
A Configurable Framework for Stream Programming
Exploration in Baseband Applications

Jerker Bengtsson and Bertil Svensson

Centre for Research on Embedded Systems
Halmstad University

PO Box 823, SE-301 18 Halmstad, Sweden
{Jerker.Bengtsson, Bertil.Svensson}@ide.hh.se

Abstract

This paper presents a configurable framework to be
used for rapid prototyping of stream based languages.
The framework is based on a set of design patterns
defining the elementary structure of a domain specific
language for high-performance signal processing. A
stream language prototype for baseband processing has
been implemented using the framework. We introduce
language constructs to efficiently handle dynamic re-
configuration of distributed processing parameters. It is
also demonstrated how new language specific primitive
data types and operators can be used to efficiently and
machine independently express computations on bit-
fields and data-parallel vectors. These types and opera-
tors yield code that is readable, compact and amenable
to a stricter type checking than is common practice.
They make it possible for a programmer to explicitly
express parallelism to be exploited by a compiler. In
short, they provide a programming style that is less er-
ror prone and has the potential to lead to more efficient
implementations.

1. Introduction

Advanced embedded high-performance applications
put very high requirements on computer systems de-
sign. Some examples are modern radar systems and
baseband processing in radio base stations (RBS). Al-
though the specific requirements are somewhat differ-
ent, the computational characteristics are quite similar.
Traditionally this kind of applications have required
development of ASICs and special purpose hardware
to cope with the requirements. Parallel architectures
for high-performance applications has been a topic of

research during many years. In recent years, results
of this research and the advances in silicon process
technology have opened up for a commodity market of
highly parallel and reconfigurable architectures span-
ning from tens to several hundreds of processors on a
single die [1, 2, 3].

Compiler technology and language development, on
the other hand, have not kept pace with the advances in
processor architecture. New approaches are required in
order to exploit the vast amount of exposed parallelism
and communication structures. On the one hand, lan-
guages must offer constructs and operations that al-
low a programmer to express parallelism and compu-
tations that are characteristic for a certain application
domain. On the other hand, to enable efficient com-
pilation, languages must be structured for a machine
abstraction that correlates well with the target archi-
tectures. These arguments speak in favor of a domain
specific approach rather than a general purpose pro-
gramming approach.

The goal of our research is to investigate and develop
a stringent programming and compilation framework
for domain specific high-performance applications, tar-
geting parallel and reconfigurable processors. In or-
der to investigate what primitive language constructs,
data types and operators are needed in an efficient pro-
gramming language, our approach is to perform imple-
mentation experiments using realistic applications and
experimental tools which can be used to quickly im-
plement executable language prototypes. The appli-
cation used for implementation studies in this work is
baseband processing performed in 3G WCDMA radio
base stations. An experimental framework has been
implemented in Java to be able to perform quick pro-
totype development and emulation of domain specific
programming languages.

1-4244-0054-6/06/$20.00 ©2006 IEEE

This paper is organized as follows. A background
and motivation for the work is given in Section 2.
The configurable framework that has been developed
for implementation experiments is presented in Sec-
tion 3. In Section 4, the language StreamBits which
has been implemented for baseband processing is pre-
sented. Section 5 shows experiments that were con-
ducted to demonstrate the applicability of the lan-
guage. Finally, the paper is summarized with conclu-
sions and future work in Section 6.

2. Background

The baseband provides the modem functionality in
a wireless communication system and constitutes the
core in the 3G WCDMA technology. A radio base sta-
tion provides a set of full duplex physical data and con-
trol channels, which are used to map higher layer data
packets to physical radio frames. [4]. The baseband
resources of an RBS are managed by a higher layer
Radio Network Controller (RNC), which is responsible
for traffic scheduling on the physical user channels pro-
vided by the baseband. The computations performed
in the RBS mainly constitute data flows of bit-intensive
protocol and signal processing, where the processing is
controlled by service parameters given by the RNC. A
baseband processing board is a complex unit, for which
many design parameters have to be considered. Besides
meeting the hard requirements in performance, it must
provide scalability and be sustainable for evolutions in
standards. At the same time, customers want low-cost
RBS product solutions [5]. The life cycle of an RBS
is measured in several decades, not years. To decrease
initial product development costs it is an advantage if
COTS components can be used to as large an extent
as possible. Even if in-house ASIC solutions are hard
to compete with in terms of performance and energy
efficiency, they require large volumes in order to be a
cost efficient solution. Also, considering the life cycle of
an RBS, it is desirable not to encapsulate more func-
tionality than necessary into ASICs at early product
generations. New standard network functionalities are
constantly released and it must be possible to incorpo-
rate these in existing platforms with minimal changes
in hardware.

