
Efficient RDMA-based Multi-port Collectives on Multi-rail QsNet
II

 Clusters

Ying Qian Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University
Kingston, ON, Canada K7L 3N6

qiany@ee.queensu.ca ahmad.afsahi@queensu.ca

Abstract

Many scientific applications use MPI collective
communications intensively. Therefore, efficient and
scalable implementation of collective operations is critical
to the performance of such applications running on
clusters. Quadrics QsNetII is a high-performance
interconnect for clusters that implements some collectives
at the Elan level. These collectives are directly used by
their corresponding MPI collectives.

Quadrics software supports point-to-point striping
over multi-rail QsNetII networks. However, multi-rail
collectives have not been supported. In this work, we
propose a number of RDMA-based multi-port collectives
over multi-rail QsNetII clusters directly at the Elan level.
Our performance results indicate that the proposed multi-
port gather gains an improvement of up to 6.35 for 1MB
message over the native elan_gather. The proposed multi-
port all-to-all performs better than the native elan_alltoall
by a factor of 2.19 for 16KB message. Moreover, we have
also proposed two algorithms for the scatter operation.

1. Introduction

Cluster computers have become the predominant
computing platform for high-performance computing and
emerging commercial and networking applications due to
their cost-effectiveness. In such systems, the
interconnection network and the communication system
software are the keys to the performance. Several
contemporary interconnects such as Quadrics QsNet [15]
and QsNetII [1], InfiniBand [9], and Myrinet [22] have
been introduced to support the ever-increasing demand for
efficient communication, scalability, and higher
performance in clusters. Among them, QsNetII offers the
lowest communication latency.

Most scientific applications are written on top of the
Message Passing Interface (MPI) [12]. In fact, MPI has
become the de-facto standard for parallel programming on

clusters. MPI provides both point-to-point and collective
communication operations. In QsNetII, the MPI point-to-
point implementation provided by Quadrics runs on top of
a network programming interface called Tagged Ports, or
Tports. Tports provides similar two-sided message-passing
semantics as in MPI. It was initially developed by Meiko
for their CS-2 interconnect [2]. QsNetII also supports
Remote Direct Memory Access (RDMA) write and read
operations in its lower-level Elan library via elan_put ()
and elan_get () function calls, respectively. It allows direct
transfer of data from a source virtual address to a
destination virtual address of two processes without the
host processor intervention or any intermediate copy.

Many parallel applications need communication
patterns that involve collective data movement and global
control. Therefore, efficient and scalable implementation
of collective communication operations is critical to the
performance of such applications. Implementation of
collective operations in Quadrics is very efficient. In fact,
QsNetII provides hardware support for broadcast and
barrier operations. Other collective primitives such as
reduce, gather, and all-to-all are also implemented in the
Elan library. These collectives are directly used by their
corresponding MPI collectives.

To overcome bandwidth limitations for today’s most
demanding applications, and to enhance fault tolerance,
using multiple independent networks known as multi-rail
networks has been recently proposed to connect symmetric
multiprocessor (SMP) nodes in high-performance clusters
[6, 11]. Basically, there are two ways in distributing the
traffic over multiple rails. One is to use multiplexing, also
called message dispatching, where messages are
transferred over different rails in a round robin fashion.
The other method is called message striping, where
messages are divided in multiple chunks and sent over
multiple rails simultaneously.

Quadrics has a native support for message striping over
multi-rail QsNetII networks only for large point-to-point
messages through its Elan RDMA put and get, SHMEM
[7] put and get, and Tports send/receive functions.

1-4244-0054-6/06/$20.00 ©2006 IEEE

However, multi-port collectives with striping is not
supported. Our performance results verify that only a few
single-port collectives that are currently implemented on
top of point to point Tports or elan_put () will gain multi-
rail striping from those underlying subsystems.

