
Evaluating Parallel Simulated Evolution Strategies for VLSI Cell
Placement

Sadiq M. Sait, Mustafa Imran Ali, and Ali Mustafa Zaidi
Computer Engineering Department

King Fahd University of Petroleum & Minerals
Dhahran-31261, Saudi Arabia

{sadiq,mustafa,alizaidi}@ccse.kfupm.edu.sa

Abstract

Simulated Evolution (SimE) is an evolutionary
metaheuristic that has produced results comparable to
well established stochastic heuristics such as SA, TS
and GA, with shorter runtimes. However, for problems
with a very large set of elements to optimize, such as in
VLSI placement and routing, runtimes can still be very
large and parallelization is an attractive option. Com-
pared to other metaheuristics, parallelization of SimE
has not been extensively explored. This paper presents
a comprehensive set of parallelization approaches for
SimE when applied to multiobjective VLSI cell place-
ment problem. Each of these approaches are evaluated
with respect to SimE characteristics and the constraints
imposed by the problem instance. Conclusions drawn
can be extended to parallelization of other SimE based
optimization problems.

1. Introduction

Simulated evolution (SimE), proposed by Kling and
Banerjee [5] in 1987, belongs to the class of general
purpose stochastic metaheuristics. It has been applied
to a variety of optimization problems in VLSI design
automation, computer network design, and other do-
mains [10]. The SimE algorithm is based on the princi-
ples of evolution. However, unlike Genetic Algorithms
(GA), only a single solution is evolved instead of a pop-
ulation of solutions. Also, unlike Simulated Annealing
(SA) and Tabu Search (TS), each move in SimE is a
compound move and the element(s) perturbed are se-
lected probabilistically based on their fitness values and
not entirely randomly.

Parallelization of metaheuristics aims to solve com-
plex problems and traverse larger search spaces in a

reasonable amount of time. The goals of parallelization
can be to achieve either lower runtimes for the same
quality solutions as the sequential algorithm or higher
quality solutions in a limited amount of time [2, 3, 4].
From a computational point of view, metaheuristics are
algorithms from which functional and data parallelism
can be extracted. However, metaheuristics usually op-
erate upon irregular data structures, such as graphs, or
upon data with strong dependencies among different
operations and as such remain difficult to parallelize
using only data and functional parallelism [2]. Fur-
thermore, when parallelizing metaheuristics, not only
speed-ups are important but also the maximum achiev-
able qualities. Therefore, to achieve any benefit from
parallelization requires not only a proper partitioning
of the problem for a uniform distribution of computa-
tionally intensive tasks, but more importantly, a thor-
ough and intelligent traversal of a complex search space
for achieving good quality solutions. The tractability
of the former issue is largely dependent on paralleliz-
ability of both the cost computation and perturbation
functions while the latter issue requires that the inter-
action of parallelization strategy with the intelligence
of the heuristic must be considered, as it directly affects
the final solution quality obtainable, and indirectly the
runtime due to its effect on algorithm’s convergence.

In this paper we explore the parallelization of SimE
when applied to a multiobjective VLSI cell placement
problem with the goal of achieving scalable speed-ups
for the best solution qualities obtained with the ser-
ial algorithm. To this end, we present various paral-
lelization approaches and a comparison amongst them
with respect to SimE metaheuristic characteristics and
problem instance interaction. The paper is organized
as follows: Section 2 explains our combinatorial opti-
mization problem. Section 3 briefly describes the SimE
algorithm. Section 4 presents an analysis of our sequen-

1-4244-0054-6/06/$20.00 ©2006 IEEE

tial implementation’s runtime. In Section 5 we relate to
previous work while Section 6 describes parallel strate-
gies and experimental results. General observations are
given in Section 7, and we conclude in Section 8.

2. Optimization Problem and Cost Func-
tions

We are addressing the problem of VLSI standard
cell placement with the objectives of minimizing wire-
length, power consumption, and timing performance
(delay), while considering the layout width as a con-
straint.