To meet these kinds of requirements in system de-
sign, the trend is that more of the baseband function-
alities are implemented using programmable solutions.
One approach to support hardware flexibility is to ab-
stract the baseband implementation through definition
of an application programming interface (API). Thus,
the physical implementation of the baseband process-
ing components can be disregarded by the program-

mer, and the functionality of the components can be
implemented in either software or hardware.

2.1 Parallel and reconfigurable processors

Of specific interest for the addressed application do-
main are the array structured parallel and reconfig-
urable processors. Most of these architectures have
been developed for the purpose of compute and data
intensive applications such as baseband processing. In
this paper the term processor is used for the entire
parallel processor on a chip, whereas we refer to the
constituent processing elements as PEs. This specific
category of processors offers parallelism on different
granularity levels, which provides a highly formable
program mapping space. The PEs of the array are
in general tightly coupled, using low-latency communi-
cation networks controlled by the instruction set. The
exposed details of the low-latency interconnect struc-
tures, combined with the high degree of parallelism,
makes it possible to enhance performance by arrang-
ing parallel computations as streams.

Parallel and reconfigurable architectures can be
grouped into three categories after granularity and pro-
cessing principle. The more coarse-grained are usually
designed after the MIMD principle [6, 2]. The sec-
ond category can be characterized as SIMD/vector ma-
chines, constituting clusters of vector or SIMD units,
orchestrated by one or several single instruction stream
controllers [7, 8]. Finally the third category are what
can be called semi-static configurable arrays [3]. These
are more fine-grained architectures; they resemble FP-
GAs, but the PEs are of word-level ALU type instead
of bit-level type. What is common for these architec-
tural categories is that they expose a lower than usual
level of the hardware for configuration by the compiler.

A general principle for these architectures is that
they have no hardware-implemented cache logic and
that most are designed with distributed private mem-
ory. Thus, complex cache and coherence mechanisms
can be removed in favor of more computation-oriented
logic. Instead, the data access arrangement needs to
be expressed and configured by the programmer and
the compiler.

2.2 Stream programming and compilation

The flexibility and parallelism offered by parallel
and reconfigurable architectures have increased the
complexity for both the programmers and the com-
piler tools. Most current architectures are accompa-
nied with a specific approach for programming and
compiling, and many of these approaches are based

on the language C. This is done through either some
machine specific extensions to the C syntax [8, 9] or
as a combination with another machine specific lan-
guage [2, 10]. This is not an optimal approach – nei-
ther from the perspective of application programming,
nor for compilation efficiency. First of all, the C lan-
guage and compilers have originally been developed
and optimized for general purpose programming, to
be compiled for a von Neumann based machine ab-
straction with a single instruction stream and global-
memory abstraction. Thus, there is no support in the
language to explicitly express application parallelism.
Data-parallel operations usually have to be extracted
from serial loop iterations [11]. The C language also
imposes very liberal programming of memory usage,
allowing global pointers, recursive function calls and
dynamic memory allocation. Since the targeted paral-
lel architectures have distributed memory and no au-
tomatic caching and coherence mechanisms, it is very
hard – or perhaps even impossible – to produce per-
formance efficient code based on this kind of program-
ming.

One purpose with the baseband API is to be able
to choose hardware components from several suppliers.
Thus, the program code must be portable. Without
a general programming language, which can be effi-
ciently compiled to other architectures, a large amount
of reimplementations would be required. For example,
when a processor is programmed using an architecture
specific combination of C (for function implementa-
tion) and a subset of VHDL (for the interconnect struc-
tures), porting programs to another architecture would
most likely require changing programming paradigm as
well as putting large efforts in code rewriting.