In this work, we take on the challenge in designing
high-performance RDMA-based collectives on multi-rail
QsNetII networks. Rather than devising single-port (MPI)
collectives that utilize the underlying striping facilities, we
propose and evaluate multi-port collective schemes with
striping for multi-rail QsNetII directly at the Elan level
using RDMA write. We propose algorithms for scatter,
gather, and all-to-all personalized exchange operations.
Our performance results indicate that the multi-port gather
gains an improvement of up to 6.35 for 1MB message over
the native elan_gather. Moreover, the proposed multi-port
all-to-all performs better than the elan_alltoall by a factor
of 2.19 for 16KB message.

 To the best of our knowledge, this is the first work in
devising multi-port collective communications on a
modern multi-rail interconnect such as Quadrics. Although
we have targeted Quadrics QsNetII, we believe this study
has implications beyond QsNetII as it can be applied to
other multi-rail RDMA-capable networks such as
InfiniBand.

The rest of the paper is organized as follows. In
Section 2, we provide an overview of the Quadrics QsNetII

architecture including Tports, RDMA, and collective
communications. In Section 3, we introduce our
experimental platform. Section 4 explains the motivation
behind this work by showing that only a couple single-port
(MPI) collectives benefit from the underlying striping
facility. Section 5 presents some known algorithms for
scatter, gather and all-to-all personalized exchange used in
this work. In Section 6, we propose and evaluate our
RDMA-based multi-port collective algorithms on multi-
rail QsNetII with its striping support on a 16-processor
cluster. Related work is discussed in Section 7.
Conclusions and future research are discussed in section 8.

2. Overview of QsNet
II

QsNetII [1] is the latest generation interconnect from
Quadrics. It consists of two ASICs: Elan4 and Elite4. The
network, arranged in a fat-tree topology, is built out of
Elite4 switch components, where each can switch eight bi-
directional channels. Elan4 is the communication
processor on the network interface card (NIC). It provides
a protected user-level access to the NIC so that multiple
user processes can share it simultaneously. The command
processor within Elan4 is responsible for such a protection
through command queues generated by user processes.

QsNetII differs from other contemporary interconnects
such as InfiniBand and Myrinet in the sense that it
integrates a node’s local memory into a globally shared,

virtual-memory space. Data can be transferred from a
source virtual address to a destination virtual address
without any intermediate copy or host intervention. This is
done with the help of Elan4’s memory management unit
(MMU). There is no need for memory registration as in
other high-performance interconnects.

The Quadrics software includes both MPI and
SHMEM. They are implemented with libelan and libelan4.
Elan4 supports both send/receive and RDMA operations.
The RDMA operations include RDMA write (elan_put),
and RDMA read (elan_get). The send/receive mode,
supported through connectionless Tports network
programming interface, provides a similar two-sided
message-passing semantics as in MPI. In fact, MPI point-
to-point implementation on QsNetII uses Tports as its
transport layer. A thread running on the Elan4’s thread
processor matches sends to their corresponding receives.
If a matching is found, data is sent directly to the
application’s address space. If no matching receive is
found, the thread processor locally buffers the data and
performs a final copy when the receive call is posted.
Availability of such a thread processor at the network
interface enables MPI independent progress,
communication/computation overlap, as well as offloading
MPI tag matching and protocol processing [4].

The short message latency is minimized by pipelining
messages onto the network through a dedicated Short
Transaction Engine (STEN) processor on Elan4. The
STEN processor requires the host CPU to copy the data, so
latency increases for large messages. Therefore, for large
messages, the RDMA engine is responsible for
transferring data directly from the sender’s user space to
the receiver’s user space. For very large messages, the
sender only sends a descriptor to the sender, and then a
DMA descriptor is sent back by the receiving thread
processor to the sender for an efficient RDMA write.

2.1. Collective Communication in QsNet
II

QsNetII supports broadcast, barrier, reduce, gather, and
all-to-all personalized exchange at the Elan level. These
collectives are directly used by the MPI library, and thus it
is very important to optimize them. A number of RDMA
primitives such as elan_put () and elan_doput () are used
in the implementation of these collectives. elan_doput () is
similar to elan_put () with the exception that it sets a
destination event on completion. These functions are non-
blocking, and elan_wait () may be used to test or wait on
for the completion of the transfer.

