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Abstract 

Many scientific applications use MPI collective 
communications intensively. Therefore, efficient and 
scalable implementation of collective operations is critical 
to the performance of such applications running on 
clusters. Quadrics QsNetII is a high-performance 
interconnect for clusters that implements some collectives 
at the Elan level. These collectives are directly used by 
their corresponding MPI collectives.  

Quadrics software supports point-to-point striping 
over multi-rail QsNetII networks. However, multi-rail 
collectives have not been supported. In this work, we 
propose a number of RDMA-based multi-port collectives 
over multi-rail QsNetII clusters directly at the Elan level. 
Our performance results indicate that the proposed multi-
port gather gains an improvement of up to 6.35 for 1MB 
message over the native elan_gather. The proposed multi-
port all-to-all performs better than the native elan_alltoall 
by a factor of 2.19 for 16KB message. Moreover, we have 
also proposed two algorithms for the scatter operation.   

1. Introduction 

Cluster computers have become the predominant 
computing platform for high-performance computing and 
emerging commercial and networking applications due to 
their cost-effectiveness. In such systems, the 
interconnection network and the communication system 
software are the keys to the performance. Several 
contemporary interconnects such as Quadrics QsNet [15] 
and QsNetII [1], InfiniBand [9], and Myrinet [22] have 
been introduced to support the ever-increasing demand for 
efficient communication, scalability, and higher 
performance in clusters. Among them, QsNetII offers the 
lowest communication latency. 

Most scientific applications are written on top of the 
Message Passing Interface (MPI) [12]. In fact, MPI has 
become the de-facto standard for parallel programming on 

clusters. MPI provides both point-to-point and collective 
communication operations. In QsNetII, the MPI point-to-
point implementation provided by Quadrics runs on top of 
a network programming interface called Tagged Ports, or 
Tports. Tports provides similar two-sided message-passing 
semantics as in MPI. It was initially developed by Meiko 
for their CS-2 interconnect [2]. QsNetII also supports 
Remote Direct Memory Access (RDMA) write and read 
operations in its lower-level Elan library via elan_put ()
and elan_get () function calls, respectively. It allows direct 
transfer of data from a source virtual address to a 
destination virtual address of two processes without the 
host processor intervention or any intermediate copy.  

Many parallel applications need communication 
patterns that involve collective data movement and global 
control. Therefore, efficient and scalable implementation 
of collective communication operations is critical to the 
performance of such applications. Implementation of 
collective operations in Quadrics is very efficient. In fact, 
QsNetII provides hardware support for broadcast and 
barrier operations. Other collective primitives such as 
reduce, gather, and all-to-all are also implemented in the 
Elan library. These collectives are directly used by their 
corresponding MPI collectives.     

To overcome bandwidth limitations for today’s most 
demanding applications, and to enhance fault tolerance, 
using multiple independent networks known as multi-rail 
networks has been recently proposed to connect symmetric 
multiprocessor (SMP) nodes in high-performance clusters 
[6, 11]. Basically, there are two ways in distributing the 
traffic over multiple rails. One is to use multiplexing, also 
called message dispatching, where messages are 
transferred over different rails in a round robin fashion. 
The other method is called message striping, where 
messages are divided in multiple chunks and sent over 
multiple rails simultaneously.  

Quadrics has a native support for message striping over 
multi-rail QsNetII networks only for large point-to-point 
messages through its Elan RDMA put and get, SHMEM 
[7] put and get, and Tports send/receive functions. 
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However, multi-port collectives with striping is not 
supported. Our performance results verify that only a few 
single-port collectives that are currently implemented on 
top of point to point Tports or elan_put () will gain multi-
rail striping from those underlying subsystems.  

In this work, we take on the challenge in designing 
high-performance RDMA-based collectives on multi-rail 
QsNetII networks. Rather than devising single-port (MPI) 
collectives that utilize the underlying striping facilities, we 
propose and evaluate multi-port collective schemes with 
striping for multi-rail QsNetII directly at the Elan level 
using RDMA write. We propose algorithms for scatter, 
gather, and all-to-all personalized exchange operations. 
Our performance results indicate that the multi-port gather 
gains an improvement of up to 6.35 for 1MB message over 
the native elan_gather. Moreover, the proposed multi-port 
all-to-all performs better than the elan_alltoall by a factor 
of 2.19 for 16KB message. 