From the application point of view, one of the more
interesting approaches taken is the stream program-
ming paradigm. A stream program has the structure
of a dataflow graph, constituting synchronous flows of
data streaming through a pipelined set of functions
[12, 9]. This is a natural way of expressing signal pro-
cessing applications, which usually constitute pipelined
execution of compute intensive filter kernels. Stream
programming allows a programmer to explicitly express
function parallelism and data locality in the program.
The function dependencies in a stream program are
limited to input and output streams between the func-
tions in the flow graph; global data is not allowed to be
expressed in a stream program. This deterministic flow
description exposes information of function parallelism
and data locality to a compiler.

One of the more interesting stream programming
languages is StreamIt [12]. It is developed to be a
portable programming language for array structured

processors and, unlike other stream languages, both
functions and program flow graphs are expressed using
one language. The syntax is Java-like and it does not
allow such things as global data allocation and function
calls, as most C based languages do. The flow graphs
are described using pipeline constructs, and functions
are implemented as filters. An application can be ex-
pressed as an abstract component graph, using pipeline
constructs, and the concrete API components can be
defined by filter constructs. The filter construct pro-
vides a natural interface for autonomous stream func-
tions in an API, which could as well be linked to a
hardware defined component in the compiler process.

3. Experimental framework for stream
programming

In this section we present a programming framework
that has been developed for experiments with stream
programming. Specifically, we are interested in exper-
imenting with new language types and structures cur-
rently not supported in StreamIt. There are two impor-
tant aspects that need to be addressed. First, the lan-
guage must provide program structures that are natu-
ral to use for definition of abstract components. Sec-
ond, it must offer primitive types and operators that
allow a programmer to efficiently express application
characteristic computations. With the experimental
framework, it is possible to quickly set up programming
experiments with StreamIt language extensions with-
out the need for laboursome compiler modifications.

Our implementation studies of the WCDMA base-
band standard show that the baseband functions re-
quire a high degree of low-level data manipulation on
bit-fields, and also that many computations can be ex-
ecuted in data-parallel fashion [13]. When traditional
high-level primitives, such as integers and bytes are
used, low-level bit operations cannot be naturally ex-
pressed. Implementation of bit operations normally
have to take machine-specific details, such as regis-
ter word-length, into consideration. Furthermore, this
kind of low-level programming is quite error prone and
it would be desirable to perform compile-time type
checks on such primitive operations.

With our framework it is possible to investigate how
bit-level and data-parallel operations can be expressed
more efficiently without considering machine-specific
details when implementing algorithms. It is also pos-
sible to define type check rules. The framework is im-
plemented in Java and it is based on a set of design
patterns, which define the elementary structure of a
stream language. This elementary structure is, to a
large extent based, on the StreamIt language structure,

but it is not identical. New data primitives and stream
constructs can rapidly be implemented by making ex-
tensions to the framework. In the next subsection we
discuss the predefined basic language structures of the
framework, highlighting new features not offered by the
StreamIt language. Then we discuss the implementa-
tion of these structures in the framework. Finally, we
discuss the implementation of primitive types and op-
erators.

3.1 Basic language constructs

A stream program is constructed using Filter and
Pipeline components, which form a network of func-
tions and data streams, see Figure 1. The Filter is
the basic construct in which instructions are grouped
to perform a computation. The Pipeline construct is
used to organize stream components into a composite
network. A component is added to a pipeline by the
add(component) command.

The Filter and Pipeline components are con-
nected with I/O tapes which constitute the data
streams flowing through the network. A tape is imple-
mented by a FIFO buffer of homogeneous data types.
In StreamIt, Filter and Pipeline components can
only be attached to a single stream. In our framework,
we support implementation of dual tapes – one for data
streams and one for streams of configuration parame-
ters. The data tape constitutes the stream on which
a filter performs its computation. The configuration
tape is used to stream reconfiguration parameters to
filters throughout the distributed network.