In this work, we are interested in the design of efficient
scatter, gather, and all-to-all personalized exchange
operations. However, for the sake of completeness, we
briefly discuss the other Elan collectives as well.

QsNetII supports hardware broadcast, elan_hbcast (),
and hardware barrier, elan_hgsync (), operations only

across contiguous ranges of nodes [18]. Where this is not
possible, software broadcast, elan_bcast (), and software
barrier, elan_gsync (), are used instead. Hardware
broadcast and network conditionals are used to implement
the barrier operation. The root process performs a network
conditional by polling the ready flag of other nodes (a flag
is set when a process other than root enters a barrier), and
when polling returns successfully it broadcasts a set of
done event to all other processes.

Reduction is done via elan_reduce () function, where
each node in the tree sends its results up using
elan_doput (). Parent nodes apply the reduction function,
combine them, and send them up until it reaches the root
[18]. An efficient NIC-based reduction scheme similar to
the one proposed in [13] for QsNet has been implemented
on the thread processor of QsNetII.

A tree-based gather algorithm [18] is used in the
elan_gather (). Leaf nodes send data to their parents.
Intermediate nodes add their own data and forward to their
parents. This process continues until the root process
gathers all data. To reduce host processor involvement,
Elan event processor is used to chain the puts.

The elan_alloall () does an all-to-all personalized
exchange amongst all the processes. Quadrics uses a
pairwise exchange algorithm for up to 8KB messages and
then switches to a permission to send algorithm [18, 17].
In the pairwise exchange, performance deteriorates when
there are hot spots due to communication with the same
destinations. In the permission to send algorithm, a node
starts exchanging when it has received permission from
previous process. Quadrics uses a non-blocking put
algorithm for short messages, where each process posts
some elan_put () functions. When one transfer is done,
another one will be issued [18]. It has also been shown
that the Bruck’s index algorithm [5] works well for very
small messages. Note in all the collectives discussed,
shared memory wrapper functions are used when multiple
processes exist per node.

3. Experimental Platform

The experiments were conducted on a 4-node
dedicated SMP cluster interconnected with two QM500-B
Quadrics QsNetII NICs per node, and two QS8A-AA
QsNetII E-series 8-way switches. Each node is a Dell
PowerEdge 6650 that has four 1.4 GHz Intel Xeon MP
Processors with 256KB unified L2 cache, 512KB unified
L3 cache, and 2GB of DDR-SDRAM on a 400 MHz Front
Side Bus. Each NIC is inserted in a 64-bit, 100 MHz PCI-
X slot. The operating system is the Vanilla kernel version
2.6.9. Our Quadrics software is the latest release “Hawk”
with the kernel patch qsnetp2, kernel module 5.10.5qsnet,
QsNet Library 1.5.6-1, and QsNetII Library 2.2.4-1. Test
codes were launched by the pdsh [14] task launching tool,

version 2.6.1. The MPI implementation is the Quadrics
MPI, version MPI.1.24-47.intel81.

4. Motivation

To overcome bandwidth limitations for today’s most
demanding applications, and to enhance fault tolerance,
using multiple independent networks known as multi-rail
networks has been recently proposed to connect SMP
nodes in high-performance clusters [6, 11]. Basically,
there are two ways in distributing the traffic over multiple
rails. One is to use multiplexing, where messages are
transferred over different rails in a round robin fashion.
The other method is called message striping, where
messages are divided in multiple chunks and sent over
multiple rails simultaneously.

A straightforward way to have a multi-rail network is
to have multiple NICs installed on each cluster node and
connect them to a single or a separate switch. Coll and his
colleagues [6] did a simulation study of different static and
dynamic allocation schemes for multiple communication
rails. Recently, Liu and his associates [11] designed multi-
rail InfiniBand clusters with support for point-to-point
message striping in MPI.

QsNetII uses multiple NICs per node to construct a
multi-rail cluster network, in which the i-th NIC connects
to the i-th rail. Quadrics has a native support for a simple
even message striping over multi-rail QsNetII networks
only for large point-to-point messages through its Elan put
and get, SHMEM put and get, and Tports send/receive
functions. Our intention in this section is to show while
point-to-point messages benefit from message striping,
only a few (Elan and MPI) collectives that are currently
implemented on top of point to point Tports or elan_put ()
will gain multi-rail striping.