 To the best of our knowledge, this is the first work in 
devising multi-port collective communications on a 
modern multi-rail interconnect such as Quadrics. Although 
we have targeted Quadrics QsNetII, we believe this study 
has implications beyond QsNetII as it can be applied to 
other multi-rail RDMA-capable networks such as 
InfiniBand. 

The rest of the paper is organized as follows. In 
Section 2, we provide an overview of the Quadrics QsNetII

architecture including Tports, RDMA, and collective 
communications. In Section 3, we introduce our 
experimental platform. Section 4 explains the motivation 
behind this work by showing that only a couple single-port 
(MPI) collectives benefit from the underlying striping 
facility. Section 5 presents some known algorithms for 
scatter, gather and all-to-all personalized exchange used in 
this work. In Section 6, we propose and evaluate our 
RDMA-based multi-port collective algorithms on multi-
rail QsNetII with its striping support on a 16-processor 
cluster. Related work is discussed in Section 7. 
Conclusions and future research are discussed in section 8. 

2. Overview of QsNet
II

QsNetII [1] is the latest generation interconnect from 
Quadrics. It consists of two ASICs: Elan4 and Elite4. The 
network, arranged in a fat-tree topology, is built out of 
Elite4 switch components, where each can switch eight bi-
directional channels. Elan4 is the communication 
processor on the network interface card (NIC). It provides 
a protected user-level access to the NIC so that multiple 
user processes can share it simultaneously. The command 
processor within Elan4 is responsible for such a protection 
through command queues generated by user processes.  

QsNetII differs from other contemporary interconnects 
such as InfiniBand and Myrinet in the sense that it 
integrates a node’s local memory into a globally shared, 

virtual-memory space. Data can be transferred from a 
source virtual address to a destination virtual address 
without any intermediate copy or host intervention. This is 
done with the help of Elan4’s memory management unit 
(MMU). There is no need for memory registration as in 
other high-performance interconnects. 

The Quadrics software includes both MPI and 
SHMEM. They are implemented with libelan and libelan4. 
Elan4 supports both send/receive and RDMA operations. 
The RDMA operations include RDMA write (elan_put),
and RDMA read (elan_get). The send/receive mode, 
supported through connectionless Tports network 
programming interface, provides a similar two-sided 
message-passing semantics as in MPI. In fact, MPI point-
to-point implementation on QsNetII uses Tports as its 
transport layer. A thread running on the Elan4’s thread 
processor matches sends to their corresponding receives. 
If a matching is found, data is sent directly to the 
application’s address space. If no matching receive is 
found, the thread processor locally buffers the data and 
performs a final copy when the receive call is posted. 
Availability of such a thread processor at the network 
interface enables MPI independent progress, 
communication/computation overlap, as well as offloading 
MPI tag matching and protocol processing [4].    

The short message latency is minimized by pipelining 
messages onto the network through a dedicated Short 
Transaction Engine (STEN) processor on Elan4. The 
STEN processor requires the host CPU to copy the data, so 
latency increases for large messages. Therefore, for large 
messages, the RDMA engine is responsible for 
transferring data directly from the sender’s user space to 
the receiver’s user space. For very large messages, the 
sender only sends a descriptor to the sender, and then a 
DMA descriptor is sent back by the receiving thread 
processor to the sender for an efficient RDMA write. 

2.1. Collective Communication in QsNet
II

QsNetII supports broadcast, barrier, reduce, gather, and 
all-to-all personalized exchange at the Elan level. These 
collectives are directly used by the MPI library, and thus it 
is very important to optimize them. A number of RDMA 
primitives such as elan_put () and elan_doput () are used 
in the implementation of these collectives. elan_doput () is 
similar to elan_put () with the exception that it sets a
destination event on completion. These functions are non-
blocking, and elan_wait () may be used to test or wait on 
for the completion of the transfer.  

In this work, we are interested in the design of efficient 
scatter, gather, and all-to-all personalized exchange 
operations. However, for the sake of completeness, we 
briefly discuss the other Elan collectives as well.  