Wirelength Cost: Interconnect wirelength of each
net in the circuit is estimated using Steiner tree and
then total wirelength is computed by adding the indi-
vidual estimates:

Costwire =
∑

i∈M

li

where li is the wirelength estimation for net i and M
denotes total number of nets in circuit.

Power Cost: Power consumption pi of a net i
in a circuit can be given as:

pi � 1
2
· Ci · V 2

DD · f · Si · β

where Ci is total capacitance of net i, VDD is the supply
voltage, f is the clock frequency, Si is the switching
probability of net i, and β is a technology dependent
constant. By assuming a fixed supply voltage and clock
frequency, and since Ci varies with wirelength of net i,
we have:

pi � li · Si

The cost function for estimate of total power consump-
tion in the circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si)

Delay Cost: This cost is determined by the delay
along the longest path in a circuit. The delay Tπ of
a path π consisting of nets {v1, v2, ..., vk}, is expressed
as:

Tπ =
k−1∑

i=1

(CDi + IDi)

where CDi is the switching delay of the cell driving
net vi and IDi is the interconnect delay of net vi. The
placement phase affects IDi because CDi is technology
dependent parameter and is independent of placement.

The delay cost function can be written as:

Costdelay = max{Tπ}

Width Cost: Width cost is given by the maximum of
all the row widths in the layout. We have constrained
layout width not to exceed a certain positive ratio α
to the average row width wavg, where wavg is the min-
imum possible layout width obtained by dividing the
total width of all the cells in the layout by the number
of rows in the layout. Formally, we can express width
constraint as below:

Width − wavg ≤ α × wavg

Overall Fuzzy Cost Function: Since we are opti-
mizing three objectives simultaneously, we need to have
a cost function that represents the effect of all three ob-
jectives in the form of a single quantity. We propose the
use of fuzzy logic to integrate these multiple, possibly
conflicting objectives into a scalar cost function. The
justification for using our fuzzy aggregating function
and its details can be found in [9]. The resulting qual-
ity measure for a solution s is denoted as µ(s) and is a
value between 0 and 1, with 1 representing an optimal
solution.

3. Simulated Evolution Algorithm

The structure of the SimE algorithm is shown in
Figure 1. SimE assumes that there exists a solution Φ
of a set M of n (movable) elements or modules. The al-
gorithm starts from an initial assignment Φinitial, and
then, following an evolution-based approach, it seeks
to reach better assignments from one generation to the
next by perturbing some ill-suited components and re-
taining the near-optimal ones. A cost function Cost
associates with each assignment of movable element mi

a cost Ci. The cost Ci is used to compute the good-
ness (fitness) gi of an element mi, for each mi ∈ M .
The goodness measure must be strongly related to the
target objective of the given problem. Hence in SimE
approach, the quality of a solution can be measured as
the quality of all its constituent elements.

The algorithm has one main loop consisting of three
basic steps, Evaluation, Selection, and Allocation. The
three steps are executed in sequence until the solution
average goodness reaches a maximum value, or no no-
ticeable improvement to the solution fitness is observed
after a number of iterations.

The Evaluation step consists of evaluating the good-
ness gi of each element mi of the solution Φ. The

goodness measure must be a single number expressible
in the range [0, 1]. It is defined as:

gi =
Oi

Ci

where Oi is an estimate of the optimal cost of element
mi, and Ci is the actual cost of mi in its current loca-
tion. Since we are optimizing three objectives, we use
a multiobjective goodness measure [9].

The second step of the SimE algorithm is Selection.
Selection takes as input a bias value B, the solution Φ
together with the estimated goodness of each element.
It partitions Φ into two disjoint sets; a selection set S
and a partial solution Φp of the remaining elements of
the solution Φ. Each element in the solution is consid-
ered separately from all other elements. The decision
whether to assign an element mi to the set S is based
solely on its goodness gi. The selection operator has
a non-deterministic nature, i.e, an individual with a
high goodness (close to one) still has a non zero prob-
ability of being assigned to the selection set S. It is
this element of non-determinism that gives SimE the
capability of escaping local minima. We use a biasless
selection function developed in earlier work [9].