A Filter has three execution modes – init, work
and configure. Transitions between these modes
are mapped automatically at compilation time and
the programmer only needs to define the functional-
ity within each mode. The init mode is executed
once, before the first firing of the filter, to initialize
variables and parameters. The work mode implements
the computations performed when a filter is working
in steady state. The configure mode is a new lan-
guage feature not supported in StreamIt. It is exe-
cuted once before each execution of the work mode.
The configure mode has been implemented to sup-
port more flexible programming of parameter configu-
ration of the baseband algorithms (recall the configura-
tion parameters signalled from the RNC), which must
be performed periodically during program execution.
With a configure mode and a separate configuration
tape, configuration programming can be defined and
modified without any changes in the work mode.

As in StreamIt, the I/O streams are accessed by
peek(), pop() and push() operators. The pop() op-

Figure 1. The framework structure

erator reads and removes an item from the stream,
while peek() reads the item but does not remove it
from the stream. In our framework, popD(), peekD()
and pushD() are used for data streams and popC(),
peekC() and pushC() for configuration streams.

The framework is designed for stream programs with
static stream rates only. That is, input and output
stream rates must be defined constant by the program-
mer when implementing a filter. A reason for this
restriction is to make it possible to, at compile time,
check and assert stream rate compatibility between fil-
ters in the network.

3.2 Implementation of the basic language
constructs

In this subsection we discuss how the basic language
constructs are implemented in the Java-based frame-
work. This includes Tape, Filter and Pipeline com-
ponents, and it is shown how they are put together to
form a stream network. The framework is structured
using a set of design patterns in combination with type
generics in Java 5.0 SDK [14].

The StreamComponent is a type-generic interface
that defines the contractual functionality that a compo-
nent must implement to be executable in a stream pro-
gram. A StreamComponent must be attached to both
data and configuration I/O tapes, where each tape can
be a stream of different data type. This is handled el-
egantly by usage of generics in Java. The interface is
parameterized using four generic types, for data and
configuration streams respectively. The generic data
types are instantiated by the class that implements the
interface.

There are currently two basic components in the

framework which implement the StreamComponent in-
terface – Filter and Pipeline. The Filter is a
generic component that defines the basic structure of
a filter construct in a stream language. The abstract
parts of the Filter component constitute methods
for work, init and configure, which must be im-
plemented by a programmer to define the execution
in these modes. The configure and work modes are
called automatically in a deterministic order.

The Pipeline defines how StreamComponents are
ordered to form a stream subnetwork. Since a
Pipeline is a StreamComponent itself, it is pos-
sible to construct hierarchical pipelines. When a
StreamComponent is attached to a pipeline with the
add(component) operation, the stream rate compati-
bility with the preceding and the following components
is checked. Both the Pipeline and the Filter tem-
plates are defined with type-generics for input and out-
put streams. These types are defined by the program-
mer when instantiating a Filter or Pipeline using
the Filter and Pipeline component templates.

Tapes are defined by a generic Tape component. The
buffer data type is defined when a programmer makes
an add(component) operation. The buffer size is de-
termined at compilation time using the I/O stream
rate directives that must be specified by the stream
programmer when instantiating a component using
Pipeline and Filter component templates.

The StreamProgram component is the top-level
pipeline in a stream program. The programmer
adds components to the program by using the
add(component) directive in the method streamPro-
gram, which is the main function called automatically
at program execution. Besides adding components to
the main pipeline, the programmer must also define
the I/O stream types for both data and configuration
streams.

3.3 Stream data types and operators

We now discuss the implementation of components
for type definition and type operators. One of the main
goals with the framework is to be able to elaborate
with primitive stream data types for baseband appli-
cations. The framework allows strong type checking
definitions on operations with primitive types. Since
the framework is implemented using Java, some of the
type checking must be done during run-time. However,
in a real compiler implementation these type checks
would be performed at compile time.

The StreamType is a generic interface for implemen-
tation of stream data primitives. This interface defines
a common subset of abstract arithmetic, logic, rela-

tional and typecast operators. The StreamType inter-
face must be implemented when defining a new stream
data type, which in turn requires the common opera-
tions to be defined by the implementing type. Oper-
ators defined by StreamType (that are not valueless)
take a generic type as input and return a value of
generic type.

