
Automatic Code Generation
for Distributed Memory Architectures

in the Polytope Model
Michael Claßen

FMI, University of Passau, Germany
Email: michael.classen@uni-passau.de

Martin Griebl
FMI, University of Passau, Germany
Email: martin.griebl@uni-passau.de

Abstract—The polytope model has been used successfully as
a tool for program analysis and transformation in the field of
automatic loop parallelization. However, for the final step of
automatic code generation, the generated code is either only
usable on shared memory architectures or severely restricts
the parallelization methods that can be applied. In this paper,
we present a fully automated method for generating efficient
target code, which is executable on clusters that are based on a
distributed memory architecture. We also provide speedup results
of experiments on a local cluster.

I. INTRODUCTION
The polytope model has been valuable for model based
program analysis in the field of automatic loop parallelization
[15], [17], [18]. Methods have been developed to transform the
original input program (in its polytope representation) into a
target program (also in polytope representation) with minimal
communication [3], [5], [8], [14], [17].
The final step however – generating executable code from
the polytope representation – has only been fully implemented
for shared memory architectures [4]. In this paper, we present
an approach for automatically obtaining efficient target code
for distributed memory architectures, i.e., we include the
generation of the necessary communication code.
The paper is organized as follows. First, we give a very
brief description of the polytope model. Then, we illustrate
a first approach to determining the required communications
and representing them in the model. Since it turns out that this
first approach leads to inefficient communications, we refine
the model-based description of the communications, before we
generate code.

II. MODEL-BASED PARALLELIZATION FOR DISTRIBUTED
MEMORY ARCHITECTURES

Let us start with a presentation of the mathematical model
of a program.

A. Different instances of statements
This paper deals with parallelizing loop programs. Every
iteration of a loop generates an individual instance of its body.
Thus, we model a statement

�
by the set of all iterations that

are enumerated by the surrounding loops of
�
.

Definition 1: The set of iterations that are enumerated by
the loops surrounding a statement

�
is called the index space

(ISPC) of
�
. Every vector �� in the ISPC represents a single

iteration of the surrounding loops. We call �� the iteration
vector.
Definition 2: Each instance of a statement is called an
operation. It is fully described by the iteration vector �� and
the name of the statement

�
. We denote an operation � by the

pair
� � � ��
 � � �

(1)

In the context of this paper, we deal only with loops whose
bounds are affine linear expressions in indices of surrounding
loops and in (symbolic) constants. Using some additional
mathematical definitions, this allows for a more concrete
description of index spaces.
Definition 3: In an � -dimensional vector space, a hyper-
plane is an � � � � � -dimensional subspace. It divides the vector
space into two half spaces.
Definition 4: A polyhedron is the intersection of finitely
many half spaces. A polytope is a bounded polyhedron. A
polyhedron (polytope) can be defined by an affine inequality
system, which we usually represent in matrix form:

� �� � ��
 (2)

where
�
is the coefficient matrix of the inequality system and

�� is the constant vector.
In our application, every loop surrounding a statement

�
corresponds to one dimension in the vector space, i.e., the
index space, in the model. Every affine loop bound is modeled
by an inequality. Thus, the � -dimensional index space of a
statement

�
can be represented as � inequalities, using a � � �

matrix ! and a constant vector " of length � :
� $ & (! �� � �" (3)

When we are not interested in the inequalities but only in the
dimensions in which the polytope lies, we denote a polytope$
by a sequence of sub-vectors which represent the names of

the variables of the relevant dimensions:
$ (� �+ -
 � � �
 �+ 1 �

(4)

B. Dependences
As the final step of modeling a loop nest, we must integrate
the interactions of different operations into the model.
Definition 5: A dependence 2 is defined by a common data
access between two operations 3 and +