Allocation is the SimE operator that has the most
important impact on the quality of solution. Alloca-
tion takes as input the set S and the partial solution
Φp and generates a new complete solution Φ′ with the
elements of set S mutated according to an allocation
function Allocation [10]. The goal of Allocation is
to favor improvements over the previous generation,
without being too greedy. Different techniques can be
used here [5] and we use the ‘sorted individual best fit
method’ [9].

4. Analysis of Sequential Algorithm

To determine the contribution of each of the cost
functions and SimE operators to overall execution
time, the serial implementation was profiled using gprof
(GNU profiler) tool. Two separate versions of pro-
grams were analyzed for various test cases executed
for same number of iterations. Of the two versions, the
first optimized only wirelength and power while the
other focused on all three objectives. The results ob-
tained showed that for first and second versions respec-
tively 98.4% and 98.5% of time was spent in the alloca-
tion function, 0.6% and 0.5% of time was spent in wire-
length calculation (excluding wirelength re-calculation
calls made in allocation routine), 0.2% and 0.4% of time
was spent in goodness evaluation, and 0.2% of time was
spent in delay calculation in the second version. Thus,
it is obvious that for the given problem instance with

ALGORITHM Simulated Evolution(B, Φinitial)
NOTATION
B: Bias Value. Φ: Complete solution.
mi: Module i. gi: Goodness of mi.
ALLOCATE(mi, Φi): Allocates mi in partial solution Φi

Begin
INITIALIZATION;
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;

SELECTION:
ForEach mi ∈ Φ DO

begin
IF Random > Min(gi + B, 1)
THEN

begin
S = S ∪ mi; Remove mi from Φ

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCATE(mi, Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Figure 1. Simulated evolution algorithm.

the ‘sorted individual best-fit’ method, allocation rou-
tine heavily influences the runtime of the algorithm.
The impact of this is discussed in Section 6.

5. Related Work

The field of parallel metaheuristics has rapidly ex-
panded in the past ten to fifteen years and parallel
versions of metaheuristics have been increasingly pro-
posed. Several excellent surveys, taxonomies and syn-
theses have also been published [2, 3, 4], some of which
paint a global view of the field and generalize the var-
ious strategies used into broad classes. In this paper
we follow the approach taken in [2] and classify the
various attempted strategies into three comprehensive
types according to the source of parallelism. These
are [2]:

1. Type I (Low-Level Parallelization): The limited
functional or data parallelism of a move evalua-
tion is exploited or moves are evaluated in parallel.
This strategy, called low-level parallelism, aims to
simply speed-up the sequential algorithm without
changing the search space traversal path taken by
the algorithm.

2. Type II (Domain Decomposition): This approach
obtains parallelism by partitioning the set of deci-
sion variables. The partitioning reduces the size of
solution space, but it needs to be repeated to al-
low the exploration of the complete solution space.
The traversal is different than the sequential algo-
rithm.

3. Type III (Parallel Searches): Parallelism is ob-
tained from multiple concurrent explorations of
the solution space.

Unlike SA, GA, TS and many other metaheuristics,
parallelization of SimE has not been explored exten-
sively and no comparison among strategies has been
made. The only parallelization strategy reported [5]
was for a single objective (wirelength) VLSI cell place-
ment that can be classified under type II. In this paper
we use a more complex multiobjective cost function
and compare the parallel strategies along the complete
spectrum of types discussed here.

6. Parallel Strategies and Experiments

The parallel SimE strategies were implemented in C
along with MPICH ver.1.2.5 Messsage Passing Inter-
face library. A dedicated cluster was used comprising
of eight 2GHz Pentium-4 machines with 256MB RAM,
connected with fast ethernet, and running RedHat
Linux ver.7.2. The strategies were tested on ISCAS-
89 benchmark circuits. They are of various sizes in
terms of number of cells and paths, and thus offer a
variety of test cases. In all the results tables, runtimes
are in seconds and the solution qualities, denoted by
µ(s), is the fuzzy cost measure discussed in Section 2.