QsNetII supports hardware broadcast, elan_hbcast (), 
and hardware barrier, elan_hgsync (), operations only 



across contiguous ranges of nodes [18]. Where this is not 
possible, software broadcast,   elan_bcast (), and software 
barrier, elan_gsync (), are used instead. Hardware 
broadcast and network conditionals are used to implement 
the barrier operation. The root process performs a network 
conditional by polling the ready flag of other nodes (a flag 
is set when a process other than root enters a barrier), and 
when polling returns successfully it broadcasts a set of 
done event to all other processes.  

Reduction is done via elan_reduce () function, where 
each node in the tree sends its results up using   
elan_doput (). Parent nodes apply the reduction function, 
combine them, and send them up until it reaches the root 
[18]. An efficient NIC-based reduction scheme similar to 
the one proposed in [13] for QsNet has been implemented 
on the thread processor of QsNetII.

A tree-based gather algorithm [18] is used in the 
elan_gather (). Leaf nodes send data to their parents. 
Intermediate nodes add their own data and forward to their 
parents. This process continues until the root process 
gathers all data. To reduce host processor involvement, 
Elan event processor is used to chain the puts. 

The elan_alloall () does an all-to-all personalized 
exchange amongst all the processes. Quadrics uses a 
pairwise exchange algorithm for up to 8KB messages and 
then switches to a permission to send algorithm [18, 17]. 
In the pairwise exchange, performance deteriorates when 
there are hot spots due to communication with the same 
destinations. In the permission to send algorithm, a node 
starts exchanging when it has received permission from 
previous process. Quadrics uses a non-blocking put 
algorithm for short messages, where each process posts 
some elan_put () functions. When one transfer is done, 
another one will be issued [18]. It has also been shown 
that the Bruck’s index algorithm [5] works well for very 
small messages. Note in all the collectives discussed, 
shared memory wrapper functions are used when multiple 
processes exist per node.     

3. Experimental Platform 

The experiments were conducted on a 4-node 
dedicated SMP cluster interconnected with two QM500-B 
Quadrics QsNetII NICs per node, and two QS8A-AA 
QsNetII E-series 8-way switches. Each node is a Dell 
PowerEdge 6650 that has four 1.4 GHz Intel Xeon MP 
Processors with 256KB unified L2 cache, 512KB unified 
L3 cache, and 2GB of DDR-SDRAM on a 400 MHz Front 
Side Bus. Each NIC is inserted in a 64-bit, 100 MHz PCI-
X slot. The operating system is the Vanilla kernel version 
2.6.9. Our Quadrics software is the latest release “Hawk” 
with the kernel patch qsnetp2, kernel module 5.10.5qsnet, 
QsNet Library 1.5.6-1, and QsNetII Library 2.2.4-1. Test 
codes were launched by the pdsh [14] task launching tool, 

version 2.6.1. The MPI implementation is the Quadrics 
MPI, version MPI.1.24-47.intel81. 

4. Motivation 

To overcome bandwidth limitations for today’s most 
demanding applications, and to enhance fault tolerance, 
using multiple independent networks known as multi-rail 
networks has been recently proposed to connect SMP 
nodes in high-performance clusters [6, 11]. Basically, 
there are two ways in distributing the traffic over multiple 
rails. One is to use multiplexing, where messages are 
transferred over different rails in a round robin fashion. 
The other method is called message striping, where 
messages are divided in multiple chunks and sent over 
multiple rails simultaneously.  

A straightforward way to have a multi-rail network is 
to have multiple NICs installed on each cluster node and 
connect them to a single or a separate switch. Coll and his 
colleagues [6] did a simulation study of different static and 
dynamic allocation schemes for multiple communication 
rails. Recently, Liu and his associates [11] designed multi-
rail InfiniBand clusters with support for point-to-point 
message striping in MPI.   

QsNetII uses multiple NICs per node to construct a 
multi-rail cluster network, in which the i-th NIC connects 
to the i-th rail. Quadrics has a native support for a simple 
even message striping over multi-rail QsNetII networks 
only for large point-to-point messages through its Elan put
and get, SHMEM put and get, and Tports send/receive
functions. Our intention in this section is to show while 
point-to-point messages benefit from message striping, 
only a few (Elan and MPI) collectives that are currently 
implemented on top of point to point Tports or elan_put ()
will gain multi-rail striping.  

In the following, we first present the performance of 
Elan put and get, Tports send/receive, as well as MPI 
point-to-point under single-rail and dual-rail QsNetII on 
our platform (SHMEM put and get also stripe large 
messages but we do not show their performance here). We 
will then demonstrate the performance of Elan collectives, 
and two of MPI collectives (MPI_Scatter and 
MPI_Allgather that do not have Elan counterparts). 