A major strength is that type checking rules can
be defined for each data type that implements the
StreamType pattern. All primitive stream types are
implemented as abstract data types in Java.

4. Implementation of StreamBits

The framework has been used to implement Stream-
Bits, which is a prototype language for baseband API
development. The baseband input consists of bit-serial
data streams that must be processed within hard real-
time intervals. Currently, we have focused on the prim-
itive type system and operators suitable for efficient
implementation of bit-field manipulations and data-
parallel operations. In this section we present these
new types and operators. To demonstrate the advan-
tages with our approach, we compare these types and
operators with C-based expressions.

When a traditional C-programming approach is
used, computations on bit-streams require a large
amount of assembly-like machine-dependent expres-
sions based on bit masks and shifts. This normally
results in source code that is very hard to read and un-
derstand. Also, this kind of operations requires careful
implementation by the programmer, since C-like lan-
guages lack type notions for bit field computations and
therefore can not provide type safety. Furthermore, it
results in machine dependent code, since the program-
mer must pack bits and calculate masks and shifts that
are bound to fixed-length machine registers.

StreamBits has been implemented with types for bit-
field and data-parallel operations. The definitions of
these types are presented in Table 1. The StreamBits
primitives are listed in the first column of the table and
the corresponding type expressions in C primitives in
the second.

Types for bit-fields. bitvecST is the type for dec-
laration of bit-fields of length n. Thus, it is possible to
define a set of n distinct bit-field types t(n). In com-
parison, since in C, there is no primitive type notion for
bit-fields, such data quantities must be expressed using
integer or byte types. Therefore, type-correct opera-
tions on integers are also type-correct for bit-fields of
arbitrary length. This type-mismatched bit mapping
is quite error prone and not desirable.

Data-parallel type. vecST is a type that allow

Table 1. StreamBits types compared with C
StreamBits type C type

bitvecST (n) int, byte
is a bit field type for each
value of n

vecST (e0w, e1w, e2w, e3w) int[4], byte[4]
is a type for parallel vectors scalar array of int
with elements en of width w or byte

Table 2. StreamBits compared with C
bitvecST oper. Corresponding C expr.

bitslice(m : n) (t & wm:0)

bitsliceL(m : n) (t & wm:0) � (w − m)

bitsliceR(m : n) (t & wm:0) � n

bitslicePack(m : n) N/A

lmerge(k : l, m : n) if l <= (m − n) :

((t & wk:l) � C1) | ((s & wm:n) � n)

if l > (m − n) :

((t & wk:l) � C2) | ((s & wm:n) � n)

fine-grained data-parallel operations to be expressed
explicitly within a Filter, see row 2 in Table 1. The
vecST type is defined as a vector of four elements, each
of 32-bit width. Note that the definition of the vector
type is parameterized by the number of elements en

and the bit-field width w. Since there is no parallel
notation in C, vector data are usually expressed using
array constructs which are accessed scalar-wise.

Bit-field operations. A sub-field in bitvecST
types is accessed using bitslice operators. Bit-fields
of bitvecST type can also be merged using the lmerge
operator. In Table 2, we list these operators and, for
comparison, the corresponding C expressions. Bit-field
upper and lower boundaries are annotated with k, m
and l, n respectively. w is used for machine word-
length, and bit masks of machine register length are
annotated with wm:0, where m represents the upper
boundary of the bit mask.

The bitslice operator is currently defined for two
cases – unaligned and aligned bit-slicing. Unaligned
bit-slicing is performed with the bitslice("m:n")
operator, row 1 in the table. The operator bit-
slice("m:n") produces a bitvecST with the same
length as the operand, where bits m through n are
copied from the corresponding bit-field in the operand,
and the rest are set to 0.