6.1. Type I Parallelization

As stated earlier, a type I parallelization aims to
speed up the sequential algorithm without modifying
its search behavior. For a type I parallel SimE strat-
egy, parallelization of goodness evaluations seems intu-
itive as it is done at the level of individual elements,
although the dependencies among elements has to be
taken into account to ensure correctness. However, the
allocation routine has a sequential dependence among
its operations and it cannot be partitioned without de-
viating from the sequential algorithm behavior. Hence,
our SimE type I parallelization focuses only on distri-
bution of cost calculations and goodness evaluation.

For our multi-objective cost computation, the calcu-
lation of wirelength of each net must precede the calcu-
lation of power and delay. The wirelength calculation
of each net is independent of other nets and thus can
be performed in parallel. The same applies to power
computations. The calculation of delay costs involves
operating on given critical paths, finding the delay of
each and then finding maximum delay among all paths.
These can also be performed in parallel. This results
in a fairly clean partitioning as long as cost computa-
tions are concerned. However, the complications lie in
goodness evaluations for wirelength, power and delay.

ALGORITHM TypeI Parallel SimE Master Process
NOTATION
(* Φ is the complete solution. *)

Begin
INITIALIZATIONS;
Repeat

EVALUATION:
(* For each slave process. *)
ParFor

Slave Process(Φ)
(* Broadcast Current Placement. *)

EndParFor
ParFor

Receive Partial Goodness Values
EndParFor

SELECTION;
Sort the elements of S;
ALLOCATION;

Until (Stopping Criteria is Satisfied)
Return (Best Solution)

End. (*Mater Process*)

Figure 2. Outline of Master Process for Type I
Parallel SimE Algorithm.

The calculation of wirelength and power goodness
values of each cell requires that the wirelength of all
fan-in cells be known [9]. This complicates the parti-
tioning of cells among processors; if a processor needs
to calculate the wirelength of cells not in its parti-
tion, the potential gain of cost computation division
is reduced to the extent of duplicate calculations per-
formed. The situation is worse for delay goodness cal-
culations as all the cells on an assigned long path may
not lie in the same assigned partition, resulting in many
duplicate calculations across processors. In addition,
all processors need to know the computed delay of all
long paths in the circuit to calculate the delay good-
ness of cells in its partition, requiring additional costly
communication. Furthermore, during allocation at the
master node, additional cost calculations may be re-
quired when calculating the goodness gains for those
cells which are not the members of partition at the
master node.

Since delay goodness partitioning has complex com-
munication requirements, and secondly, profiling re-
sults indicate that most of the time is spent for wire-
length/power cost and goodness calculations, we imple-
mented a type I parallel algorithm for only wirelength
and power optimization to observe the results of parti-
tioning. Figures 2 and 3 show the outline of the type I
parallel SimE algorithm. The partial cost and goodness
computations are carried out by all processors includ-
ing the master processor, which then receives goodness
values from all processors and performs selection and
allocation. The slave processors are then updated with
the new solution.

The results of type I implementation are shown in
Table 1. Due to lack of space, the solution quality for
each circuit is not shown as it doesn’t vary between se-
rial and parallel versions. The results show that there

ALGORITHM TypeI Parallel SimE Slave Process(Φ)
NOTATION
(* Φ is the complete solution. *)
(* Φsis the partition assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin
Receive Placement
Calculate Partial Costs
ForEach mi ∈ Φs evaluate gi EndForEach;
Send Partial Goodness Values

End. (*Slave Pocess*)

Figure 3. Outline of Slave Process for Type I
Parallel SimE Algorithm.

is no benefit of type I parallelization because of poor
workload division owing to duplicate calculations. Fur-
thermore, there is an increase in the runtime of parallel
algorithm as the parallelization overheads well exceed
the little workload distribution. Also, no change in
runtimes is observed with increasing processors. In-
terestingly, the ratio of serial to parallel runtimes re-
mains almost the same across the different test cases
and processor counts.