Our point-to-point experimentation is done with uni-
directional, bi-directional, and both-way traffics. In the 
unidirectional bandwidth test, the sender transmits a 
message repeatedly to the receiver, and then waits for the 
last message to be acknowledged. The bi-directional test is 
the ping-pong test where the sender sends a message and 
the receiver upon receiving the message, immediately 
replies with the same message size. This is repeated 
sufficient number of times to eliminate the transient 
conditions of the network. In the both-way test, both the 
sender and receiver send data simultaneously. This test 



puts more pressure on the communication subsystem, and 
the PCI-X bus.  

4.1. Elan RDMA Performance 

Figure 1 presents the bandwidth performance of the 
RDMA write using the pgping microbenchmark available 
in the Elan Library. It is evident that the bandwidth is 
doubled in the dual-rail system. The both-way single-rail 
and dual-rail elan_put () bandwidths are 670MB/s and 
1332 MB/s, respectively. The bandwidth for elan_get () is 
almost the same as elan_put () in each case (not shown). 

The Elan RDMA write short message latency does not 
change much between single-rail and dual-rail. The 
latency varies between 2 µs to 2.77 µs for a 4-byte 
message. The elan_get () short message latency is slightly 
larger than the RDMA write. That is why we decided to 
use elan_put () in our collective implementations. 
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Figure 1. Elan RDMA write performance. 

4.2. Tports Performance 

Figure 2 shows the Tports bandwidth. Tests are done 
using the tping microbenchmark (except for the uni-
directional case, where we wrote our own code). Like the 
Elan RDMA, the dual-rail Tports bandwidth outperforms 
the single-rail bandwidth in each case. The single-rail T-
ports bandwidth is roughly the same as RDMA bandwidth; 
however, dual-rail bandwidth falls short of RDMA. The 
short message latency is slightly larger than the RDMA.  

4.3. MPI Send/Receive Performance

Figure 3 compares the MPI bandwidth under different 
cases. Unlike the both-way, the uni-directional and bi-
directional MPI bandwidths for dual-rail are almost 
doubled. This shows that the MPI point-to-point 
implementation over Tports mostly benefit from striping 
in the dual-rail QsNetII. The short message MPI latency is 
close to that of the T-ports (not shown here).  
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Figure 2. T-port send/receive performance. 
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Figure 3. MPI send/receive performance. 

4.4. Collective Performance 

Figure 4 depicts the aggregate bandwidth for the Elan 
hardware and software broadcasts, gather, and all-to-all, as 
well as MPI_Scatter and MPI_Allgather. For the Elan 
collectives, we have used the gping microbenchmark 
available in the Elan Library. For the MPI collectives, we 
have written our own code. 

From the results, except for the elan_alltoall () (and 
elan_reduce (), not shown here) other collectives at the 
Elan level do not benefit from the dual-rail QsNetII.
MPI_Scatter and MPI_Allgather are implemented on top 
of Tports, but only MPI_Scatter achieves larger bandwidth 
under dual-rail.  

Efficient implementation of collective operations is one 
of the keys to the performance of parallel applications. 
Given the multi-rail performance offered at the Elan and 
Tports levels, excellent opportunities exist for devising 
efficient collectives for such systems.  

Basically, there are two ways to improve the 
performance of collectives on multi-rail systems. One is to 
implement single-port collective communication 
algorithms that gain multi-rail striping from the underlying 
communication subsystem. This is the approach currently 
used for MPI_Scatter and elan_alltoall (). However, this 
will only improve the performance for large messages. 
The second approach that we propose is to design and 
implement multi-port algorithms for multi-rail systems 
that also benefit from the striping feature supported by 



QsNetII. We have used some known multi-port algorithms 
and implemented them on our dual-rail QsNetII network 
directly at the Elan level using RDMA write. 

5. Collective Algorithms 

In this section, we provide an overview of some known 
algorithms for scatter, gather, and all-to-all personalized 
exchange. In the following discussion, N is the number of 
processors (or processes) and k is the number of ports in 
the multi-port algorithms (equal to the number of available 
rails). In the k-port (or multi-port) modeling, each process 
has the ability to simultaneously send and receive k
messages on its k links. The assumption is that the number 
of processes is a power of (k + 1). Otherwise, dummy 
processes can be assumed to exist until the next power of 
(k + 1), and the algorithms apply with little or no 
performance loss. 
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Figure 4. Collective performance on 16 
processes. 