In the following, we first present the performance of
Elan put and get, Tports send/receive, as well as MPI
point-to-point under single-rail and dual-rail QsNetII on
our platform (SHMEM put and get also stripe large
messages but we do not show their performance here). We
will then demonstrate the performance of Elan collectives,
and two of MPI collectives (MPI_Scatter and
MPI_Allgather that do not have Elan counterparts).

Our point-to-point experimentation is done with uni-
directional, bi-directional, and both-way traffics. In the
unidirectional bandwidth test, the sender transmits a
message repeatedly to the receiver, and then waits for the
last message to be acknowledged. The bi-directional test is
the ping-pong test where the sender sends a message and
the receiver upon receiving the message, immediately
replies with the same message size. This is repeated
sufficient number of times to eliminate the transient
conditions of the network. In the both-way test, both the
sender and receiver send data simultaneously. This test

puts more pressure on the communication subsystem, and
the PCI-X bus.

4.1. Elan RDMA Performance

Figure 1 presents the bandwidth performance of the
RDMA write using the pgping microbenchmark available
in the Elan Library. It is evident that the bandwidth is
doubled in the dual-rail system. The both-way single-rail
and dual-rail elan_put () bandwidths are 670MB/s and
1332 MB/s, respectively. The bandwidth for elan_get () is
almost the same as elan_put () in each case (not shown).

The Elan RDMA write short message latency does not
change much between single-rail and dual-rail. The
latency varies between 2 µs to 2.77 µs for a 4-byte
message. The elan_get () short message latency is slightly
larger than the RDMA write. That is why we decided to
use elan_put () in our collective implementations.

0

200

400

600

800

1000

1200

1400

1 16 256 4K 64K 1M

Message size (bytes)

B
a
n

d
w

id
th

 (
M

B
/s

)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

Figure 1. Elan RDMA write performance.

4.2. Tports Performance

Figure 2 shows the Tports bandwidth. Tests are done
using the tping microbenchmark (except for the uni-
directional case, where we wrote our own code). Like the
Elan RDMA, the dual-rail Tports bandwidth outperforms
the single-rail bandwidth in each case. The single-rail T-
ports bandwidth is roughly the same as RDMA bandwidth;
however, dual-rail bandwidth falls short of RDMA. The
short message latency is slightly larger than the RDMA.

4.3. MPI Send/Receive Performance

Figure 3 compares the MPI bandwidth under different
cases. Unlike the both-way, the uni-directional and bi-
directional MPI bandwidths for dual-rail are almost
doubled. This shows that the MPI point-to-point
implementation over Tports mostly benefit from striping
in the dual-rail QsNetII. The short message MPI latency is
close to that of the T-ports (not shown here).

0

200

400

600

800

1000

1200

4 32 256 2K 16K 128K 1M

Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

Figure 2. T-port send/receive performance.

0

200

400

600

800

1000

1200

1 16 256 4K 64K 1M
Message size (bytes)

B
a
n

d
w

id
th

 (
M

B
/s

)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

Figure 3. MPI send/receive performance.

4.4. Collective Performance

Figure 4 depicts the aggregate bandwidth for the Elan
hardware and software broadcasts, gather, and all-to-all, as
well as MPI_Scatter and MPI_Allgather. For the Elan
collectives, we have used the gping microbenchmark
available in the Elan Library. For the MPI collectives, we
have written our own code.

From the results, except for the elan_alltoall () (and
elan_reduce (), not shown here) other collectives at the
Elan level do not benefit from the dual-rail QsNetII.
MPI_Scatter and MPI_Allgather are implemented on top
of Tports, but only MPI_Scatter achieves larger bandwidth
under dual-rail.

Efficient implementation of collective operations is one
of the keys to the performance of parallel applications.
Given the multi-rail performance offered at the Elan and
Tports levels, excellent opportunities exist for devising
efficient collectives for such systems.