6.2. Type II Parallelization

The domain decomposition method involves the par-
titioning of a complete solution into smaller domains
to be optimized in parallel. For SimE, this implies the
parallelization of all its operators, including Allocation.
Hence, the search behavior of the parallel algorithm
will differ from the serial algorithm. Allocation func-
tion division requires that alterations performed by the
individual sub-allocation functions on the sub-solutions
should not overlap, thus allowing the concurrent relo-
cation of several selected cells at a time. After each
iteration, the sub-solutions are merged to avoid miss-
ing parts of the search space and then re-partitioned.
The elements are partitioned row wise among the m
processors. This type of partitioning facilitates the
adaptation of SimE to type II parallelization as each
row can be easily processed independently. A proces-
sor s, 1 ≤ s ≤ m would be assigned a subset Φs of the
solution Φ. Then, each processor s will evaluate the
goodness of each element in Φs and run the Selection
step to partition Φs into a selection subset Ss and a
partial solution of remaining cells Φp

s (See the serial

Table 1. Results for Type 1 Parallel SimE
Ckt Cells Seq. Times for Parallel
Name Time p=2 p=3 p=4 p=5

s1196 561 92 130 130 130 130

s1488 667 187 263 263 263 263

s1494 661 190 268 268 273 270

s1238 540 91 127 129 131 130

s3330 1561 3750 5480 5463 5467 5453

ALGORITHM TypeII Parallel SimE Master Process
NOTATION
(* ks: Set of row indices for each process s. *)
(* Φ: The complete current solution. *)

INITIALIZATIONS;
Begin

Repeat
ForEach s ∈ m Generate Row Indices ks EndForEach;

(* For each slave process. *)
ParFor

Slave Process(Φ, ks)
(* Broadcast cur. placement and row-indices. *)

EndParFor
ParFor

Receive Partial Placement Rows
EndParFor

Construct Complete Solution
Until (Stopping Criteria is Satisfied)

Return Best Solution.
End. (*Master Process*)

Figure 4. Outline of Master Process for Type
II Parallel SimE Algorithm.

algorithm in Figure 1 for comparison).
This type of parallelization strategy has been at-

tempted earlier for standard cell placement on a net-
work of workstations [5]. The row allocation pattern
that was proposed in [5] is made up of two alternating
sets. In the even iterations, each slave gets a slice of
�K

m� rows, (where m is the number of processors, and
K is the total number of rows in the placement) while
in the odd iterations the jth slave gets the set of rows
j, j + m, j + 2m, and so on. It was stated that with
this fixed pattern of assigning rows to slaves in alter-
nate steps, each cell can move to any position on the
grid in at most two steps [5].

The pseudocode of the type II parallel SimE is given
in Figures 4 and 5. As can be seen, one of the proces-
sors (the master) is in-charge of running SimE on a
particular partition as well as performing the following
tasks periodically at the end of each iteration: (1) re-
ceive the partial placements from all other processors
and combine them into a new solution, (2) obtain a
new row allocation, and finally, (3) distribute the new
solution and row allocation among the processors. The
number of rows assigned to each processor depends on
the size of the placement and the number of processors.
This is repeated for all iterations until the termination
condition is met.

The consequence of Allocation parallelization, how-
ever, is that each processor only has a limited freedom
of cell movement, which reduces even further with in-
creasing number of processors on a given number of
total rows. This affects the optimum cell movement,
making it more difficult for cells to reach their optimal
locations in the same number of iterations as the se-
quential algorithm. Also, some error in optimum cell
position determination is introduced as each processor
considers the cells outside its partition as not changing

Table 2. Results for Wirelength-Power Type II Parallel SimE Strategies.
Ckt. µ(s) Seq. Fixed Row Pattern Random Row Pattern
Name Time p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5

s1196 0.684 92 45 36 (95) 33 (94) 29 (89) 50 38 32 31

s1488 0.673 186 105 60 (98) 37 (94) 43 (92) 102 65 45 36

s1494 0.650 49 42 60 176 196 (94) 44 35 29 25

s1238 0.719 72 95 116 (96) 167(94) 185 (93) 32 23 20 14(95)

s3330 0.699 2765 1900 930 (99) 748 724 (97) 1091 574 373 378

Table 3. Results for Wirelength-Power-Delay Type II Parallel SimE Strategies.
Ckt. µ(s) Seq. Fixed Row Pattern Random Row Pattern
Name Time p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5

s1196 0.634 134 96 37 36 43(98) 85 70 55 30

s1488 0.523 244 54 50 39 76 80 70 45 50

s1494 0.626 253 116 (88) 73 (87) 110 (86) 103 (87) 235 93 115 96 (98)

s1238 0.666 187 38 78 83 34 (98) 110 75 35 78

s3330 0.674 13007 4676 (90) 2604 (87) 2062 (83) 1336 (80) 3171 1658 (90) 1105 (86) 1031 (86)