5.1. Scatter 

The spanning binomial tree algorithm [10] can be 
extended for k-port modeling. In this algorithm, the 
scattering process sends k messages of length N/(k + 1)

each, to its k children. Therefore, there are (k + 1) 
processes having N/(k + 1) different messages. These 
processes, at step 2, send one (k + 1)-th of their initial 
message to each of their immediate k children. This 
process continues and all processes are informed after 
logk+1 N communication steps. Using Hockney’s model 
[8], the total communication time, T, is: 
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where, ts is the message startup time, lm is the message size 
in bytes, and  is the time to transfer one byte. 

The above algorithm has a logarithmic number of 
steps, therefore suitable for short messages and networks 
where the cost of message transfer is dominated by the 
startup latency. Another algorithm, for large messages, is 
the extension of sequential tree algorithm for k-port 
modeling. At each step, the source process sends its k
different messages to k other processes. There are a total 
of (N -1)/k communication steps. Therefore, the total 
communication cost, T,  is: 

               )(
1 τ×+×−= ms lt

k

N
T                (2) 

5.2. Gather 

Gather is the exact reverse of scatter so the same 
spanning binomial tree algorithm extended for k-port 
modeling can be used. However, the communication starts 
from the leaf processes and messages are combined in the 
intermediate processes until it reaches the root. The total 
communication cost is the same as in Equation (1). 

5.3. All-to-all Personalized Exchange 

A lower bound for all-to-all personalized exchange 
time is (N -1)/k since each process must receive N – 1 
different messages and it can only receive at most k
messages at a time. A simple algorithm is based on the 
extension of the direct algorithm for k-port modeling. The 
processes are arranged in a virtual ring. That is, at step i,
process p sends its message to processes (p + (i – 1)k + 1) 
mod N, (p + (i – 1)k + 2) mod N, …, (p + ik) mod N.
Modulus operation avoids sending messages to a single 
destination. The communication cost is the same as in 
Equation (2). 



6. RDMA-based Implementation and 

Performance 

In this section, the intention is to show the 
effectiveness of the multi-port algorithms introduced in 
Section 5 on multi-rail QsNetII with striping support, when 
they are implemented directly at the Elan layer using Elan 
RDMA write.  

Memory registration/deregistration is a costly 
operation. However, contrary to InfiniBand and Myrinet, 
QsNetII does not need memory registration and address 
exchange for message transfers. This eases the 
implementation, and effectively reduces the 
communication latency.  

Our algorithms are two-port put-based algorithms, 
where a sending process has direct control in sending 
messages simultaneously over the two rails using the 
elan_doput () function. When a message is larger than a 
threshold (1KB) even message striping is used over the 
two rails. When a message is sent, the sending process 
uses the elan_wait () to make sure the user buffer can be 
re-used.  

In the latest Quadrics Hawk distribution, release 2.2.4-
1, remote event notification is enabled in elan_doput () for 
both single-rail and multi-rail systems. This allows multi-
rail striped (ELAN_RAIL_ALL) put messages to have a 
devent (destination event). In this case the devent will be 
set once in each rail and in the target process one will need 
to call elan_initEvent () once for each rail and then wait on 
each ELAN_EVENT to be returned. This guarantees a 
message has been delivered in its entirety. 

In the implementation of our algorithms, processes do 
not synchronize with each other. Note that our 
implementation is completely put-based, but we are in the 
process of optimizing them for the cases where processes 
are co-located on the same 4-way nodes. 

6.1. Evaluation of Scatter 

We have implemented the multi-port spanning 
Binomial tree algorithm for Scatter operation on multi-rail 
QsNetII systems using RDMA Write. We call this scheme 
as BSRW. Likewise, we call the sequential tree 
implementation for scatter as SSRW. 

Figure 5 compares the performance of the two scatter 
algorithms, BSRW and SSRW, on our dual-rail QsNetII.
As expected, BSRW is superior for short messages, while 
SSRW has a much better performance for medium and 
large messages. Figure 5 also presents the scalability of 
our implementation. The scalability figures show that 
indeed the BSRW is the better algorithm for short 
messages with increasing system size. 
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Figure 5. Scatter performance and scalability. 

