because 92 percent of the pa-
tients are not hyperthyroid.

In total, the data set contains 7200 samples. For
testing our GP-based classification method we have
used 6000 samples as training samples available for the
GP algorithm and tested the model which was auto-
matically produced by the algorithm with the remain-

http://www.ics.uci.edu/~mlearn/
http://sci2s.ugr.es/keel-dataset/

Table 1. Classifications overview for the best
threshold between the classes “0” and “1” of
the Thyroid data set.

Evaluation
l’ -
+ 315 (69.38%) 2 (0.44%)

- 6 (1.32%) 131 (28,85%)
Total: 98.24% correct classifications
Prognosis

+ -
+ 51 (63.75%) 0 (0.00%)
- 2 (2.50%) 27 (33.75%)

Total: 97.50% correct classifications

Table 2. Classifications overview for the best
threshold between the classes “1” and “2” of
the Thyroid data set.

Evaluation

l’ -
+ 5519 (94.12%) 28 (0.48%)
- 0 (0.00%) 317 (5.41%)
Total: 99.52% correct classifications

Prognosis

+ -
+ 1108 (94.70%) 11 (0.94%)
- 0 (0.00%) 51 (4.36%)

Total: 99.06% correct classifications

ing 1200 samples. The algorithm which was used for all
test series was the SASEGASA [1], a new generic evo-
lutionary algorithm for retarding the unwanted effects
of premature convergence by combining processing and
self-adaptive steering of selection-pressure.

This data set represents medical measurements
which were recorded while investigating patients po-
tentially suffering from hypotiroidism. A detailed de-
scription of the problem can be found on the KEEL
homepage. In short, the task is to determine whether a
patient is hypothyroid or not. Three classes are formed:
normal (not hypothyroid), hyperfunction and subnor-
mal functioning; a good classifier has to be significantly
better than 92% simply because 92 percent of the pa-
tients are not hyperthyroid.

In total, the data set contains 7200 samples. For
testing our GP-based classification method we have
used 6000 samples as training samples available for the

http://sci2s.ugr.es/keel-dataset/

GP algorithm and tested the model which was auto-
matically produced by the algorithm with the remain-
ing 1200 samples. The algorithm which was used for all
test series was the SASEGASA [1], a new generic evo-
lutionary algorithm for retarding the unwanted effects
of premature convergence by combining processing and
self-adaptive steering of selection-pressure.

The Tables 1 and 2 give an overview of the qual-
ity of the identified classifier for the Thyroid data set;
for both training and prognosis, the confusion matrices
for the identified thresholds between the classes 0 and
1 (Fig. 1) and 1 and 2 (Fig. 2) are given. Confusion
matrices [9] contain information about actual and pre-
dicted classifications done by classification systems. In
the upper left cell of the table we state the number of
correct predictions that an instance is positive, in the
lower right cell the number of correct negative classifi-
cations is given. Furthermore, we also state the number
of incorrect predictions that an instance is positive (up-
per right cell) and the number of incorrect predictions
that an instance is negative (lower left cell). Addition-
ally, the total percentage of correct classifications is
given, too.

The classes could be separated with an average cor-
rectness of 98.88% when applied to the training sam-
ples and with an average correctness of 98.28% when
applied to the remaining test samples.

The interested reader can find further analysis of the
results found for this benchmark data set (including
ROC curves and the areas under them) and also the
results we achieved for other benchmark problems in
the results section of the HeuristicLab homepage.

4.2 Operators and Parameter Settings

During our thorough test series we have identified
the following GP-relevant parameter settings as the
best ones for solving classification problem instances:

e GP-algorithm: The SASEGASA. Especially
self-adaptive concepts for steering the selection
pressure within the population of a genetic al-
gorithm, as they are used by the SASEGASA
[1], have successfully been used in the context
of model identification for classification data sets.
In general, for all multiclass classification prob-
lems we investigated the results produced by the
SASEGASA are much better than those produced
by standard GA implementations.

o Mutation rate: 4%.

e Population size: 500 - 2,000.

www.heuristiclab.com/results

e Selection operators: Whereas standard GA im-

plementations use only one selection operator, the
SASEGASA requires two (the so-called female se-
lection operator as well as the male selection op-
erator; for a detailed explanation of this Gender-
Specific Selection see [14]). Similar to our expe-
rience collected during the tests on the identifica-
tion of mechatronical systems [15, 16], it seems to
be the best to choose the roulette-wheel selection
in combination with the random selection opera-
tor. The reason for this is that apparently merging
the genetic information of rather good individuals
(formulae) with randomly chosen ones is the best
strategy when using the SASEGASA for solving
identification problems.