. If 3 is executed before

1-4244-0054-6/06/$20.00 ©2006 IEEE

�
, we call � the source and �

the destination of � . The source
and destination of a given dependence � shall be given by
functions � � � 	 � � and � � 	 � � , respectively.
The set of all dependences � in the original program defines
a partial order on the execution of the statements.
Definition 6: Four types of dependences are defined, de-
pending on the type of memory access at the source and
destination:

source
destination reads writes

reads input true
writes anti output

True dependences make communication of data necessary;
anti and output dependences require only synchronization
between processors. Input dependences are ignored in our
context.
At this point, any relevant information of the original loop
nest is represented in the model. Thus, we can now start
parallelizing

C. Space-time mapping

The essence of parallelization is to map every operation to
a logical time (��) and space, i.e., processor coordinate (��).
Definition 7: The (multi-dimensional) function � that maps
every operation to its logical execution time is called schedule.
It needs to respect the partial order defined by the set � of
all dependences in the input program:� � � � � � 	 � � � 	 � � � $ � 	 � � 	 � � � & (5)

where $ is the lexicographic order.
Definition 8: The (multi-dimensional) function ' that maps
every operation to its logical processor coordinate is called
placement. This function has no correctness constraints, but
influences heavily the number of communications.
These functions together define the parallel execution: all
operations that are scheduled at a common time step � can be
executed in parallel on the logical processors assigned by the
placement function ' .
In the polytope model, we restrict ourselves to (piecewise)
affine functions for schedule and placement. Therefore, they
can be written in matrix notation, either each individually or
also both together.
Definition 9: The affine transformation that consists of the
schedule and placement functions is called space-time map-
ping. It maps each operation to a logical time �� and space
coordinate �� : (* , � -../ ��

��
0 ..1 3 , �4 & (6)

where the rows of
,
are composed of the rows of the matrices

representing � and ' .
For each statement, we can now apply the space-time trans-
formation to each iteration vector of its ISPC. The resulting
set of vectors is called the target index space (TISPC).

D. A basic communication polytope
By applying the space-time transformation to the source
and destination ISPC of each dependence � , we obtain a
dependence relation � 5 6 in the TISPC. If the space coordinate
of the source and the destination differ, a communication must
be launched. Let us define a mathematical representation for
these communications.
Definition 10: A communication polytope 7 8 : ; ; is con-
structed from � 5 6 by concatenation of the time and space
coordinates (�� , ��) of both, source and destination of the
dependence relation:

7 8 : ; ; � @ �� A 6 8 & �� A 6 8 & �� E A 5 & �� E A 5 G (7)

We can use this communication polytope to generate the
required communication code. For each transformed true de-
pendence � , we construct two point-to-point communication
statements, one for for sending and one for receiving the data
element described by � as follows:H For the send statement, we project 7 8 : ; ; to @ �� A 6 8 , �� A 6 8 G ,

thus obtaining all index vectors in the target space for
which a send operation has to be generated. Each send
statement then has to send its data the logical space-time
coordinates denoted by 	 �� E A 5 & �� E A 5 � .H For the receive statement, we just project 7 8 : ; ; to@ �� E A 5 & �� E A 5 G . Each receive statement then has to receive
data that has been sent by send statements with the logical
space-time coordinates 	 �� A 6 8 & �� A 6 8 � .

At this point, we can automatically generate code for
distributed memory architectures: we supply the polytopes
modeling the space-time mapped computation statements and
the send and receive statements to a tool that converts the
polytope description to a loop nest, e.g., CLooG [4].
However, the target code obtained by application of the
approach mentioned above is usually not efficient enough to
produce a speed-up. The reason is the fine granularity of
parallelism in the target program.

E. A refined communication polytope
In order to obtain coarser-grained parallelism, we apply
tiling [1], [22]. We partition an J -dimensional space � into
identical parallelepipeds (tiles), bounded by J families of
hyperplanes. The coordinates of � are also called virtual
coordinates from now on.
Since every tile has a lower and an upper bound in every
dimension, a tile can be expressed by a K J M J matrix (