Basically, there are two ways to improve the
performance of collectives on multi-rail systems. One is to
implement single-port collective communication
algorithms that gain multi-rail striping from the underlying
communication subsystem. This is the approach currently
used for MPI_Scatter and elan_alltoall (). However, this
will only improve the performance for large messages.
The second approach that we propose is to design and
implement multi-port algorithms for multi-rail systems
that also benefit from the striping feature supported by

QsNetII. We have used some known multi-port algorithms
and implemented them on our dual-rail QsNetII network
directly at the Elan level using RDMA write.

5. Collective Algorithms

In this section, we provide an overview of some known
algorithms for scatter, gather, and all-to-all personalized
exchange. In the following discussion, N is the number of
processors (or processes) and k is the number of ports in
the multi-port algorithms (equal to the number of available
rails). In the k-port (or multi-port) modeling, each process
has the ability to simultaneously send and receive k
messages on its k links. The assumption is that the number
of processes is a power of (k + 1). Otherwise, dummy
processes can be assumed to exist until the next power of
(k + 1), and the algorithms apply with little or no
performance loss.

Hardware broadcast (elan_hbcast)

0

50

100

150

200

250

300

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Software broadcast (elan_bcast)

0

20

40

60

80

100

120

4 32 256 2K 16K 128K 1M

Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Gather (elan_gather)

0

50

100

150

200

250

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Alltoall (elan_alltoall)

0

100

200

300

400

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

MPI_Scatter

0

200

400

600

800

1000

1200

1 16 256 4K 64K 1M
Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

MPI_Allgather

0

40

80

120

160

1 16 256 4K 64K 1M
Message size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

Figure 4. Collective performance on 16
processes.

5.1. Scatter

The spanning binomial tree algorithm [10] can be
extended for k-port modeling. In this algorithm, the
scattering process sends k messages of length N/(k + 1)

each, to its k children. Therefore, there are (k + 1)
processes having N/(k + 1) different messages. These
processes, at step 2, send one (k + 1)-th of their initial
message to each of their immediate k children. This
process continues and all processes are informed after
logk+1 N communication steps. Using Hockney’s model
[8], the total communication time, T, is:

)(
1

)log(

)1()()log(

1

1log

1

)1(log
1

τ

τ

×−+×=

+×+×=

+

+

=

−++ ∑
mks

Nk

i

iNk
mks

l
k

N
NtT

klNtT

 (1)

where, ts is the message startup time, lm is the message size
in bytes, and is the time to transfer one byte.

The above algorithm has a logarithmic number of
steps, therefore suitable for short messages and networks
where the cost of message transfer is dominated by the
startup latency. Another algorithm, for large messages, is
the extension of sequential tree algorithm for k-port
modeling. At each step, the source process sends its k
different messages to k other processes. There are a total
of (N -1)/k communication steps. Therefore, the total
communication cost, T, is:

)(
1 τ×+×−= ms lt

k

N
T (2)

5.2. Gather

Gather is the exact reverse of scatter so the same
spanning binomial tree algorithm extended for k-port
modeling can be used. However, the communication starts
from the leaf processes and messages are combined in the
intermediate processes until it reaches the root. The total
communication cost is the same as in Equation (1).

5.3. All-to-all Personalized Exchange

A lower bound for all-to-all personalized exchange
time is (N -1)/k since each process must receive N – 1
different messages and it can only receive at most k
messages at a time. A simple algorithm is based on the
extension of the direct algorithm for k-port modeling. The
processes are arranged in a virtual ring. That is, at step i,
process p sends its message to processes (p + (i – 1)k + 1)
mod N, (p + (i – 1)k + 2) mod N, …, (p + ik) mod N.
Modulus operation avoids sending messages to a single
destination. The communication cost is the same as in
Equation (2).

6. RDMA-based Implementation and

Performance

In this section, the intention is to show the
effectiveness of the multi-port algorithms introduced in
Section 5 on multi-rail QsNetII with striping support, when
they are implemented directly at the Elan layer using Elan
RDMA write.

Memory registration/deregistration is a costly
operation. However, contrary to InfiniBand and Myrinet,
QsNetII does not need memory registration and address
exchange for message transfers. This eases the
implementation, and effectively reduces the
communication latency.