ALGORITHM TypeII Parallel SimE Slave Process(Φ, ks)
NOTATION
(* Φs are the rows assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin
Receive Placement And Indices
EVALUATION:

ForEach mi ∈ Φs evaluate gi EndForEach;
SELECTION:

ForEach mi ∈ Φs DO
Begin

If Random > Min(gi + B, 1)
Then

Begin
Ss = Ss ∪ mi; Remove mi from Φs

End
End

Sort the elements of Ss

ALLOCATION:
ForEach mi ∈ Ss Do

Begin
Allocate(mi, Φi

s)
(* Allocate mi in local partial solution rows Φi

s. *)
End

Send Partial Placement Rows
End. (*Slave Process*)

Figure 5. Outline of Slave Process for Type II
Parallel SimE Algorithm.

positions.
To observe if a different row allocation pattern than

the one mentioned earlier [5] can lead to a different
behavior, we also experimented with random row al-
location [7]. Two parallel multiobjective algorithms,
a wirelength-power only and the other including de-
lay optimization as well, were implemented using two
types of row allocation patterns for each. No division
of wirelength and delay cost calculations was done be-
cause of little potential gain as evident by the profiling
results and type I parallelization.

Tables 2 and 3 show the results of type II parallel
SimE for two and three objectives optimization respec-
tively. For the results in Table 2, the serial algorithm

was run for 3500 iterations while the parallel runs were
done starting at 4000 iterations and 500 additional it-
erations added with every additional processor. In Ta-
ble 3, the serial version ran for 5000 iterations and
1000 more iterations for each additional processor were
done. This was done because additional iterations are
required for the type II parallel algorithm to converge
because of partitioning. In cases where the parallel
algorithm failed to achieve the highest serial quality,
the time shown is for the percentage of serial quality
indicated in brackets. The tables show that the speed-
up trend and solution qualities are better in case of
random row allocation for both optimization versions.
It is evident that parallelization of allocation function
in type II strategy, which constitutes more than 95%
of runtime (Section 4), leads to significant speed-ups,
though at the cost of achieving lower than maximum
serial qualities in some cases.

6.3. Type III Parallelization

Type III parallelization or parallel searches aim for a
concurrent exploration of the search space with parallel
threads that may or may not interact (by exchanging
some kind of information). In the simplest form of
parallel search, each thread independently performs a
separate search with a different randomization. How-
ever, it has been observed that there is seldom any
speed-up in this method as this is equivalent to multi-
ple independent runs of the serial algorithm. Strategies
in which threads communicate with others have shown
promising results for SA, GA and TS [2, 3, 4]. Hybrid
algorithms have also been proposed in which, for in-
stance, GA is used with parallel threads of SA or some
other metaheuristic or vice versa.

Parallel searches are effective if the search subspaces

ALGORITHM TypeIII Parallel SimE Slave Process
NOTATION
(* Count is the current retry value. *)

Begin
INITIALIZATIONS;
Repeat

EVALUATION;
SELECTION;
Sort the elements of S
ALLOCATION;
Calculate Costs;
If CurCost > BestCost

Then
Begin
Inform Master;
Count = 0;
End

Else
Count = Count + 1

EndIf
If Count > Retry Threshold
Then

Begin
If Costmaster < Costcur

Then Get New Placement
End

Until (Stopping Criteria is Satisfied)
End. (*Slave Process*)

Figure 6. Structure of the Type III Parallel Sim-
ulated Evolution Algorithm.

of the various threads do not overlap (or have mini-
mal overlap) so that all threads should concurrently
search distinct parts of the solution space (ideally). In
case of SimE, although the selection operator is non-
deterministic, the outcome is highly dependent upon
the goodness values. With two threads of SimE using
the same solutions but with different randomization,
the set of cells selected will not differ much. As such,
this does not guarantee the required non-overlapping
concurrent exploration of different areas of a search
space. Also, the SimE allocation operator that has
the greatest impact on final solution quality is deter-
ministic. Compared to this, SA, TS, and GA, exhibit
more randomness in their search operators and thus
lend themselves to different randomization with paral-
lel searches as compared to SimE.