,
containing the normal vectors of the hyperplanes bounding
the tile as rows, and a constant vector � of length K J :(�4 O �� & (8)

where �4 is vector of � .
We use identical copies of the tile defined in (8) and shift
them along the edges of the tile, i.e., the parallelepiped. This
generates a partitioning of � . Thus, each point in � belongs
to exactly one tile.
Every tile can be represented by a vector �Q in the tile
coordinate system. For this purpose, let R be the matrix whose

columns are the vectors of the shift just mentioned, i.e., the
edges of the parallelepiped. � relates �� with a point �� � � 	
as follows:
 � 	 � � �� � �� � (9)

Using this equation, every tile has a unique representative�� � . All other points �� inside the same tile have the property
that their distance to �� � (often called the offset) lies within the
tile described in (8). Combining this with (9), we obtain an
inequality that expresses the relation between tile coordinates
and virtual coordinates: � �

�� � � �� � � �� (10)

Note that tiling doubles the dimensionality since the virtual
coordinates are decomposed into tile coordinates and offsets.

In contrast to the traditional framework, we apply tiling to
the transformed index space, i.e., after the application of the
space-time mapping [12]. Thus, we can check separately the
effect of tiling space and time dimensions.� By applying tiling to spatial coordinates, communication

is only performed between processor tile coordinates,
thereby avoiding the overhead from unnecessary commu-
nication between the large number of virtual processors
which are executed on the same real processor.� Time tiling is used for aggregating virtual time steps
into global time steps. During each global time step,
data elements are not communicated immediately, but
are aggregated in buffers, which are transmitted at the
end of each global time step, thereby achieving message
vectorization.
Aside: it can be shown that only a single virtual time
dimension can be tiled with a tile size greater than 1 and
less than the maximal extent of the time dimension [11].

Let us discuss space and time tiling in more detail.
1) Tiling time dimensions: Since tiling time postpones the
transmission of data, it also delays the receiver. This leads
to a deadlock if two processors would like to exchange data
between two virtual time steps: the sending is postponed, but
none of the two processors can continue execution.
We can avoid this problem if we restrict ourselves to
placements that satisfy an additional property.
Definition 11: A placement satisfies the forward communi-
cations only property (FCO), iff all communication vectors are
component-wise non-negative in their spatial components, i.e.:� � " $ & (* � � � (, . � � 0 �1 � (11)

with " being the set of all true dependences, projected on
their spatial dimensions.
If (11) also holds for anti and output dependences, we say
that the placement satisfies the strict FCO property. Note that
there exist placement algorithms that guarantee the (strict)
FCO property [14].
If we have a placement satisfying the FCO property, we
know that every communication targets a processor with a
higher number than the source, thus avoiding communication

cycles. We obtain a correct execution order of the tiles by de-
laying tiles executed on processors with high numbers longer
than tiles executed on processors with small numbers [11].
More formally, we delay the execution of a given time tile � 2
by the sum of entries in its processor tile coordinate (�3 2), in
order to get a modified time tile coordinate � 42 :

� 42 $ � � 2 7 9: ;
< > �3 2 ? (12)

Note that restricting ourselves to placements that satisfy the
strict FCO property allows our communication scheme to un-
pack all data elements from the receiver’s buffer immediately
after the corresponding communication, i.e., one global time
step after the write access that lead to communication [13].
2) Tiling space dimensions: When tiling space dimensions,
we can prevent unnecessary communication of data elements,
if the relevant dependence exists only between virtual space
coordinates that are belonging to the same processor tile
coordinate. For this purpose, we add an additional constraint
to our communication polytope. For each pair of source
(�3 A C D 2) and destination (�3 E A G 2) processor tile coordinates, the
following restriction must hold:

�3 A C D 2 I� �3 E A G 2 (13)

Unfortunately, the resulting index space is non-convex and can
only be expressed by the union of polytopes for

�3 A C D 2 K �3 E A G 2 (14)

and �3 E A G 2 K �3 A C D 2 (15)

(using the lexicographic order K in all processor dimensions).
However, we can again exploit the FCO property and restrict
the polytope representations to the case that Equation 14 holds.
3) The refined communication polytope: To summarize,
tiling extends our communication polytope by additional tiling
dimensions for time tile and processor tile coordinates for
the source ((, . P) and destination (& (* P) of a transformed
dependence relation (with skewing already applied):R 4D S T T $ V � A C D 2 � �3 A C D 2 � �� A C D � �3 A C D � � E A G 2 � �3 E A G 2 � �� E A G � �3 E A G X (16)