Aligned bit-slicing is performed by the oper-
ators bitsliceL("m:n"), bitsliceR("m:n") and
bitslicePack("m:n") listed on rows 2 through 4.
The bitsliceL("m:n") operator produces a bit-field
copy, like bitslice("m:n"), but the copied bit-field
is aligned to the bitvecST(n) upper bound n. Simi-

larly, the bitsliceR("m:n") operator produces a bit-
field copy aligned to the lower bound. The correspond-
ing expressions in C, on rows 2 and 3, require logical
AND and a SHIFT operations. In comparison, the
bitsliceL and bitsliceR operators allow this opera-
tion to be more compactly expressed than the required
C expression. Also, in the C expression for left-aligned
masking on row 2, it is assumed that the upper bound is
equal to the word length. But, since the bitvecST(n)
type is defined for bit-fields of length n, this is gen-
erally not the case. The alignment of bitsliceL and
bitsliceR values in StreamBits can be handled auto-
matically at compile time.

The bitslicePack produces a left-aligned bit-field
copy, just like the bitsliceL operator, but the result
is packed into a bitvecST(s) where the field length s
is equal to the length of the copied bit-field (m − n).

The lmerge operator is used to merge two bitvecST
bit-fields. The result is a bitvecST(s) where the
length s is the sum of the two merged bit-field lengths
(k− l +m−n). The first operand is aligned to the left
of the second operand. A right-aligned merge can be
achieved by simply switching the order of the operands.
The corresponding C expression requires at most 5 op-
erations. The first operand should be aligned to the
left of the second, which requires either a left or a right
shift, depending on if the masked bit-fields are over-
lapping or not (l <= (m − n) or l > (m − n)). This
alignment is a shift constant specified by the program-
mer (C1 and C2). Thus, the if cases are used only to
mark two separate alignment cases.

Data-parallel operations. Besides the basic
arithmetic and logical operations, the vecST type
also supports bit-field operations, such as lmerge,
vecslice, vecsliceL and vecsliceR, see Table 3.
The lmerge operation is defined precisely as lmerge
for bitvecST types. The merge is performed in paral-
lel for each of the vector elements and the result is of
type vecST. In StreamBits, the maximum length of an
element merge is w.

The vecslice(m:n), vecsliceL(m:n) and vec-
sliceR(m:n) operators are vector-parallel versions of
bitslice operators. Since there is no corresponding
parallel notation in C, parallelism must be transformed
into sequential expressions, typically using loop con-
structs and scalar data arrays. This is illustrated in
the right part of Table 3. Few will argue that it is
a natural way of expressing application parallelism –
to use sequential scalar constructs, which are then to
be parallelized by a compiler that is only aware of the
sequential constructs given by the programmer.

Some computations require scalar processing of
vecST elements. Scalar elements in vecST are accessed

Table 3. Operator comparison vecST
StreamBits oper. Corresponding C expression

vecslice(m : n) for i = 0 to 4{t[ei] & wm:n}
vecsliceL(m : n) for i = 0 to 4{t[ei] & wm:n � (w − m)}
vecsliceR(m : n) for i = 0 to 4{t[ei] & wm:n � n}
lmerge(k : l, m : n) for i = 0 to 4{

if l <= (m − n) :

(t[ei] & wk:l) � C1 | (s[ei] & wm:0) � n

if l > (m − n) :

(t[ei] & wk:l) � C2 | (s[ei] & wm:0) � n

by getElement(ei) and setElement(ei, val) opera-
tors, where ei is the element index of the vector and
val is the value.

5. Experiments with 3G UMTS base-
band functions

In order to demonstrate and evaluate the applica-
bility of the StreamBits language, we have conducted
experiments with baseband functions. In this paper
two different implementation examples of one base-
band function are presented – cyclic redundancy check
(CRC) processing for a voice call service and for high
bit-rate data services [13].