Our algorithms are two-port put-based algorithms,
where a sending process has direct control in sending
messages simultaneously over the two rails using the
elan_doput () function. When a message is larger than a
threshold (1KB) even message striping is used over the
two rails. When a message is sent, the sending process
uses the elan_wait () to make sure the user buffer can be
re-used.

In the latest Quadrics Hawk distribution, release 2.2.4-
1, remote event notification is enabled in elan_doput () for
both single-rail and multi-rail systems. This allows multi-
rail striped (ELAN_RAIL_ALL) put messages to have a
devent (destination event). In this case the devent will be
set once in each rail and in the target process one will need
to call elan_initEvent () once for each rail and then wait on
each ELAN_EVENT to be returned. This guarantees a
message has been delivered in its entirety.

In the implementation of our algorithms, processes do
not synchronize with each other. Note that our
implementation is completely put-based, but we are in the
process of optimizing them for the cases where processes
are co-located on the same 4-way nodes.

6.1. Evaluation of Scatter

We have implemented the multi-port spanning
Binomial tree algorithm for Scatter operation on multi-rail
QsNetII systems using RDMA Write. We call this scheme
as BSRW. Likewise, we call the sequential tree
implementation for scatter as SSRW.

Figure 5 compares the performance of the two scatter
algorithms, BSRW and SSRW, on our dual-rail QsNetII.
As expected, BSRW is superior for short messages, while
SSRW has a much better performance for medium and
large messages. Figure 5 also presents the scalability of
our implementation. The scalability figures show that
indeed the BSRW is the better algorithm for short
messages with increasing system size.

Scatter (16 processes)

0

10

20

30

40

50

4 8 16 32 64 128 256 512

Message size (bytes)

T
im

e
 (

µ
s

)

BSRW SSRW

Scatter (16 processes)

0

200

400

600

800

1000

1K 2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

BSRW SSRW

Scatter (16 processes)

0

5000

10000

15000

20000

25000

30000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s

)

BSRW SSRW

Scatter scalability (16B)

0

10

20

30

40

3 9 16

Number of processes

T
im

e
 (

µ
s

)

BSRW SSRW

Scatter scalability (8KB)

0

50

100

150

200

250

3 9 16

Number of processes

T
im

e
 (

µ
s

)

BSRW SSRW

Scatter scalability (256KB)

0

2000

4000

6000

8000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

BSRW SSRW

Figure 5. Scatter performance and scalability.

6.2. Evaluation of Gather

The multi-port spanning Binomial tree algorithm for
Gather operation has been implemented on multi-rail
QsNetII systems using RDMA Write feature. We call this
scheme as BGRW.

Figure 6 compares the performance of our gather
algorithm, BGRW, with the elan_gather (). The results are
very promising as our implementation is much better than
the native implementation except slightly for short
messages less than 64 bytes. Interestingly, the proposed
multi-port gather gains an improvement of up to 6.35 for
1MB message. The scalability plots in Figure 6 verify the
superiority of our gather algorithm for short to medium,
medium, and large messages. However, it does show that
with increasing number of processes elan_gather () is
better for very short messages.

6.3. Evaluation of All-to-all Personalized

Exchange

We have also implemented the multi-port Direct
algorithm for All-to-all personalized exchange on multi-
rail QsNetII systems using RDMA Write. We call this
scheme as DARW.

Figure 7 compares the performance of our all-to-all
algorithm, DARW, with the elan_alltoall (). The results
are again encouraging. Our multi-port all-to-all algorithm
and its implementation is much better than the native
elan_alltoall () for medium size messages. In fact, the
improvement is up to a factor of 2.19 for 16KB message.
However, elan_alltoall () is better than DARW for short
messages up to 256 bytes, and for 32KB message size
when it switches its algorithm. For large message sizes,
our two-port algorithm is slightly better. The scalability
plots confirm these findings. We are currently working on
the standard exchange algorithm [3], and Bruck’s index
algorithm [5] for multi-rail QsNetII. These algorithms are
known to be superior for short messages.