Success ratio, selection pressure and com-
parison factor: As for instance described in
detail in [1], there are some additional parame-
ters of the SASEGASA regarding the selection of
those individuals that are accepted to be a part of
the next generation’s population. These are the
success ratio, the maximal selection pressure and
the comparison factor bounds that steer the algo-
rithm’s behavior regarding Offspring Selection [2].
For model structure identification tasks in general
and especially in case of dealing with classification
problems, the following parameter settings seem to
be the best ones:

— Success ratio = 1.0,
— Maximum selection pressure = 1,000, and

— Comparison factor = 1.0.

These settings have the effect that in each gener-
ation only offspring survive that are really better
than their parent individuals (because of success
ratio = 1.0 only better children are inserted into
the next generation’s population, and because of
the maximally high comparison factor a success-
ful offspring really has to be better than both of
its parent individuals). This is why the selection
pressure becomes very high as the algorithm is ex-
ecuted, and therefore the maximum selection pres-
sure has to be set to a rather high value (as, e.g.,
1,000) to avoid premature termination.

Crossover operators: We have implemented
and tested three different single-point crossover
procedures for GP-based model structure identi-
fication: one that exchanges rather big subtrees,
one that is designed to exchange rather small
structural parts (e.g., only one or two nodes) and
one that replaces randomly chosen parts of the

respective structure trees. Moreover, for each
crossover operator we have also implemented an
extended version that additionally randomly mu-
tates all terminal nodes (i.e., manipulates the pa-
rameters of the represented formula). That is, the
following 6 structure identification crossover meth-
ods are available: StandardSPHigh, Standard-
SPMedium, StandardSPLow, FxtendedSPHigh,
EztendedSPMedium, and EzxtendedSPLow.

Since arbitrarily many crossover operators can be
selected when applying the SASEGASA, the task
was not to find out which operator can be used to
produce the best results but rather which subset
of operators is to be chosen. According to what
we experienced, the following set of crossover op-
erators should be applied: All three standard op-
erators (StandardSPHigh, StandardSPMedium and
StandardSPLow) plus one of the extended ones, for
instance ExtendedSPMedium.

Mutation operators: The basic mutation oper-
ator for GP structure identification we have imple-
mented and tested, GAStandard, works as already
described in Section 3: A function symbol could
become another function symbol or be deleted, the
value of a constant node or the index of a variable
could be modified. Furthermore, we have also im-
plemented an extended version (GA Eztended) that
additionally randomly mutates all terminal nodes
(in analogy to the extended crossover operators).
As the latest test series have shown, the choice
of the crossover operators influences the deci-
sion which mutation operator to apply to the
SASEGASA: If one of the extended crossover op-
erators is selected, it seems to be the best to choose
the standard mutation operator. But if only stan-
dard crossover methods are selected, picking the
extended mutation method yields the best results.

Evaluation operators: As already mentioned in
Section 3.2, the sum of squared errors function is
widely used for measuring the quality of a clas-
sification model; we have also used it as evalua-
tion function during the latest test series. Still,
the authors believe that the enhanced evaluation
model described in Section 3.2 will help the GP
process produce even better classification models;
recent tests using prototypical implementations of
this evaluation scheme have yielded very promis-
ing results.

Table 3. Experimental results for the “Thy-
roid” data set.

Using standard GP implementation
Parameter Correct classifications
settings Evaluation Prognosis
(1) 92.80% 92.13%
(2) 93.91% 93.25%
Using the SASEGASA
Parameter Correct classifications
settings FEvaluation Prognosis
(3) 97.15% 96.34%
(4) 98.21% 98.07%
(5) 97.91% 97.42%
(6) 97.70% 97.25%
) 98.88% 98.28%

presented in Table 3. For each parameter settings ver-
sion 5 independent test runs were executed, the best
results are listed. In all cases, the population size was
1000 and the mutation rate set to 4%. Furthermore,
the following parameter settings were used:

e (1): crossover: FExtendedSPMedium; mutation:
GAStandard; selection: Roulette.

e (2): crossover: StandardSPMedium; mutation:
GAFEztended; selection: Roulette.

e (3): crossover: all 6 available operators; mutation:
GAExtended; selection: Random and Roulette
(max. selection pressure: 500, comparison factor
bounds: 0.6 to 0.9).

e (4): crossover: all 6 available operators; mutation:
GAStandard; selection: Random and Roulette
(max. sel. pressure: 500, comparison factor: 1.0).

e (5): crossover: all 3 standard operators plus Ex-
tendedSPLow; mutation: GA-Standard; selection:
Random and Roulette (max. selection pressure:
500, comparison factor bounds: 0.6 to 0.9).

e (6): crossover: all 3 standard operators plus Ex-
tendedSPLow; mutation: GA-Standard; selection:
Roulette and Roulette (max. selection pressure:
500, comparison factor: 1.0).

e (7): crossover: all 3 standard operators plus Ex-
tendedSPLow; mutation: GA-Standard; selection:
Random and Roulette (maximum selection pres-

: i factor: 1.0).
Selected experimental results of the standard GP im- sure: 500, comparison factor: 1.0)

plementation and the SASEGASA algorithm for the In comparison to previously published results ob-
Thyroid data set using various parameter settings are tained for the Thyroid data set using other approaches

Table 4. Summary of the best GP parameter
settings for solving classification problems.