F. Statement types for our communication scheme

For our refined communication scheme, we generate three
new types of statements in addition to the transformed com-
putation statements from the original input program. For every
transformed dependence, two types of buffer management
statements are generated. The third statement type is respon-
sible for performing the communication.
1) Write-buffer statements: After each write access at the
source of a true dependence, the computed data element is not
sent directly by a point-to-point communication, but stored in
a buffer by a write-buffer statement. This buffer holds all data
destined for the corresponding destination processor.

2) Unpack-buffer statements: For each write-buffer state-
ment, a corresponding unpack-buffer statement is generated,
which is used to unpack data elements from the communicated
buffers at the global time step immediately following the
global time step of the write access.
For the generation of both buffer management statements,
our extended communication polytope � �� � � � from (16) can
be used:

	 To describe the source and destination processor of a
given dependence, we now have to use the corresponding
processor tile coordinates
� instead of virtual processor
coordinates
� which we used in Section II-D.

	 The polytopes for the write-buffer and the unpack-buffer
statements contain both source and destination processor
tile dimensions, but they differ in the ordering of these
dimensions.

	 It is important to use the same ordering of elements in the
corresponding write and read buffers. For that purpose,
we must use the same polytope description of logical
space-time coordinates for both buffer management state-
ments. It is irrelevant whether we use the coordinates
of the source or the destination index space of a given
dependence – we just have to use the same description
for both statements.

	 In our communication scheme, each unpacking operation
of communicated data from a communication buffer is
always performed at the global time step that follows
the corresponding write operation (cf. Section II-E.1).
Therefore, it is not required to enumerate all global time
coordinates of the destination index space for each depen-
dence. Instead, the global time coordinate for the unpack
buffer statement is fully determined by the global time
coordinate of the source index space of the corresponding
dependence, to which one global time step is added.

The resulting enumeration order for write-buffer and
unpack-buffer statements is given by projecting the communi-
cation polytope as follows:

� � � � � � � � � � � � �
� � � � �
� � � � �
� � � � �
� � � #

� % ') * � , � � � � � � . 0 �
� � � �
� � � � �
� � � � �
� � � � #

Note that by projecting away the global time dimension
at the destination side of a given dependence relation 1 , we
prevent redundant communication of data. Consider the case
that 1 results from a single write access at the global time
step � 3 on processor � and multiple read accesses at the
global time steps � 4 (for 5 7 9 : . 0 � < < < >), all placed on
processor ? . Projecting away the global time dimension (
� � �)
for the destination of 1 yields a polytope description which
enumerates only a single data element.
3) Communication statement: For each global time step
that includes computation, a communication statement is
generated, which performs the actual communication of the
data elements stored in separate buffers for each destination
processor.

For this communication statement, we re-use the polytope
description of the transformed computation statements, where
space-time mapping, tiling and skewing has already been
applied. In order to enumerate all global time iterations that
execute computations, we project on the global time coordi-
nate:

� � � � � � � � #

Here, no processor tile coordinates are required, because the
communication is performed by a collective operation that is
executed on all real processors.

At this point we have polytope descriptions for all compu-
tation and communication-relevant statements of our refined
communication scheme. The final step is to merge them
correctly and to generate a program from them.

G. From the polytope representation to target code
For the generation of the target program’s loop nest, all
polytopes of the four different statement types have to be
merged and scanned correctly. For this task, we use CLooG,
an improved implementation by Bastoul [4] of Quilleré’s
algorithm [21].
To describe the execution domain for each statement in the
target program, we use our polytope descriptions. However, we
also have to take care of the scheduling of the four different
statement types relative to each other:
1) For each virtual time step within a global time step,
our refined communication scheme can lead to at most
three different types of statements being executed in the
following order:
a) Unpack-buffer statement (reads the received value
from the receive-buffer)

b) Compute statement (computes the new value)
c) Write-buffer statement (writes the new value to the
send-buffer)

2) At the end of each global time step, the communication
statement is executed on each processor.