To explore type III parallelization of SimE, we im-
plemented a parallel SimE on the lines of asynchronous
multiple Markov chain parallel simulated annealing [1],
where a central processor keeps track of the best solu-
tions found so far among all threads. Since there is no
workload division in parallel searches, the only way to
achieve any speed-up is to enable threads to assist each
other in rapidly reaching better solutions and by min-
imizing the time wasted in iterations in which no good
solutions are found. It is observed that initially the so-
lution rapidly evolves to a certain quality after which
successive good solutions are found after a number of
inferior ones. We varied the interval of exchanges of
best solution with the central processor. Each thread
keeps track of the number of successive times it fails

Table 4. Results for Type III Parallel SimE
Ckt. µ(s) Seq. Retry Time for Parallel
Name Time Val. p=3 p=4 p=5

s1494 0.673 121 50 130 122 130
100 118 113 115
150 125 120 115
200 110 119 110

s1238 0.719 72 50 70 71 68
100 64 60 62
150 70 66 70
200 71 60 60

to improve the current solution and resets this counter
every time a better solution is found. After a certain
set limit, called the retry threshold, is exceeded, the
thread starts checking at the central processor if a bet-
ter solution is available. The master either provides a
better solution or accepts the solution of the request-
ing processor if it is better than what master already
has. Furthermore, to keep the master updated with the
best solution found so far among all threads, so that
any requesting thread may be benefited, each processor
always communicates the best solution found recently
to the master. Thus the parallel algorithm tries to en-
sure that each processor is given a chance to diversify
and evolve solution on its own while a better solution is
made available if present. The outline of a slave thread
in type III parallel SimE algorithm is given in Figure 6.

The results for Type III parallel SimE are shown in
Table 4. The processors start from at least 3 as one
processor is required as a central store. Both the ser-
ial and parallel algorithms were run for 2500 iterations
at each processor. All runs were performed using the
same starting solution but with different randomiza-
tion seeds. Four different retry values of 50, 100, 150
and 200 iterations were tested. The runtimes show lit-
tle deviation from the serial runtime. This indicates
that the search derives negligible benefit from coop-
erating processes. Since there is no workload division,
the results are virtually identical to the serial algorithm
runs, though for higher threshold values consistently
higher quality results, sometimes exceeding the serial
quality, were obtained. These results strongly relate
to the property of SimE that independent searches are
not diversified enough when based solely on different
randomizations to assist each other in reaching better
solutions in less time than the serial algorithm.

7. General Observations

Based on results of the three parallelization strate-
gies, we make some overall observations. Although it
appears that the structure of the generic SimE algo-
rithm lends itself easily to a low-level parallelization,

the nature of cost functions (problem instance) and
the type of allocation method used dictate the degree
of parallelism possible. Type I parallelization would
be suitable if goodness calculation is computationally
intensive, there is a sparse data dependence among el-
ements and/or the allocation function can be paral-
lelized without affecting its outcome. Secondly, domain
decomposition implicitly divides the solution and par-
allelizes all SimE operators, but the ability to achieve
high quality solutions depends again upon the problem
instance or the design of allocation operator to cope
with parallel domains, i.e., maintaining the algorithm’s
convergence properties. Lastly, parallel searches are
not beneficial to SimE due to its metaheuristic search
behavior, as mentioned in Section 6.3, unless some
mechanism to diversify the search are introduced addi-
tionally. Use of a different allocation function at each
thread can be one way of achieving this, whereby the
searches are directed in different directions by exploit-
ing the different ways of optimizing the given problem
with different allocation functions. Another promis-
ing idea might be the use of concepts borrowed from
population based evolutionary metaheuristics, such as
GA, in conjunction with parallel SimE threads. For
instance, solutions from independent, parallel threads
may be combined intelligently using crossover opera-
tors that take advantage of SimE goodness measure
to produce better starting solutions for the next SimE
iterations in each of the parallel threads.