CRC processing for voice services. Voice calls
are coded using an adaptive multi rate codec (AMR).
The baseband data input constitutes three AMR en-
coded bit-streams mapped onto separate transport
channels, A, B and C. Each stream constitutes coded
speech data of different importance to the quality of
a voice channel; the A bits are the most important
and the C bits the least. The channels are processed
with different baseband parameters; only the A chan-
nel bits are transmitted with a CRC computed check-
sum. The CRC implementation, shown in figure 2, is
a table-driven algorithm which encodes a single trans-
port channel (Note that this is a selected part and not
the complete CRC baseband function). The variables,
except for the loop counter, are all of bitvecST type.
In each loop iteration, this algorithm encodes eight-
bit long fields of the input stream. The input bits are
packed into a stream of bitvecST data type. Each
bitvecST is 32 bits long, thus four iterations are re-
quired to process each bitvecST that is read from the
input stream. Defined by the code within the if clause,
every fourth iteration a new bitvecST value is read into
a temporary input register (r tmp), while the previous
one is pushed to the output stream.

On line 7, the next 8-bit field to be encoded is read
from the encoder register r using the bitsliceR oper-
ator. On line 8, the MSB from the temporary input
register r tmp is shifted into the LSB of the encoder

for(intST cnt;cnt.lt(len);cnt.Assign(cnt.incr())){
1. if(cnt.mod(new intST(4)).eq(new intST(0))){
2. out.Assign(temp);
3. temp.Assign(peekD());
4. r_tmp.Assign(temp);
5. pushD(popD());
6. }
7. t.Assign(r.bitsliceR("31:24"));
8. r.Assign(r.lmerge("23:0", r_tmp.bitsliceR("31:24")));
9. r.Assign(r.XOR(table[crc_poly.getVal()][t.getVal()]));
10. r_tmp = r_tmp.lshift(8);
}

Figure 2. CRC implemented in StreamBits

register r using bitslice and lmerge.
Finally, the lookup value is read from the table to

be XOR:ed (the division), with the encoder register,
and the next 8-bit input in the temporary register is
aligned to the MSB position for the next iteration.

CRC processing for high bit-rate data. Data
transmissions can be mapped using multiple transport
blocks of equal size, mapped on multiple transport
channels. Since there are no data dependencies be-
tween the transport blocks, multiple blocks can be pro-
cessed in parallel using SIMD control.

The StreamBits code in Figure 3 represents a SIMD
parallel implementation of the same encoding algo-
rithm previously demonstrated for the AMR service.
The cnt and v0-v3 variables are scalar variables of
intST type, and the other are of vecST type. Like in
the AMR example, the parallel encoder encodes 8 bits
of the input stream per iteration.

Each data item in the I/O streams constitutes a
32-bit field of four simultaneous transport block in-
put streams; one transport block stream per vector ele-
ment. The parallel vecslice operator on line 7 copies
the next 8 bits of each vector element in the encoder
register r, and stores them aligned with the lsb posi-
tions in the t vector. Each element in t constitutes the
next lookup index for each bit-stream being processed.
On line 8, new input bits are shifted into the encoding
register by copying the MSB of the input vector regis-
ter r tmp, which are merged with the remaining bits in
the encoder register. Like for the bitslice operators,
no machine dependent masking and shifting needs to
be expressed in the code.

The table look-ups performed on lines 9 through 12
have to be expressed with scalar operations; one look-
up for each element. This is because the input bit-fields
in register t constitute arbitrary values from the four
transport blocks and therefore it is not possible to vec-
torize the look-up operation. However, this does not
mean that this portion of the code cannot be executed
in parallel. Finally, the scalar values with the look-
up values are vectorized and XOR:ed with the encoder

for(intST cnt;cnt.lt(len);cnt.Assign(cnt.incr())){
1: if(cnt.mod(new intST(4)).eq(new intST(0))){
2: out.Assign(temp);
3: temp.Assign(peekD());
4: r_tmp.Assign(temp);
5: pushD(popD());
6: }
7: t.Assign(r.vecslice("31:24"));
8: r.Assign(r.lmerge("23:0", r_tmp, "31:24"));
9: v0.Assign(table[poly.val()][t.getElement(0).val()]);
10: v1.Assign(table[poly.val()][t.getElement(1).val()]);
11: v2.Assign(table[poly.val()][t.getElement(2).val()]);
12: v3.Assign(table[poly.val()][t.getElement(3).val()]);
13: r.Assign(r.XOR(new vecST(v0, v1, v2, v3)));
14: r_tmp.Assign(r_tmp.lshift(8));
}

Figure 3. CRC processing for DATA

register on line 13, and the next input bits to be shifted
into the encoder register are shifted to the msb posi-
tions in the temporary input register, r tmp.