We use additional constant scheduling dimensions that
are inserted to guarantee the desired ordering [16]. CLooG
provides a mechanism for inserting and reordering additional
dimensions for the target loop nest. Affine functions (so-
called scatter functions) are used to define equations between
variables from the domain descriptions and the additionally
inserted scatter dimensions. We also use these scatter functions
to change the enumeration order of processor tiles for the
write-buffer and unpack-buffer statement, allowing to use the
same polytopes for the domain description of both statement
types.

H. Post-processing
The generated loop nest is post-processed automatically,
in order to insert if-statements that restrict the execution of
processor tile iterations to processors with the corresponding
MPI process number. If the number of available MPI processes
is known at compile time, the tile sizes for processor tiles can

be adjusted in order to obtain a mapping of each processor tile
on exactly one MPI process. In this case, we know the number
of processor tile coordinates in each dimension at compile time
and can compute a one-dimensional MPI process number by
an appropriate function getRank.
Inside the innermost loop for processor tiles �� � , an if-
statement is inserted, performing the mapping from �� � to a
one-dimensional MPI process number. E.g., for �� � � � �
 � � � � ,
we obtain

if(getRank(p1,p2) == mpi_rank) {
... // execute inner loops

}

As an additional step in post-processing, the code for buffer
management and performing the actual communication is
inserted for the statement placeholders that are generated by
CLooG within the loop bodies.

I. Mapping to real processors
If processor tiling is used for mapping the processor tile
coordinates to one-dimensional MPI process numbers (as
mentioned in Section II-H), the program has to be re-generated
with adjusted tile sizes, if another number of available MPI
processes is used.
In order to avoid this costly code generation, we use a
dynamic approach for mapping to real processors:

� A map is created by enumerating all processor tile coor-
dinates that contain computation statements and mapping
them to a one-dimensional coordinate, using a cyclic or
block distribution. For this purpose, the polytope repre-
sentations of all computation statements are projected to
their processor tile dimensions.

� The function getRank is replaced by a function
lookupRP, that performs a lookup at run time in the
generated processor map:
if(lookupRP(p1,p2) == mpi_rank) {

... // execute inner loops
}

Especially when using the cyclic distribution strategy, this
approach yields very good load balance.

III. EXPERIMENTS
A. Input program
For our experiments, we used one-dimensional successive
over-relaxation (SOR) [10]:

DO K=1,M
DO I=2,N-1

A(I)=(A(I-1)+A(I+1))/2.0
END DO

END DO

For the space-time transformation, the following schedule�
and placement � where chosen: � � � � � � � � � � � � and

� � � � � � � � . Tiling was applied to the resulting transformed
target program, using a tile size of � � and � � � for the time

0

1

2

3

4

5

6

7

8

1 2 3 4 6 8 10 12 14 16

sp
ee

du
p

nodes

sor1d (tile sizes: time=40, space=400)

M=10000, N=500000
M=10000, N=1000000
M=10000, N=2000000
M=10000, N=5000000

Fig. 1. Speedup

0

10

20

30

40

50

60

70

80

1 2 3 4 6 8 10 12 14 16

ef
fic

ie
nc

y
in

 %

nodes

sor1d (tile sizes: time=40, space=400)

M=10000, N=500000
M=10000, N=1000000
M=10000, N=2000000
M=10000, N=5000000

Fig. 2. Efficiency

and processor dimension respectively. In this case, we only
have one-dimensional time and processor dimensions, so we
have to use a rectangular tile shape.

B. Target architecture
We used a local cluster for our benchmarks that consists
of 32 nodes of dual-Pentium III 1 GHz CPUs with 512 MB
memory. These nodes are interconnected by an SCI network.
Of the 32 nodes, we used between one and 16 nodes for our
experiments, while using only one CPU core for each node.