GP algorithm SASEGASA
Mutation Rate 4%
Population Size 1,000
Selection Operators Random, Roulette
Mazximum Selection Pressure 1,000
Comparison Factor 1.0

StandardSPLow,
Crossover StandardSPMedium,
Operators StandardSPHigh,

ExtendedSPLow
Mutation Operator GAStandard

for solving classification problems, these results seem to
be remarkably good. E.g., in [5] a classification method
based on Neural Networks is presented yielding a Thy-
roid classificator that incorrectly classifies 5.67% of the
validation samples and 6.67% of the test samples. In
[7], for instance, several other classification methods
are discussed, the best one producing results with a
misclassification rate of 5.4%. The best parameter set-
tings for solving classification problems using the pre-
sented GP-based method are subsumed in Table 4.

5 Conclusion

In this paper we have introduced a genetic program-
ming based method that is able to solve nontrivial real-
world multiclass classification problems. A GP ap-
proach for identifying nonlinear model structures for
mechatronical systems has been further developed and
refined so that the basic methods can be used for at-
tacking classification problems yielding very satisfying
results. Especially, new hybrid variants of genetic al-
gorithms supplementing standard genetic algorithms
with artificial self organizing aspects for overcoming
some of the fundamental problems of GAs and GP have
been applied quite successfully. On the basis of recent
test results the authors strongly believe that further re-
finement of the available operators as well as the design
of new operators for this kind of optimization problems
will make it possible to find even better results in the
field of data mining and classification.

References

[1] M. Affenzeller and S. Wagner. SASEGASA: A new
generic parallel evolutionary algorithm for achieving
highest quality results. Journal of Heuristics - Special

(14]

[15]

Issue on New Advances on Parallel Meta-Heuristics
for Complex Problems, 10:239-263, 2004.

M. Affenzeller and S. Wagner. Offspring selection: A
new self-adaptive selection scheme for genetic algo-
rithms. Adaptive and Natural Computing Algorithms,
pages 218-221, 2005.

A. Bradley. The use of the area under the ROC curve
in the evaluation of machine learning algorithms. Pat-
tern Recognition, 30:1145-1159, 1997.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
From data mining to knowledge discovery: An
overview. Advances in Knowledge Discovery and Data
Mining, 1996.

F. Hamker and D. Heinke. Implementation and com-
parison of growing neural gas, growing cell structures
and fuzzy artmap. Technical Report ISSN 0945-7518,
Technische Universitat Ilmenau, 1997.

J. Hanley and B. McNeil. The mening and use of the
area under a receiver operating characteristic (ROC)
curve. Radiology, 143:29-36, 1982.

S. Hochreiter and K. Obermayer. Classification, re-
gression, and feature selection on matrix data. Techni-
cal Report ISSN 1436-9915, Department of Electrical
Engineering and Computer Science, Technische Uni-
versitat Berlin, 2004.

J. H. Holland. Adaption in Natural and Artificial Sys-
tems, 1st MIT Press ed. 2004.

R. Kohavi and F. Provost. Glossary of terms. Machine
Learning - Special Issue on Applications of Machine
Learning and the Knowledge Discovery Process, 30:271
— 274, 1998.

J. Koza. Genetic Programming: On the Programming
of Computers by means of Natural Selection. The MIT
Press, Cambridge, Mass, 1992.

W. Langdon and R. Poli. Foundations of Genetic Pro-
gramming. Springer Verlag, Berlin Heidelberg New
York, 2002.

T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, 2000.

S. Wagner and M. Affenzeller. Heuristiclab: A generic
and extensible optimization environment. Adaptive
and Natural Computing Algorithms, pages 538-541,
2005.

S. Wagner and M. Affenzeller. Sexual GA: Gender-
specific selection for genetic algorithms. Proceedings of
the 9th World Multi-Conference on Systemics, Cyber-
netics and Informatics (WMSCI), pages 76-81, 2005.
S. Winkler. Identification of nonlinear model struc-
tures by genetic programming techniques. Mas-
ter’s thesis, Institut fiir Systemtheorie und Simula-
tion, Technisch-Naturwissenschaftliche Fakultdt der
Johannes Kepler Universitdt, Linz, Austria, 2004.

S. Winkler, M. Affenzeller, and S. Wagner. New meth-
ods for the identification of nonlinear model structures
based upon genetic programming techniques. Journal
of Systems Science, 31(1):5-13, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