6 Conclusions and future work

We have described a configurable framework to be
used for experiments with stream programming de-
velopment targeting embedded high-performance ap-
plications, such as baseband processing in radio base
stations. A domain specific language prototype for
baseband processing, called StreamBits, was imple-
mented to demonstrate the use of the framework and to
perform implementation experiments. We introduced
stream constructs to be able to efficiently program dy-
namic reconfiguration of distributed processing param-
eters. It was shown that the language has the poten-
tial to lead to more compact and efficient codes for
bit-field and data-parallel computations, compared to
when typical von Neumann based languages, such as
C are used. The primitive types in the language im-
pose a programmer to explicitly express functions with
inherent, fine-grained data parallelism. Moreover, it
was demonstrated how the primitive data-parallel vec-
tor and bit-vector data types and operations can be
used without exposing machine specific details such as
register word lengths. Another advantage with the in-
troduced primitive data types is the opportunity to
perform strong type checking on low-level bit opera-
tions.

Future work will be focused on the definition of a
tailored stream processing language for baseband API
development. This will be based on extended pro-
totype experiments using the configurable framework.
The development will include the implementation of a
compiler framework for a parallel machine abstraction,
which can be applied for efficient mapping on paral-
lel and reconfigurable, array structured processors. To

support efficiency, the language should offer parallel
expressions. To support portability, the syntax should
not allow machine-specific details in the code.

Acknowledgment

The authors would like to thank Dr. Anders Wass
at Ericsson AB and Dr. Veronica Gaspes at Halmstad
University for valuable advice and suggestions. This
work has been funded by research grants from Ericsson
AB and the Knowledge Foundation.

References

[1] Freescale Semiconductor. MRC6011: Reconfigurable
Compute Fabric (RCF) Device. www.freescale.com,
Oct. 2004.

[2] G. Panesar A. Duller and D. Towner. Parallel Process-
ing - the picoChip way! In Proc. of Communicating
Process Architectures, pages 125–138, 2003.

[3] PACT XPP Technologies. XPP-IIb Core Overview.
www.pactcorp.com, Sept. 2005.

[4] H. Holma and A. Toskala. WCDMA for UMTS: Radio
Access for Third Generation Mobile Communications.
Addison-Wesley, third edition, 2004.

[5] J. Lerzer Z. Zhang, F. Heiser and H. Leuschner. Ad-
vanced baseband technology in third-generation radio
base stations. Ericsson Review, (01):32–41, 2003.

[6] M. B. Taylor et al. Evaluation of the Raw Micropro-
cessor: An Exposed-Wire-Delay Architecture for ILP
and Streams. In Proc. of Int. Symposium on Computer
Architecture, pages 2–13, 2004.

[7] J. H. Ahn et al. Evaluating the Imagine Stream Ar-
chitecture. In Proc. of Int. Symposium on Computer
Architecture, pages 14–25, 2004.

[8] A. E. Eichenberger et al. Optimizing Compiler for a
CELL Processor. In Proc. of Int. Conf. on Parallel
Architectures and Compilation Techniques, pages 161–
172, 2005.

[9] A. Das et al. Imagine Programming System User’s
Guide. www.cva.stanford.edu/imagine, April 2004.

[10] PACT XPP Technologies. Programming XPP-IIb Sys-
tems. www.pactcorp.com, Sept. 2005.

[11] S. V. Rajopadhye. Dependence Analysis and Par-
allelizing Transformations. In The Compiler Design
Handbook, pages 329–372. CRC Press, 2002.

[12] M. I. Gordon et al. A Stream Compiler for
Communication-Exposed Architectures. In Proc. of Int.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 291–303, 2002.

[13] J. Bengtsson. Baseband Processing in 3G UMTS Ra-
dio Base Stations. Technical Report IDE0629, Halm-
stad University, 2006.

[14] E. Gamma. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley professional
computing series. Addison-Wesley, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