C. Results
The resulting speedup is displayed in Figure 1 for different
parameter settings. Figure 2 shows the corresponding effi-
ciency. We chosen a larger number of iterations (� � � � � � � �)
for achieving more accurate timings.
Our experiments have shown that our refined communica-
tion scheme produces high speedups. For the problem sizes
used in our examples, the generated code scales up to to 14
processors with quite good efficiency (between 51% and 71%).
The described code generation using CLooG for enumer-
ating the target loop nest from the polytope descriptions

usually yields very large code sizes for the target program
(e.g. more than � � � � � lines of code in the example used in
our experiments). However, the overhead from buffer manage-
ment, synchronization and the complexity of the loop bounds
is reasonably low, as documented by the high efficiency in
the case that the parallel target program is run on only one
processor.

IV. RELATED WORK
There are other projects that also address automatic code
generation for distributed memory architectures. Faber [6], [7]
describes an approach that is also based on the polytope model.
He generates HPF target code that includes annotations of
how data is distributed among processors. The HPF compiler
then generates the required communication from this distri-
bution annotations. However, the application of this method
is restricted because common HPF compilers often fail to
generate the corresponding communication code for cases that
require irregular communications. The code generation method
described in this paper, by contrast, enables the generation
of communication code for arbitrary affine communication
patterns, as long as the applied placement satisfies the strict
FCO property.
Ferner [9] also describes a method of automatically deriving
communication code for distributed memory architectures. His
approach is based on a parallelization technique of Lim and
Lam [19] that generates so-called partitions of the index
spaces of all statements in the input program. These partitions
can be executed in parallel on logical processors. Ferner
proposes a mapping algorithm that uses affine mappings from
logical processors (partitions) to real processors and illustrates
how the corresponding communication code loop nests can be
obtained.
However, as opposed to the original parallelization tech-
nique described by Lim and Lam, he restricts the partitions to
be one-dimensional, which limits the degree of parallelism ob-
tained in the target program, but simplifies the code generation.
He also restricts the target programs to asynchronous parallel
programs, whereas Lim and Lam’s method often results in
synchronous parallel target programs that require an outer
sequential loop for enumerating time steps.
Athanasaki et al. describe another approach that also uses
tiling to reduce communication for distributed memory based
clusters [2]. In their approach, an additional tiling transfor-
mation is used for aggregating processor tiles along certain
hyperplanes into so-called groups, which can be executed
efficiently by exploiting the availability of communication-
free shared memory processors on each node in the cluster.
They also use overlapping of computation and communication
operations to achieve a form of pipeline parallelism. For the
implementation of the communication statements, they make
use of low level adaptations, e.g. using zero-copy network
protocols [20] for SCI networks.
However, their approach is restricted to perfectly nested for-
loops with uniform dependences. Also, the number of nodes
and the number of shared memory processors per node have

to be known at code generation time for this method, because
both numbers are used statically for determining the tile and
group sizes, respectively.

V. CONCLUSION

We proposed a method for automatic code generation for
distributed memory architectures based on the polytope model.
We illustrated a refined communication scheme, where tiling
is used for aggregating data in buffers, which are transmitted
at the end of global time steps. Thereby, message vectorization
is achieved.
We also presented results of an experiment on a local cluster,
which showed good speedup and efficiency, that also scales
well for larger number of processors.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG), the Procope project for supporting the
research cooperation with our colleagues in France and also
the CoreGRID Network of Excellence. We also would like to
thank Cédric Bastoul for his great support with CLooG.

REFERENCES

[1] C. Ancourt and F. Irigoin, “Scanning polyhedra with DO loops,” in ACM
SIGPLAN Symp. on Principles & Practice of Parallel Programming
(PPoPP’91). ACM Press, 1991, pp. 39–50.

[2] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and
P. Tsanakas, “Hyperplane Grouping and Pipelined Schedules: How
to Execute Tiled Loops Fast on Clusters of SMPs,” The Journal of
Supercomputing, vol. 33, no. 3, pp. 197–226, Sep 2005.

[3] U. Banerjee, Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, 1992.

[4] C. Bastoul, “Efficient code generation for automatic parallelization and
optimization,” in ISPDC’2 IEEE International Symposium on Parallel
and Distributed Computing, Ljubjana, Oct. 2003, pp. 23–30.