6.2. Evaluation of Gather 

The multi-port spanning Binomial tree algorithm for 
Gather operation has been implemented on multi-rail 
QsNetII systems using RDMA Write feature. We call this 
scheme as BGRW. 

Figure 6 compares the performance of our gather 
algorithm, BGRW, with the elan_gather (). The results are 
very promising as our implementation is much better than 
the native implementation except slightly for short 
messages less than 64 bytes. Interestingly, the proposed 
multi-port gather gains an improvement of up to 6.35 for 
1MB message. The scalability plots in Figure 6 verify the 
superiority of our gather algorithm for short to medium, 
medium, and large messages. However, it does show that 
with increasing number of processes elan_gather () is 
better for very short messages.  

6.3. Evaluation of All-to-all Personalized 

Exchange 

We have also implemented the multi-port Direct 
algorithm for All-to-all personalized exchange on multi-
rail QsNetII systems using RDMA Write. We call this 
scheme as DARW.  



Figure 7 compares the performance of our all-to-all 
algorithm, DARW, with the elan_alltoall (). The results 
are again encouraging. Our multi-port all-to-all algorithm 
and its implementation is much better than the native 
elan_alltoall () for medium size messages. In fact, the 
improvement is up to a factor of 2.19 for 16KB message. 
However, elan_alltoall () is better than DARW for short 
messages up to 256 bytes, and for 32KB message size 
when it switches its algorithm. For large message sizes, 
our two-port algorithm is slightly better. The scalability 
plots confirm these findings. We are currently working on 
the standard exchange algorithm [3], and Bruck’s index
algorithm [5] for multi-rail QsNetII. These algorithms are 
known to be superior for short messages.  

7. Related Work 

Study of collective communication operations has been 
an active area of research. Recently, the authors in [16] 
analyzed the performance of collective communication 
operations under different communication cost models. 
Thakur and his colleagues discussed recent collective 
algorithms used in MPICH [21]. They have shown some 
algorithms perform better than the others depending on the 
message size, and the number of processes.  
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Figure 6. Gather performance and scalability. 
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Figure 7. All-to-all performance and scalability. 

Different collective algorithms on QsNetII have been 
studied in [18, 17]. Sur, et al. proposed efficient RDMA-
based all-to-all broadcast [20] and all-to-all personalized 
exchange [19] algorithms for InfiniBand–based clusters.  

Coll and his associates did a comprehensive simulation 
study on static and dynamic allocation schemes for multi-
rail systems [6]. Recently, the authors in [11] designed an 
MPI-level multi-rail InfiniBand clusters. However, their 
work was only focused on point-to-point communications. 

8. Conclusions 

Interconnection networks and the supporting 
communication system software are the deciding factors in 
the performance of clusters. Specifically, efficient 
implementation of collective operations is critical to the 
performance of MPI applications.  

QsNetII is a high-performance network for clusters that 
implements some collectives at the Elan level. Their MPI 
counterparts directly use them. Therefore, optimizations 
and inclusion of new collectives at the Elan level are 
extremely desirable.  

Quadrics supports point-to-point message striping over 
multi-rail QsNetII. In this work, we have proposed and 
implemented a number of multi-port collectives at the 
Elan level over multi-rail QsNetII systems. Our 
performance results indicate that our multi-port gather 



gains an improvement of up to 6.35 for 1MB message over 
the native elan_gather (). The proposed multi-port all-to-
all performs better than the elan_alltoall () by a factor of 
2.19 for 16KB message. Moreover, we have proposed two 
algorithms for short and long messages for the scatter 
operation.  

The results are encouraging and future work in this 
area is justified. Our all-to-all algorithm did not perform 
well for short messages. For this, we are currently 
experimenting with the standard exchange [3], and 
Bruck’s index [5] algorithms. We are also trying to utilize 
the shared memory wrapper facility of Quadrics software 
to speedup the collectives for co-located processes on 
SMP nodes. Optimal static and dynamic striping 
mechanisms may also help boost the performance. We 
intend to extend our study by devising other collective 
communications of interests and testing them on larger 
multi-rail clusters. NIC-based or NIC-assisted collectives 
for multi-rail systems, and taking advantage of basic 
hardware collectives in their design are other areas of 
interests. 
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