7. Related Work

Study of collective communication operations has been
an active area of research. Recently, the authors in [16]
analyzed the performance of collective communication
operations under different communication cost models.
Thakur and his colleagues discussed recent collective
algorithms used in MPICH [21]. They have shown some
algorithms perform better than the others depending on the
message size, and the number of processes.

Gather (16 processes)

0

10

20

30

40

50

4 8 16 32 64 128 256 512

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_gather BGRW

Gather (16 processes)

0

1000

2000

3000

4000

1K 2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_gather BGRW

Gather (16 processes)

0

30000

60000

90000

120000

150000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s
)

Elan_gather BGRW

Gather scalability (16B)

0

4

8

12

16

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_gather BGRW

Gather scalability (8KB)

0

200

400

600

800

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_gather BGRW

Gather scalability (256KB)

0

10000

20000

30000

40000

3 9 16
Number of processes

T
im

e
 (

µ
s

)

Elan_gather BGRW

Figure 6. Gather performance and scalability.

Altoall (16 processes)

0

30

60

90

120

150

4 8 16 32 64 128 256 512

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_alltoall DARW

Altoall (16 processes)

0

1000

2000

3000

4000

1K 2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_alltoall DARW

Altoall (16 processes)

0

30000

60000

90000

120000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_alltoall DARW

Alltoall scalability (16B)

0

20

40

60

80

3 9 16

Number of processes

T
im

e
 (

µ
s
)

Elan_alltoall DARW

Alltoall scalability (8KB)

0

500

1000

1500

2000

3 9 16

Number of processes

T
im

e
 (

µ
s
)

Elan_alltoall DARW

Alltoall scalability (256KB)

0

10000

20000

30000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_alltoall DARW

Figure 7. All-to-all performance and scalability.

Different collective algorithms on QsNetII have been
studied in [18, 17]. Sur, et al. proposed efficient RDMA-
based all-to-all broadcast [20] and all-to-all personalized
exchange [19] algorithms for InfiniBand–based clusters.

Coll and his associates did a comprehensive simulation
study on static and dynamic allocation schemes for multi-
rail systems [6]. Recently, the authors in [11] designed an
MPI-level multi-rail InfiniBand clusters. However, their
work was only focused on point-to-point communications.

8. Conclusions

Interconnection networks and the supporting
communication system software are the deciding factors in
the performance of clusters. Specifically, efficient
implementation of collective operations is critical to the
performance of MPI applications.

QsNetII is a high-performance network for clusters that
implements some collectives at the Elan level. Their MPI
counterparts directly use them. Therefore, optimizations
and inclusion of new collectives at the Elan level are
extremely desirable.

Quadrics supports point-to-point message striping over
multi-rail QsNetII. In this work, we have proposed and
implemented a number of multi-port collectives at the
Elan level over multi-rail QsNetII systems. Our
performance results indicate that our multi-port gather

gains an improvement of up to 6.35 for 1MB message over
the native elan_gather (). The proposed multi-port all-to-
all performs better than the elan_alltoall () by a factor of
2.19 for 16KB message. Moreover, we have proposed two
algorithms for short and long messages for the scatter
operation.

The results are encouraging and future work in this
area is justified. Our all-to-all algorithm did not perform
well for short messages. For this, we are currently
experimenting with the standard exchange [3], and
Bruck’s index [5] algorithms. We are also trying to utilize
the shared memory wrapper facility of Quadrics software
to speedup the collectives for co-located processes on
SMP nodes. Optimal static and dynamic striping
mechanisms may also help boost the performance. We
intend to extend our study by devising other collective
communications of interests and testing them on larger
multi-rail clusters. NIC-based or NIC-assisted collectives
for multi-rail systems, and taking advantage of basic
hardware collectives in their design are other areas of
interests.

Acknowledgments

The authors would like to thank the anonymous
referees for their insightful comments. Many thanks goes
to David Addison of the Quadrics for his help on our
overall understanding of the notification events in multi-
rail QsNetII systems. This work was supported by grants
from the Natural Sciences and Engineering Research
Council of Canada (NSERC), Queen’s University, Canada
Foundation for Innovation (CFI), and Ontario Innovation
Trust (OIT).