[5] A. Darte and F. Vivien, “Automatic parallelization based on
multidimensional scheduling,” 1994. [Online]. Available: citeseer.ist.
psu.edu/darte94automatic.html

[6] P. Faber, Transformation von Shared-Memory-Programmen zu
Distributed-Memory-Programmen. University of Passau, 1997,
diploma thesis.

[7] P. Faber, M. Griebl, and C. Lengauer, “Issues of the automatic generation
of HPF loop programs,” in 13th Workshop on Languages and Compilers
for Parallel Computing (LCPC 2000), ser. Lecture Notes in Computer
Science 2017, S. P. Midkiff, J. E. Moreira, M. Gupta, S. Chatterjee,
J. Ferrante, J. Prins, W. Pugh, and C.-W. Tseng, Eds. Springer-Verlag,
2001, pp. 359–362.

[8] P. Feautrier, “Some efficient solution to the affine scheduling problem,
part I, one dimensional time,” Int. J. of Parallel Programming, vol. 21,
no. 5, pp. 313–348, Oct. 1992.

[9] C. Ferner, “Revisiting communication code generation algorithms for
message-passing systems,” Int. J. of Parallel, Emergent and Distributed
Systems, submitted.

[10] C.-E. Fröberg, Numerical Mathematics – Theory and Computer Appli-
cations. Benjamin/Cummings, 1985.

[11] M. Griebl, “The mimimal number of communication startups when
tiling space-time mapped programs,” in Ninth International Workshop on
Compilers for Parallel Computers (CPC 2001), jun 2001, pp. 117–126.

[12] ——, “On tiling space-time mapped loop nests,” in Thirteenth annual
ACM symposium on parallel algorithms and architectures (SPAA 2001),
July 2001, pp. 322–323.

[13] ——, Automatic Parallelization of Loop Programs for Distributed
Memory Architectures. University of Passau, 2004, habilitation thesis.
[Online]. Available: http://www.uni-passau.de/ � griebl/habilitation.html

[14] M. Griebl, P. Feautrier, and A. Größlinger, “Forward communication
only placements and their use for parallel program construction,” in
Languages and Compilers for Parallel Computing, 15th International
Workshop, LCPC’02, ser. Lecture Notes in Computer Science 2481.
Springer-Verlag, 2002, to Appear.

[15] R. M. Karp, R. E. Miller, and S. Winograd, “The organization of
computations for uniform recurrence equations,” J. ACM, vol. 14, no. 3,
pp. 563–590, July 1967.

[16] W. Kelly and W. Pugh, “A framework for unifying reordering transfor-
mations,” Dept. of Computer Science, Univ. of Maryland, Tech. Rep.
CS-TR-3193, Apr. 1993.

[17] L. Lamport, “The parallel execution of DO loops,” Comm. ACM, vol. 17,
no. 2, pp. 83–93, Feb. 1974.

[18] C. Lengauer, “Loop parallelization in the polytope model,” in CON-
CUR’93, ser. Lecture Notes in Computer Science 715, E. Best, Ed.
Springer-Verlag, 1993, pp. 398–416.

[19] A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing
synchronization with affine transforms,” in Proceedings of the Twenty-
fourth Annual ACM Symposium on the Principles of Programming
Languages, Paris, France, 1997. [Online]. Available: citeseer.csail.mit.
edu/lim98maximizing.html

[20] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy mpi using commodity hardware with a high
performance network,” in ICS ’98: Proceedings of the 12th international
conference on Supercomputing. New York, NY, USA: ACM Press,
1998, pp. 243–250.

[21] F. Quilleré, S. Rajopadhye, and D. Wilde, “Generation of efficient nested
loops from polyhedra,” International Journal of Parallel Programming,
vol. 28, no. 5, pp. 469–498, Oct. 2000.

[22] J. Xue, “Communication-minimal tiling of uniform dependence loops,”
J. Parallel and Distributed Computing, vol. 42, no. 1, pp. 42–59, Apr.
1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