We have also implemented parallel SA [11], GA [8]
and TS [6] for the same optimization problem and
found that parallel cooperative searches best suited SA
and GA, while a type I parallelization of TS gave the
best speed-ups. Currently we are working on a fair and
thorough comparison among these different parallelized
metaheuristics.

8. Conclusion

The paper explored parallel SimE strategies for a
multiobjective VLSI cell placement, studying the ap-
plicability of each class of parallelization to the SimE
algorithm structure with a given problem instance.
Comparing strategies in an identical setup, it was
identified why one particular strategy is more suitable
than the other for SimE parallelization using the
placement problem as an example of a large optimiza-
tion instance. The paper identifies the generalities of
SimE parallelization that can be extended to other
problem instances as well.

Acknowledgement: The authors thank King
Fahd University of Petroleum & Minerals (KFUPM),

Dhahran, Saudi Arabia, for support under Project
Code COE/CELLPLACE/263.

References

[1] J. A. Chandy, S. Kim, B. Ramkumar, S. Parkes, and
P. Banerjee. An Evaluation of Parallel Simulated An-
nealing Strategies with Application to Standard Cell
Placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 16(4):398
– 410, April 1997.

[2] T. G. Crainic and M. Toulouse. Handbook of Meta-
heuristics, volume 57, chapter Parallel Strategies for
Metaheuristics, pages 465 – 514. Kluwer Academic
Publishers, 2003.

[3] V.-D. Cung, S. L. Martins, C. C. Ribeiro, and C. Rou-
cairol. Essays and Surveys in Metaheuristics, vol-
ume 15, chapter Strategies for the Parallel Implemen-
tation of Metaheuristics, pages 263 – 308. Kluwer Aca-
demic Publishers, 2001.

[4] S. D. Ekşiog̃lu, P. M. Pardalos, and M. G. C. Re-
sende. Models for Parallel and Distributed Computa-
tion - Theory, Algorithmic Techniques and Applica-
tions, chapter Parallel Metaheuristics for Combinato-
rial Optimization, pages 179 – 206. Kluwer Academic
Publishers, June 2002.

[5] R. M. Kling and P. Banerjee. ESP: Placement by Sim-
ulated Evolution. IEEE Transaction on Computer-
Aided Design, 3(8):245–255, March 1989.

[6] M. R. Minhas and S. M. Sait. A Parallel Tabu
Search Algorithm for Optimizing Multiobjective VLSI
Placement. In LNCS, volume 3483, pages 587 – 595.
Springer-Verlag GmbH, January 2005.

[7] S. M. Sait, M. I. Ali, and A. M. Zaidi. Multiobjec-
tive VLSI Cell Placement using Distributed Simulated
Evolution Algorithm. In Proceedings of the Interna-
tional Symposium on Circuits and Systems, pages 6226
– 6229, May 2005.

[8] S. M. Sait, M. Faheemuddin, M. R. Minhas, and
S. Sanaullah. Multiobjective VLSI Cell Placement
using Distributed Genetic Algorithm. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, pages 1585 – 1586. ACM Press, 2005.

[9] S. M. Sait and J. A. Khan. Simulated Evolution for
Timing and Low Power VLSI Standard Cell Place-
ment. Elsevier Engineering Applications of Artificial
Intelligence, 16:407 – 423, August - September 2003.

[10] S. M. Sait and H. Youssef. Iterative Computer Al-
gorithms with Applications in Engineering: Solving
Combinatorial Optimization Problems. IEEE Com-
puter Society Press, California, December 1999.

[11] S. M. Sait, A. M. Zaidi, and M. I. Ali. Asynchronous
MMC based Parallel SA Schemes for Multiobjective
Standard Cell Placement. In Proceedings of the In-
ternational Symposium on Circuits and Systems, May
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