References

[1] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D.
Roweth, F. Petrini, and J. Nieplocha. QsNetII: Defining
high-performance network design. IEEE Micro, 25(4):34-
47, July-Aug. 2005.

[2] J. Beecroft, M. Homewood, and M. McLaren. Meiko CS-2
interconnect Elan-Elite design. Parallel Computing, 20(10-
11):1627-1638, Nov. 1994.

[3] S. H. Bokhari, Multiphase complete exchange on Paragon,
SP2, and CS-2. IEEE Parallel and Distributed Technology,
4(3):45-59, Sept. 1996.

[4] R. Brightwell, D. Doerfler, and K. D. Underwood. A
comparison of 4X InfiniBand and Quadrics Elan-4
technologies. In 2004 IEEE International Conference on

Cluster Computing (Cluster 2004), pages 193-204, Sept.
2004.

[5] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby.
Efficient algorithms for all-to-all communications in
multiport message-passing systems. IEEE Transactions on
Parallel and Distributed Systems, 8(11):1143-1156, Nov.
1997.

[6] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L.
Gurvits. Using multirail networks in high performance
clusters. In 3rd IEEE International Conference on Cluster
Computing (Cluster’01), pages 15-24, Oct. 2001.

[7] Cray Man Page Collection: Shared Memory Access
(SHMEM) S-2383-23, Available: http://docs.cray.com/.

[8] R. Hockney. The communication challenge for MPP, Intel
Paragon and Meiko CS-2. Parallel Computing, 20(3):389–
398, Mar. 1994.

[9] InfiniBand Architecture. Available:
http://www.infinibandta.org/.

[10] S. L. Johnson and C.-T. Ho. Optimum broadcasting and
personalized communication in hypercubes. IEEE

Transactions on Computer, 38(9): 1249-1268, Sept. 1989.
[11] J. Liu, A. Vishnu and D. K. Panda. Building multirail

InfiniBand clusters: MPI-level design and performance
evaluation. In 2004 ACM/IEEE Conference on
Supercomputing (SC’04), Nov. 2004.

[12] Message Passing Interface Forum: MPI, A Message Passing
Interface standard, Version 1.2, 1997.

[13] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda.
Scalable NIC-based reduction on large-scale clusters. In
2003 ACM/IEEE Conference on Supercomputing (SC’03),
Nov. 2003.

[14] PDSH: available: http://www.llnl.gov/linux/pdsh/.
[15] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie,

Performance evaluation of the Quadrics interconnection
network. Journal of Cluster Computing, 6(2):125-142, Apr.
2003.

[16] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E.
Gabriel, and J. J. Dongarra. Performance analysis of MPI
collective operations. In 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05), pages
272a-272a, Apr. 2005.

[17] D. Roweth and A. Moody. Performance of all-to-all on
QsNetII”. Quadrics White Paper, Available at
http://www.quadrics.com/.

[18] D. Roweth, A. Pittman, and J. Beecroft. Optimized
collectives on QsNetII. Quadrics White Paper, Available at
http://www.quadrics.com/.

[19] S. Sur, H.-W. Jin, and D. K. Panda. Efficient and scalable
all-to-all personalized exchange for InfiniBand clusters. In
2004 International Conference on Parallel Processing
(ICCP’04), pages 275-282, 2004.

[20] S. Sur, U. K. R. Bondhugula, A. Mamidala, H.-W. Jin, and
D. K. Panda. High performance RDMA based all-to-all
broadcast for InfiniBand clusters. In International
Conference on High Performance Computing (HiPC 2005),
Dec. 2005.

[21] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of
collective communication operations in MPICH.
International Journal of High Performance Computing
Applications, 19(1):49-66, 2005.

[22] R. Zamani, Y. Qian, and A. Afsahi. An evaluation of the
Myrinet/GM2 two-port networks. In 3rd IEEE Workshop on
High-Speed Local Networks, HSLN 2004, pages 734-742,
Nov. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

